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1 Introduction

� Dynamic rational expectation models are di�cult to estimate:

- There are expectations of future variables.

- The decision rules are often non-linear in the parameters.

- If they are of general equilibrium type, need to solve the model (to obtain

a "�nal form") and use (full information) maximum likelihood techniques.



� Can we estimate the parameters without computing a �nal form?

- Yes, there is a class of distance estimators which can be used to estimate

the parameters of a structural model using just the �rst order conditions.

- These estimators can be used also in many other situations.

- Very general econometric framework



2 De�nition of GMM estimator

� GMM minimizes distance between sample and population functions.

If there are m conditions, we need weights to transform the vector of m

conditions into an index.

� g1(�) � vector of population (theoretical) functions.

� gT (�) � vector of sample functions (sample size is T).

�GMM = argmin[gT (�)
0WTgT (�)� g1(�)0Wg1(�)] (1)

where WT is a m�m full rank matrix, converging in probability to some

W .



In many economic models the g function are "orthogonality" conditions:

g1(�) = Et[g(yt; �)� C] = 0

where � is a set of parameters, yt are observable data, C a constant and

Et(:) denotes conditional expectation operators. Hence GMM solves:

�GMM = argmin[gT (�)
0WTgT (�)] (2)



2.1 Examples of economic orthogonality conditions

Example 2.1 Model of consumption and savings.

max
fct;sat+1g1t=0

E0
X
t

�tu(ct) (3)

ct + sat+1 � wt + (1 + r)sat (4)

wt = labor income, sat+1 = savings, and rt = r 8t. Letting Uc;t =

@u(ct)=@ct, and �t the Lagrangian on the constraint at t, the FOC are

Uc;t = �t (5)

�t = �Et�t+1(1 + r) (6)



Combining the two equations leads to the Euler equation:

Et[�(1 + r)
Uc;t+1

Uc;t
� 1] = 0 (7)

(7) is an orthogonality condition for g(yt; �) = [�(1 + r)Uc;t+1=Uc;t] and

C = 1.

Suppose u(ct) = ln ct. If we assume that r is given, (7) is one condition

in one unknown parameter � (just-identi�ed case).



Example 2.2 Lucas Asset Pricing Model (endogenous rt).

Agents choose fct; Bt+1; St+1g1t=0 to maximize E0
P
t �
tu(ct) subject to

ct +Bt+1 + p
s
tSt+1 � wt + (1 + rt)Bt + (pst + sdt)St (8)

Bt(St) are bond (stock) holdings ; sdt dividends and p
s
t stock prices. Op-

timality implies:

Et[�
Uc;t+1

Uc;t

(pst+1 + sdt+1)

pst
� 1] = 0

Et[�
Uc;t+1

Uc;t
� 1

1 + rt
] = 0 (9)



(9) are two orthogonality conditions for g1(yt; �) = �
Uc;t+1
Uc;t

pst+1+sdt+1
pst

, and

g2(yt; �) = �(1 + rt)
Uc;t+1
Uc;t

and C = 1.

If u(ct) = ln ct, (9) are two conditions in one unknown parameter �. (over-

identi�ed case). How do we �nd � in this case?

- Could use either one of the two conditions.

- Could also combine assigning weights w1 and w2, i.e. min�(w1Tg
2
1T (�)+

w2Tg
2
2T (�)). In this case estimation becomes more e�cient (we use all

available information).



Example 2.3 Real Business Cycle Model

max
fct;Nt;Kt+1g1t=0

E0
X
t

�tu(ct; Nt) (10)

ct +Kt+1 � f(Kt; Nt; �t) + (1� �)Kt (11)

Nt = hours, 0 � Nt � 1;Kt = capital and �t = technology disturbance.
The Euler equation for capital accumulation is

Et(�
Uc;t+1

Uc;t
[fK;t+1 + (1� �)]� 1]) = 0 (12)

where Uc;t =
@u(ct;Nt)
@ct

; fK;t+1 =
@f
@Kt

. (12) is an orthogonality condition

for g(yt; �) = �
Uc;t+1
Uc;t

(fK + (1� �)) and C = 1.

If u(ct) = ln ct + V (1 � Nt), we have one condition, and at least two
parameters (�; �) to estimate (under-identi�ed case). Unless we add other
orthogonality conditions, we can not estimate both parameters.



Conclusion: Dynamic models where agents have rational expectations
produce orthogonality conditions as the result of optimization. Parame-
ters entering these conditions can be estimated with GMM.

How do we add conditions if we are as in a situation like example 2.3?

- Use the law of iterated expectations: E(Etg(yt; �)) = Eg(yt; �) = 0.
Hence, we can substitute conditional expectations Et with unconditional
ones. This extends the set of conditions to which GMM can be applied.
In fact:

� GMM be applied to static optimality conditions, e.g. in example 2.3 one
extra condition is

UN;t
Uc;t

= fN . Since this holds for every t, it must be that

it holds on average, i.e. E(
UN;t
Uc;t

� fN) = 0.

� GMM can be applied to identities: e.g. budget constraint ct + kt+1 �
(1� �)kt = yt implies E(ct + kt+1 � (1� �)kt � yt) = 0.



2.2 De�nition of GIV estimators

� In example 2.3 there are more parameters than orthogonality conditions.
We could jointly estimate the Euler equation and the intratemporal con-

ditions if �; � entered there but they don't. How do we proceed in this

case?

Let zt be any variables which is observable at time t. If Et[g(yt; �)�C] = 0
then Ef[g(yt; �)� C]ztg = 0 and

�GIV = argmin[z
0
TgT (�)

0WTgT (�)zT ] (13)



In example 2.3, let u(ct) = ln ct, then:

Et(�
ct

ct+1
[fK;t+1 + (1� �)]� 1]) = 0 (14)

If ct�1; fK;t belong to the information set of agents, to estimate �; � we
could use

E(�
ct

ct+1
[fK;t+1 + (1� �)]� 1])

ct�1
ct

= 0 (15)

E(�
ct

ct+1
[fK;t+1 + (1� �)]� 1])fK;t = 0 (16)

- If u(ct) has additional parameters, we could use
ct�2
ct�1

; fk;t�1, as instru-
ments to "increase" the number of orthogonality conditions.



- How do we choose zt? Di�cult!

- How many zt should I use? If, for example, I add to the above

E(�
ct

ct+1
[fK;t+1 + (1� �)]� 1])

ct�2
ct�1

= 0

We now have three equations in two unknowns. Need to use a weighting

matrix whenever dim(z)> dim(�).



2.3 Examples of econometric orthogonality conditions

� OLS: E(x0tet) = 0. Then g(xt; �) = (x0tyt�x0tx0t�) = x0tet and C = 0.

� IV: E(z0tet) = 0. Then g(xt; zt; �) = (z0tyt�z0tx0t�) = z0tet and C = 0.

� ML: L =
Q
t f(yt; �);

@ lnL(�ML)
@� = 0, g(xt; �) =

@ ln ft(yt;�)
@� and

C = 0.

Conclusion: linear models featuring (unconditional) orthogonality condi-

tions among the identifying assumptions can be estimated with GMM.



3 Mechanics of GMM in linear models

- Model: yt = �xt + et; E(etjxt) 6= 0; E(ete0t) = �2:

- We have available zt such that Et(etjzt) = 0; Et(xtjzt) 6= 0. Want:

min
�
QT (�) = (e(�)

0z)WT (e(�)
0z)0

where e(�)0z � 1
T

P
t(et(�)

0zt) and it is assumed to converge to E(etzt) =
0 as T becomes large, and WT is a weighting matrix. The F.O.C. are:

x0TzTWTz
0
TyT = x

0
TzTWTz

0
TxT� (17)



Two cases:

a) If dim(�) = dim(z); z0TxTWT is a square matrix and �GMM =

(z0TxT )
�1z0TyT . This is the standard IV estimator.

b) If dim(�) < dim(z); �GMM = (x0TzTWTz
0
TxT )

�1(x0TzTWTz
0
TyT ).

This is because z0TxTWT is rectangular and z
0
TxTWTZTeT = 0 does not

imply ZTeT = 0 (only dim(�) conditions are set to zero, dim(z)�dim(�)
are unrestricted).



- z must correlated with x otherwise (z0TxT )
�1 may not be computable

and variance of estimator may be large.

Two results:

� GMM estimators are consistent under general conditions, i.e. as T !
1; �GMM ! � with probability one.

� GMM estimators are asymptotically normal i.e. T 0:5(�GMM � �)
D!

N(0;��) where

�� = ��1z;x�
2�z;z�

�1
x;z case a) (18)

= (�x;zW�z;x)
�1(�x;zW�2�z;zW�z;x)(�x;zW�z;x)

�10 case b) (19)



� Covariance matrix in (19) depends on W . How to choose W? Choose

W to minimize �� (asymptotic e�ciency).

Solution: Ŵ = ��2��1z;z. Then

��� � �(Ŵ ) = ��1z;x�
2�z;z�

�10
x;z (20)

��GMM � �(Ŵ )GMM = (x0T x̂T )
�1(x̂0TyT ) (21)

where x̂T = z
0
T (z

0
TzT )

�1z0TxT .



Implications:

i) Optimal W is proportional to the covariance matrix of z ! use as

weights the relative variability of instruments.

ii) �GMM with the optimal W is nothing else than 2SLS.

If the model is nonlinear in variables and parameters what can we say about

the properties of GMM estimators?



- In nonlinear model GMM is also consistent and asymptotically normal

To obtain this result we need:

i) yt must be covariance stationary and ergodic.

ii) The function g must be martingale di�erence, e.g. Et[gtjFt] = 0.

iii) E(gt(yt; �)� C) = 0 must have a unique solution.

iv) A set of technical conditions (e.g. true parameter is not on the boundary

of parameter space; space of � is compact, etc.).



Summary of the results

a) Just identi�ed case (dim(g) = dim(�)):

- �GMM
P! �0.

- �GMM
D! N(�0; T

�1B�1AB�1
0
)

where B = Et
@g(�0)
@�0

; A = Et(gt(�0)gt(�0)
0).

Since A,B are unknown, we can use consistent estimators in the formulas.

Test of hypothesis are standard, i.e. for a t-test on �1;GMM use (�1;GMM�
��1)=(T

�1B�1AB�1
0
)0:511 and compare it to a t-distribution table.



b) Overidenti�ed case (dim(g) > dim(�)). Assume WT converges to

some �xed W a m�m full rank matrix as T !1. Then:

- �GMM
P! �0

- �GMM
D! N(�0; T

�1B�1AB�1
0
)

if WT is any matrix converging to A�1 as T ! 1 (this is the optimal

weighting matrix in the non-linear case).



Implementation algorithm

In the overidenti�ed case, we need to knowW to construct �GMM and we

need �GMM to construct W . So we need an iterative approach. Assume

g1 = 0

1) Set W 0
T = I.

2) Solve �1GMM = argmin[gT (�)
0W 0

TgT (�)]

3) Set W 1
T = T � [

P
t gt(�

1
GMM)gt(�

1
GMM)

0]�1.

4) Repeat steps 2 and 3. until jjW i
T�W

i�1
T jj < �; � small,jj�i��i�1jj < �,

or both.



When iterations are over, for each component i of the vector

- �iGMM � N(�0; T�1(( 1T
P
t
@g(�iGMM)

@�0GMM

0W i�1
T ( 1T

P
t
@g(�iGMM)

@�0GMM
)�1.

- The fully iterative algorithm may be costly to implement if � is of large

dimension.

Alternative: two step estimator. Start from some �1GMM , compute A;B,

compute W 1, compute �2GMM and stop. Properties of two step GMM

are the same as those of a fully iterative GMM if initial �1GMM is T 0:5

consistent.



3.1 Complications

� Covariance stationarity is necessary. Linear trends can be accommodated
(see Ogaki (1993)) but not unit roots.

� In some economic model the g functions are not martingale di�erence.

Example 3.1 Consider a saving problem with two maturities: one and � .

The Euler equations are

Et[�
Uc;t+1

Uc;t
� 1

1 + r1t
] = 0 (22)

Et[�
�Uc;t+�

Uc;t
� 1

1 + r�t
] = 0 (23)



Uc;t =
@u(ct)
@ct

, rjt is the real interest rate quoted at t for bonds of maturity

j. Then

Et[�
��1Uc;t+�

Uc;t+1
� 1 + r1t
1 + r�t

] = 0 (24)

i.e. expected (at t) forward rate for � � 1 periods must satisfy the no

arbitrage condition (24). Log linearizing (24) around the steady state,

yt+� � �ĉt+� + ĉt+1; xt � � r�
1+r�

r̂�t +
r1
1+r1

r̂1t where :̂ represents per-

centage deviations from the state, yt+� = �xt+ et+� where et+� satis�es

Et[et+� ] = 0 and �0 = 1. If sampling interval of the data di�erent than

� , et+� will be serially correlated, e.g. if data is monthly and � is 12, et+�
will have MA(11) components.

What happens if the (sample) orthogonality conditions are not martingale

di�erences?



A Few Results:

- GMM estimators are consistent and normal in large samples even if gt is

not a martingale di�erence. However standard errors need to be corrected.

In this case, in place of A, use S(! = 0) =
P1
�=�1

1
T

P
t gtgt�� =P1

�=�1ACFg(�).

- Newey-West (1987) Problem: S(! = 0) may not be positive de�nite.

To make sure this is the case need to weight ACFg(�) appropriately i.e.

S(! = 0) = P1
�=�1

1
T

P
j K(J(T ); �)ACFg(�). J(T ) is truncation point

and K(J(T ); �) is a kernel.



- Small sample properties of estimators depend on the kernel used.

- All kernel estimates converge very slowly to their true values. Hence,

asymptotic approximations are very poor in small samples.

- Approximations may be so bad that it may be preferable to use incorrect

standard errors than poorly estimated but correct ones.

g may also be heteroschedastic. If the form of heteroschedasticity is known,

get the right expression for A. Otherwise, use a HAC (heteroschedastic

consistent covariance) matrix (Newey-West (1987)).

Again, it may be better not to correct for heteroschedasticity if sample is

small.



4 Testing orthogonality restrictions

a) if dim(�) = dim(z) no testing is possible.

b) if dim(�) = q1 < dim(z) = q: To estimate � need only q1 conditions:

q � q1 are left free. If model is correct, also these q � q1 conditions must
be close to zero once �GMM is plugged in. Hence, under H0.

JT = T � [gT (�GMM)
0]WTgT (�GMM)]

D� �2(q � q1)

where WT
P! A�1 = E(gt(�)gt(�)0)�1.



Intuition:

y = X� + e

z1; z2 instruments, � is a scalar.

Approximately:

i) get �̂ using z1;

ii) compute e(�̂);

iii) calculate JT using (z2e(�̂))
2. If T is large JT is �

2(1).



5 Examples

5.1 Estimating linear monetary and �scal rules

it = b1�t + b2gapt + b3it�1 + ut (25)

dt = a0 + a1dt�1 + a2(DDt � gapt) +
+ a3((1�DDt) � gapt) + a4debtt + et (26)

DDt = dummy variable equal to one if the gap is positive at t (i.e. we

are in an expansion) and zero if the gap at t is negative (i.e. we are in a

contraction), dt= de�cit, it= nominal interest rate.

Treat ut; et as expectational errors, i.e. E(utjFt) = E(etjFt) = 0.



Orthogonality conditions (using unconditional expectations):

E(it � b1�t � b2gapt � b3it�1) = 0 (27)

E(dt � a0 � a1dt�1 � a2(DDtgapt)� a3((1�DDt)gapt)� a4debtt) = 0 (28)

Sample counterparts:

1

T

X
t

(it � b1�t � b2gapt � b3it�1) = 0 (29)

1

T

X
t

(dt � a0 � a1dt�1 � a2(DDtgapt)� a3((1�DDt)gapt)� a4debtt) = 0(30)

Parameters to be estimated (a0; a1; a2; a3; a4; b1; b2; b3).

2 equations, 8 unknowns. No more equations in theory. Need to use GIV.



Issues of interest:

� What are the estimates of b1; b2 and a4?

� Is monetary policy active (i.e. jb1j > 1) and �scal policy passive a4 < 0

or viceversa? (Leeper (1991))

� Is �scal policy reacting to output symmetrically over the cycle?

� Do results change with the sample?

Use US data, 1967:1-2004:2. Output gap constructed as actual minus

potential output (as reported by the FREDII dataset).



1) Instruments (di�erent for di�erent equations): one lag of output gap,

in
ation and the nominal interest rate for equation 1; a constant, two lags

of de�cit, of debt and of in
ation and one lag of the interacted variable

DDt � gapt for equation 2 (total of 11 instruments)

b' se Ttest Jtest
a0 0.3653 0.1734 2.1068 0.0264
a1 0.8393 0.0168 50.1068 p­value
a2 ­0.103 0.0128 ­8.0299 0.9869
a3 ­0.148 0.0387 ­3.8295
a4 ­0.0011 0.0023 ­0.5009 equality test
b1 1.3499 0.0579 23.3134 2.04E­06
b2 0.0258 0.0055 4.6816 p­value
b3 0.7695 0.0099 78.1224 0.9989

Equality test is test of symmetric reaction of de�cit to cycle.



2) Use two lags of each instrument in the monetary policy equation. No

change in the �scal equation.

b' se Ttest Jtest
a0 ­0.3236 0.1794 ­1.8034 73.9493
a1 0.9031 0.0185 48.8396 p­value
a2 ­0.1217 0.0142 ­8.5448 0
a3 ­0.0096 0.0419 ­0.2287
a4 0.0078 0.0023 3.3982 equality test
b1 0.787 0.0413 19.0378 1.54E­05
b2 0.0783 0.0039 19.9402 p­value
b3 0.865 0.0071 122.5776 0.9969



3) Omit the 1979-1982 sample.

b' se Ttest Jtest
a0 0.3253 0.3107 1.0472 1.6480
a1 0.8367 0.0274 30.5522 p­value
a2 ­0.129 0.0182 ­7.069 0.4387
a3 ­0.1294 0.0629 ­2.0562
a4 ­0.0009 0.0041 ­0.2214 equality test
b1 0.6147 0.0663 9.2768 5.80E­10
b2 0.1111 0.006 18.5329 p­value
b3 0.891 0.0117 75.9856 1

Here both �scal and monetary policy are passive jb1j < 1 and a4 < 0

(insigni�cant). They act as if they have to balance the budget.



4) Eliminate 1979-1982 but use two lags of in
ation.

b' se Ttest Jtest
a0 0.1859 0.3006 0.6183 3.5390
a1 0.8439 0.0265 31.808 p­value
a2 ­0.1406 0.018 ­7.806 0.1704
a3 ­0.1037 0.0618 ­1.6781
a4 0.001 0.004 0.2439 equality test
b1 0.5184 0.0644 8.0496 3.70E­06
b2 0.1194 0.0058 20.7261 p­value
b3 0.9079 0.0114 79.7907 0.9985

Estimates unstable. Di�cult to draw useful conclusions. Rejection of

model may come from �rst equation (compare 1 and 2).



How do you check instrument relevance? i.e. that the instruments are

correlated with the regressors? Use concentration (F)-statistics.

yt = xt� + et

xt = zt�+ vt

Construct an F statistics for the hypothesis that � = 0. If can't reject,

instruments are irrelevant to explain regressors.

Can't use this statistics if the model is nonlinear in the parameters (the

distribution of this statistics is unknown in this case).



5.2 Estimating a New Keynesian Phillips curve

�t = Et��t+1 +
(1� &p)(1� &p�)

&p
mct (31)

where mct =
Ntwt
GDPt

are real marginal costs, &p is the probability of not

changing the prices, � the discount factor and �t is the in
ation rate.

Transform this equation in an orthogonality condition:

E(�t � ��t+1 �
(1� &p)(1� &p�)

&p
mct) = 0 (32)

Sample counterpart:

1

T

X
t

(�t � ��t+1 �
(1� &p)(1� &p�)

&p
mct) = 0 (33)



Model is a single equation, nonlinear; parameters of interest (�; &p).

Reduced form orthogonality condition:

Et(�t � a�t+1 � bmct) = 0 (34)

Sample counterpart in reduced form linear estimation:

1

T

X
t

(�t � a�t+1 � bmct) = 0 (35)

Real marginal costs not observable, need a proxy. Could use labor share

(LS), or the fact, that in the model, GDP gap (Gap) is proportional to real

marginal costs.

Use a constant and up to 5 lags of in
ation and marginal costs as instru-

ments. Report the result most favorable to the theory



Table: Estimates of NK Philips curve
Linear estimates Nonlinear estimates

Country/Proxy a b � &p J-Test p-value
US-Gap 0.993(16.83)-0.04 (-0.31)0.907 (10.35) 0.700 (5.08) �2(5)=0.15
US-LS 0.867(10.85) 0.001( 1.75) 0.932 ( 7.74) 0.991 (150.2) �2(9)=0.54
UK-Gap 0.667(7.18) 0.528( 1.30) 0.924 ( 4.96) 0.684 (1.37) NA
UK-LS 0.412(3.81) 0.004( 4.05) 0.853 ( 4.07) 0.994 (166.1) �2(1)=0.25
GE-Gap 0.765(10.02)-0.01 (-0.22) 0.972 (7.48) 1.014 (0.03) NA
GE-LS 0.491(3.34) 0.03 ( 1.85) 0.919 ( 4.45) 0.958 (7.18) �2(1)=0.83



5.3 Estimating a RBC model

Model has multiple equations and is nonlinear.

max(ct;Kt+1;Nt)E0
P
t �
tc
1�'
t
1�' + #N(1�Nt) subject to

gt + ct +Kt+1 = �tK
1��
t N

�
t + (1� �)kt = GDPt + (1� �)Kt (36)

ln �t = �� + �z ln �t�1 + �1t �1t � (0; �2z);
ln gt = �g + �g ln gt�1 + �2t �2t � (0; �2g), k0 given.

Let gt be �nanced with lump sum taxes. Optimality conditions:

#Nc
'
t = ��tK

1��
t N

��1
t (37)

1 = Et�(
ct+1
ct
)�'[(1� �)�t+1K

��
t+1N

�
t+1 + (1� �)] (38)



and wt = �
GDPt
Nt

, rt = (1� �)GDPtKt
+ (1� �).

11 parameters: �ve structural �1 = (�; #N ; '; �; �) and 6 auxiliary ones

�2 = (��; �g; �z; �g; �g; �z). Need at least 11 orthogonality conditions.

E(� � 1 + kt+1
kt

� invt
kt
) = 0 (39)

which determines � if capital and investment data are available.

Et�(
ct+1
ct
)�')[(1� �)�t+1K

��
t+1N

�
t+1 + (1� �)] = 0 (40)

contains four parameters (�; '; �; �). Since � is "identi�ed" from (39)

transform (40) to produce at least three orthogonality conditions. Given



�, the three parameters could be estimated using

E(�(
ct+1
ct
)�')[(1� �)�t+1K

��
t+1N

�
t+1 + (1� �)]) = 0 (41)

E(�(
ct+1
ct
)�')[(1� �)�t+1K

��
t+1N

�
t+1 + (1� �)]

ct

ct�1
) = 0 (42)

E(�(
ct+1
ct
)�')[(1� �)�t+1K

��
t+1N

�
t+1 + (1� �)]rt) = 0 (43)

The intratemporal condition

E[c
�'
t ��tK

1��
t N

��1
t � #N ] = 0 (44)

involves ('; �; #N). Given ('; �), it determines #N .



The auxiliary parameters can be estimated using

E(ln �t � �� + �z ln �t�1) = 0 (45)

E(ln �t � �� + �z ln �t�1) ln �t�1 = 0 (46)

E(ln �t � �� + �z ln �t�1))2 � �2z = 0 (47)

E(ln gt � �g + �g ln gt�1) = 0 (48)

E(ln gt � �g + �g ln gt�1) ln gt�1 = 0 (49)

E(ln gt � �g + �g ln gt�1))2 � �2g = 0 (50)



� Government expenditure is observable, technological disturbances are
not. One additional auxiliary condition needed. From production function,

given estimates of �; ẑt = lnGDPt � (1� �) lnKt � � lnNt.

� Sequential estimation: the last three conditions estimable separately from
�rst eight. (Need to correct for s.e. if you do this). Otherwise go joint.

- Here use just identi�ed system or a weakly overidenti�ed one, without

optimal weighting matrix . Overidenti�ed estimates obtained adding lags

of GDPtKt
; ct
ct�1

, of investment or of the output labor ratio.

Linearly detrended US quarterly data; 1956:1-1984:1.



Table: Estimates of a RBC model
Parameter just identi�ed over identi�ed �xing � ' = 2
� 0.18 (0.0002) 0.18 (0.0002) 0.66 0.18 (0.0002)
' 1.0 1.0 1.0 2.0
� 0.015(0.043) 0.019 (0.042) 0.017 (0.038) 0.04 (0.039)
� 0.980 (0.018) 0.955 (0.033) 0.940 (0.021) 0.830 (0.068)
#N 81.39 (65.43) 82.11 (72.32) 109.07 (148.21) 4.42 (1.987)
�� 0.0005 (0.001) -0.0002 (0.001) 0.001(0.001) 0.0008 (0.001)
�g 0.075(0.001) 0.076(0.001) 0.076 (0.001) 0.076 (0.001)
�z 1.038(0.054) 1.023 (0.050) 1.032 (0.050) 1.008 (0.049)
�g 0.998 (0.0005) 0.998 (0.0006) 0.998 (0.0006) 0.998 (0.0006)
�2z 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001)
�2z 0.0002 (0.00002) 0.0002 (0.00002) 0.0002 (0.00002) 0.0002 (0.00002)
�2(6) 378.00 345.31 370.55



- Conditional on ', very low estimate of � is obtained.

- Structural parameters imprecisely estimated (except for �).

- AR parameters in the near non-stationary region (both with just-identi�ed

or overidenti�ed systems).

- Estimates of � are economically unreasonable except in the just-identi�ed

system.

- Model strongly rejected in all cases (�2 statistic smaller in last two cases).

- Results are broadly independent of the value of ' chosen.



Economic analyses with GMM estimates

- Tests of orthogonality conditions often not very informative about why

the model is rejected.

- What does rejection of orthogonality conditions imply in economic terms?

Let h(�) be some statistics you can construct from the model (plug in

estimate and solve it) and hT be the statistics you can construct in the

data (with sample size T ).

h=mean, variances, autocorrelations, etc.



Let m(�T ) = h(�T )� hT . Then �T = (
@h(�0)
@�0

)(��)(
@h(�0)
@�0

) + �h.

Under H0: Tm(�T )
0��1T m(�T )

D! �2(dim(h)).

� This test can be done for any subsets of statistics of interest.

� To construct h(�) need to solve and simulate model (GMM estimation

does not require solving the model, just uses the FOCs).



Using just-identi�ed estimates (after log-linearization).

Economic Tests of the RBC model
Moment P-valueMoment P-valueMoment P-value
var(c)/var(gdp) 0.02 c-AR(1) 0.03 corr(c,gdp) 0.09
var(inv)/var(gdp) 0.00 inv-AR(1) 0.00 corr(inv,gdp) 0.01
var(N)/var(gdp) 0.00 N-AR(1) 0.00 corr(N,gdp) 0.00

gdp-AR(1) 0.00



6 Relationship GMM/Calibration

- In GMM (just identi�ed case) �nd � so that 1T
P
t gt(�) = 0.

- In calibration �nd � so that 1T
P
t yt(�) = �y (�y are the steady states).

If we set gt = yt � �y

� Calibration is equivalent to a just-identi�ed GMM when the orthogonality
condition is the deviation of the variable from the steady state.

If we add conditions like var(ct(�)) = var(ct), then gt = [g1t; g2t]; g1t =
yt � �y and g2t = var(ct(�))� var(ct).

� Calibration to the steady state with additional conditions is equivalent
to just-identi�ed GMM on [g1t; g2t].



7 General problems with GMM:

- Choice of instruments: which one? How many ?

- Choice of orthogonality conditions ? Which one do we select?

- Small sample approximation? Generally bad.

- What should we do to correct for deviation of data from ideal conditions?

- Identi�cation of parameters? B may be close to or exactly singular.

- What if there are unobservable variables in orthogonality conditions?



8 Exercises

1) Consider estimating a log-linearized Euler equation with GIV when consumer's utility
displays external habit persistence in consumption. In this case the Euler equation can
be written as:




1 + 

�ct =

1

1 + 

Et�ct+1 +

1� 

(1 + 
)�

(it � Et�t+1) (51)

where �ct is consumption growth, it the nominal interest rate and �t in
ation. There are

two parameters: the risk aversion coe�cient � and the habit parameter 
. Using both

a just-identi�ed and an overidenti�ed system, test the relevance of consumption habit

in matching the data of the country you are considering. (Hint: you will have to make

a lot choices here: which instruments to use, which consumption series to use, how to

deal with potential non-stationarities of the in
ation rate, etc. Make sure you are very

transparent in specifying what you do. Most of the grade in this question depends on

how well you explain what you are doing).



2) Consider three monetary policy rules of the form

it = �it�1 + (1� �)�xxt + (1� �)�p�t + et (52)

it = �it�1 + (1� �)�xxt�1 + (1� �)�p�t�1 + et (53)

it = �it�1 + (1� �)�xEtxt+1 + (1� �)�pEt�t+1 + et (54)

The di�erence between various speci�cations is that the central bank looks at the past,

the present or the future output gap (xt) and in
ation rates (�t) when setting interest

rates. Estimate the parameters of these three rules by GIV using data for your favorite

country. Which speci�cation �ts the data better? Why? Test the �rst speci�cation

against the third (Hint: estimate a general model and test the three models as restricted

speci�cations).

3) Consider an extended Phillips curve equation of the form:

�t =
�

1 + �
p
Et�t+1 +


p

1 + �
p
�t�1 +

(1� &p)(1� &p�)
&p

mct + et (55)

where mct =
Ntwt

GDPt
are real marginal costs, &p is the probability of not changing the prices,

�t is the in
ation rate and 
p is an indexation parameter.



Estimate the parameters of this model by GIV. Test whether indexation is important.

Repeat estimation �xing � = 0:99 (assuming you have quarterly data).


