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Abstract

We build an otherwise-standard business cycle model with housework, calibrated

consistently with data on time use, in order to discipline complementarity be-

tween consumption and hours worked and relate its strength to the size of

fiscal multipliers. Evidence on the substitutability between home and market

goods confirms that complementarity is an empirically relevant driver of fis-

cal multipliers. However, we also find that in a housework model substantial

complementarity can be generated without imposing a low wealth effect, which

contradicts the microeconomic evidence. Also, explicitly modeling housework

matters for assessing the welfare effects of government spending, which are un-

derstated by theories that neglect substitutability between home-produced and

market goods.
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1. The Model

1.1. Households’ Problem and first-order conditions

In this section we lay out the households’ problem and the respective first

order conditions. Given initial values of the capital stock K0 and assets B0, and

all prices and policies, households maximize their lifetime utility by choosing a5

state-contingent sequence {Cm,t, Cn,t, hm,t, hn,t,Km,t,Kn,t,Kt+1, Bt}∞t=0, i.e.,

max E0

∞∑
t=0

βtU(Ct, lt),

subject to

Ct =
[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 , α1 ∈ [0, 1] b1 < 1, (1)

Cn,t = (Kn,t)
α2 (hn,t)

1−α2

lt = 1− ht,

10

ht = hm,t + hn,t,

Kt = Km,t +Kn,t

Et {Qt,t+1Bt+1} + PtCm,t + Pt

[
Kt+1 − (1− δ)Kt +

ξ

2

(
Kt+1

Kt
− 1

)2
]
(2)

≤ Bt +WtPthm,t + rkt PtKm,t + Tt.

where the utility function is specified as in Section 4.2 in the main text:

U(Ct, lt) =

[
(Ct)

b(lt)
1−b]1−σ − 1

1− σ
, b ∈ (0, 1), σ ≥ 1.
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Then, the Lagrangian is defined as follows:

L = E0

∞∑
t=0

βt

[[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] b
b1 (1− hn,t − hm,t)1−b

]1−σ
− 1

1− σ

+µt

[
(Kn,t)

α2 (hn,t)
1−α2 − Cn,t

]
+γt [Kt −Km,t −Kn,t]

+
λt
Pt

{
Bt +WtPthm,t + rkt PtKm,t + Tt − Et {Qt,t+1Bt+1} − PtCm,t

−Pt

[
Kt+1 + (1− δ)Kt +

ξ

2

(
Kt+1

Kt
− 1

)2
]}

We divide the budget constraint by Pt, which is given to households, so that

we can interpret λt as the marginal utility of wealth directly. By optimality

the marginal utility of wealth coincides with the marginal utility of market15

consumption. The corresponding first-order conditions are:

{Cm,t} : λt = UC(Ct, lt)α1

(
Cm,t
Ct

)b1−1

(3)

= bα1(1− hn,t − hm,t)(1−b)(1−σ)Cb1−1
m,t (Ct)

b(1−σ)−b1

{Cn,t} : µt = UC(Ct, lt)(1− α1)

(
Cn,t
Ct

)b1−1

(4)

= b(1− α1)(1− hn,t − hm,t)(1−b)(1−σ)Cb1−1
n,t (Ct)

b(1−σ)−b1

{hm,t} : λtWt = Ul(Ct, lt) = (1−b)(Ct)b(1−σ)(1−hn,t−hm,t)(1−b)(1−σ)−1 (5)

{hn,t} : Ul(Ct, lt) = µt(1− α2)

(
Cn,t
hn,t

)
(1− b)(Ct)b(1−σ)(1− hn,t − hm,t)(1−b)(1−σ)−1 = µt(1− α2)

(
Cn,t
hn,t

)
(6)

20

{Km,t} : γt = λtr
k
t (7)
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{Kn,t} : γt = µtα2

(
Cn,t
Kn,t

)
(8)

{Kt+1} : βEt

{
λt+1

λt

[
1 +

ξ

Kt

(
Kt+1

Kt
− 1

)]−1

[
1− δ + ξ

(
Kt+2

Kt+1
− 1

)(
Kt+2

K2
t+1

)]}
+ βEt {γt+1} = 1

(9)

{Bt+1} : λtEt {Qt,t+1} = βEt

{
λt+1

πt+1

}
(10)

Equations (3) and (5) correspond to equations (10) and (11) in the main text,

respectively. Combining (4) and (6) yields equation (12),25

Ul(Ct, lt)

(1− α1)UC(Ct, lt)

(
Cn,t
Ct

)1−b1
=

(1− α2)Cn,t
hn,t

. (11)

Similarly, combining (3), (4), (7) and (8) yields equation (13) in the main text

α1

1− α1

[
Cm,t
Cn,t

]b1−1

=
α2Cn,t
rktKn,t

. (12)

Equation (14) results from the first-order conditions with respect to market

capital, (7), and with respect to the next-period total capital stock, (9),

βEt

{
λt+1

λt

[
1 +

ξ

Kt

(
Kt+1

Kt
− 1

)]−1

[
1− δ + rkt+1 + ξ

(
Kt+2

Kt+1
− 1

)(
Kt+2

K2
t+1

)]}
= 1.

(13)

Finally, by a no-arbitrage argument Et {Qt,t+1} = (1+Rt)
−1, such that the first-

order condition with respect to the portfolio of state-contingent assets yields the30

respective standard Euler equation, equation (15) in the main text

βEt

{
λt+1

λt
(1 +Rt)Π

−1
t+1

}
= 1. (14)

1.2. Firms

In the economy, there are infinitely many monopolistically competitive firms

indexed by i ∈ [0, 1]. Each firm buys market capital and hours worked on
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perfectly competitive markets in order to produce a variety i of the market35

good, according to the following production function:

Yt(i) = (Km,t(i))
α3 (hm,t(i))

1−α3 , α3 ∈ [0, 1]. (15)

Cost minimization yields

α3RMCt

(
Yt(i)

Km,t(i)

)
= rkt , (16)

(1− α3)RMCt

(
Yt(i)

hm,t(i)

)
= Wt. (17)

The real marginal cost, RMCt, is constant across firms because of constant

returns to scale in production and perfect competition on factor markets. We

follow Calvo [5] and we assume that in any given period each firm resets its price40

Pt(i) with a constant probability (1− θ). At a given price Pt(i), production has

to satisfy demand:

Yt(i) =

[
Pt(i)

Pt

]−ε
Y dt . (18)

where aggregate demand, Y dt , is taken as given. We assume that production is

subsidized by the government, which pays a fraction τ of the cost per unit of

production. Maximization of profits45

Et


∞∑
j=0

θjQt,t+j [Pt(i)Yt+j(i)− Pt+j(1− τ)RMCt+jYt+j(i)]

 (19)

subject to constraint (18) yields the following first-order condition for any firm

i that is allowed to re-optimize in period t:

Et


∞∑
j=0

θjQt,t+jYt+j(i)

[
P ∗t
Pt
− ε(1− τ)

ε− 1
RMCt+jΠt,t+j

] = 0. (20)

P ∗t is the optimal price, Qt,t+j denotes the stochastic discount factor in period

t for nominal profits j periods ahead and it is such that

Qt,t+j = βjEt

{
λt+j
λt

Π−1
t,t+j

}
, (21)

while Πt,t+j ≡ (Pt+j/Pt). Calvo pricing implies the following conventional50

relation between inflation and the relative price charged by re-optimizing firms:
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P ∗t
Pt

=

(
1− θΠε−1

t

1− θ

) 1
1−ε

. (22)

The necessary condition for profit maximization (20) can easily be rewritten as

P ∗t
Pt

=
x1,t

x2,t
, (23)

where the auxiliary variables x1,t and x2,t are recursively defined by55

x1,t = [Cm,t + It +Gt]

(
ε(1− τ)

ε− 1

)
RMCt +

βθEt

{
λt+1

λt
Πε
t+1x1,t+1

}
, (24)

x2,t = [Cm,t + It +Gt] + βθEt

{
λt+1

λt
Πε−1
t+1x2,t+1

}
. (25)

1.3. Aggregation and Market Clearing

After defining aggregate production

Yt =

 1∫
0

(Yt(i))
ε−1
ε di


ε
ε−1

, (26)

the clearing of the goods market implies

Yt = Cm,t + It +Gt. (27)

Define the market capital-labor ratio, kt ≡ (Km,t(i)) / (hm,t(i)). By equations

(16) and (17), the ratio is constant across firms and satisfies60

kt =
α3Wt

(1− α3)rt
. (28)

By the clearing of the labor market,

hm,t =

∫ 1

0

hm,t(i) di. (29)

Integrating equation (15) over all firms i yields

Yt = ∆−1
t kα3

t hm,t, (30)
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where ∆t denotes relative price dispersion

∆t ≡
∫ 1

0

(
Pt(i)

Pt

)−ε
di, (31)

and evolves according to

∆t = (1− θ)
(
P ∗t
Pt

)−ε
+ θΠε

t∆t−1. (32)

It is well known that log (∆t) is a second-order term and can thus be neglected65

when the model is approximated to the first order around the non-stochastic

steady state. By the clearing of the capital rental market,

Km,t =

∫ 1

0

Km,t(i) di, (33)

which implies

Km,t = kthm,t. (34)

Finally, by using (34) into (30), one can obtain the aggregate production func-

tion70

Yt = ∆−1
t (Km,t)

α3 (hm,t)
1−α3 , (35)

as well as the aggregate counterparts of equations (16) and (17):

α3RMCt

(
∆tYt
Km,t

)
= rt, (36)

(1− α3)RMCt

(
∆tYt
hm,t

)
= Wt. (37)

1.4. Equilibrium Definition

In this section we define the equilibrium for a housework model with a KPR

utility function, as specified in Section 4.2 of the main text. The equilibrium of

the model is a set of state-contingent plans for variables Ct, Cm,t, Cn,t, Km,t,75

Kn,t, Kt, hm,t, hn,t, It, λt, Yt, Πt, ∆t,
P∗
t

Pt
, x1,t, x2,t, RMCt, Rt, Wt and rkt

that satisfy the following system of equations

Ct =
[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 (38)
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Cn,t = (Kn,t)
α2 (hn,t)

1−α2 (39)

Kt = Km,t +Kn,t (40)

Kt+1 = (1− δ)Kt + It −
ξ

2

(
Kt+1

Kt
− 1

)2

(41)

(
α1

1− α1

)(
Cm,t
Cn,t

)b1−1

=

(
1− α2

Wt

)(
Cn,t
hn,t

)
(42)

(
α1

1− α1

)(
Cm,t
Cn,t

)b1−1

=

(
α2

rkt

)(
Cn,t
Kn,t

)
(43)

Wt(1− hn,t − hm,t) =

(
1− b
bα1

)
C1−b1
m,t C

b1
t (44)

βEt

{
λt+1

λt

[
1 +

ξ

Kt

(
Kt+1

Kt
− 1

)]−1

[
1− δ + rkt+1 + ξ

(
Kt+2

Kt+1
− 1

)(
Kt+2

K2
t+1

)]}
= 1,

(45)

βEt

{
λt+1

λt
(1 +Rt)Π

−1
t+1

}
= 1 (46)

λt = bα1(1− hn,t − hm,t)(1−b)(1−σ)Cb1−1
m,t (Ct)

b(1−σ)−b1 (47)

P ∗t
Pt

=

(
1− θΠε−1

t

1− θ

) 1
1−ε

(48)

P ∗t
Pt

=
x1,t

x2,t
(49)

x1,t = [Cm,t + It +Gt]

(
ε(1− τ)

ε− 1

)
RMCt + βθEt

{
λt+1

λt
Πε
t+1x1,t+1

}
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x2,t = [Cm,t + It +Gt] + βθEt

{
λt+1

λt
Πε−1
t+1x2,t+1

}
(50)

Yt = Cm,t + It +Gt (51)

Yt = ∆−1
t (Km,t)

α3 (hm,t)
1−α3 (52)

α3RMCt

(
∆tYt
Km,t

)
= rkt (53)

(1− α3)RMCt

(
∆tYt
hm,t

)
= Wt (54)

∆t = (1− θ)
(
P ∗t
Pt

)−ε
+ θΠε

t∆t−1 (55)

for all t, for given government expenditure. To close the equilibrium definition,

we further need a specification for monetary policy and a law of motion for

government expenditure.80

1.5. Frisch System

Following Frisch [9], we define the Frisch system of our housework model

with a KPR utility function, as specified in Section 4.2 of the main text. Six

equations define the Frisch system:

f1 = bα1(1− hn,t − hm,t)(1−b)(1−σ)Cb1−1
m,t C

b(1−σ)−b1
t − λt (56)

f2 = (1− b)Cb(1−σ)
t (1− hn,t − hm,t)(1−b)(1−σ)−1 − λtWt (57)

f3 = (1− hn,t − hm,t)b(1− α1)(1− α2)
Cb1n,t
hn,t

− (1− b)Cb1t (58)

f4 = b(1− α1)α2(1− hn,t − hm,t)(1−b)(1−σ)C
b(1−σ)−b1
t

Cb1n,t
Kn,t

− rkt λt (59)

f5 =
[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 − Ct (60)

f6 = (Kn,t)
α2 (hn,t)

1−α2 − Cn,t (61)
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where the choice variables are85

yt = {Cm,t, Cn,t, Ct, hm,t, hn,t,Kn,t} , (62)

whereas xt =
{
λt,Wt, r

k
t

}
are taken as given. Equation f1 coincides with (3)

and defines the marginal utility of market consumption and f2 is the first-order

optimality condition with respect to hours worked on the market (equation (5)).

Combining the first-order conditions with respect to home goods and hours

worked in the home sector, (6) and (4), results in f3. Equivalently, combin-90

ing the first-order conditions with respect to capital in both sectors (equation

(7) and (8)) and further with respect to home goods (4) yields f4. To close

the system we also need the total consumption aggregator (f5) and the home-

production technology (f6).

Define f = [f1; f2; f3; f4; f5; f6] and the matrix of unknown derivatives we95

are interested in

Zy,x =



∂Cm,t
∂λt

∂Cm,t
∂Wt

∂Cm,t
∂rkt

∂Cn,t
∂λt

∂Cn,t
∂Wt

∂Cn,t
∂rkt

∂Ct
∂λt

∂Ct
∂Wt

∂Ct
∂rkt

∂hm,t
∂λt

∂hm,t
∂Wt

∂hm,t
∂rkt

∂hn,t
∂λt

∂hn,t
∂Wt

∂hn,t
∂rkt

∂Kn,t
∂λt

∂Kn,t
∂Wt

∂Kn,t
∂rkt


(63)

We then solve the following system for matrix Zy,x

Jy
6∗6

Zy,x
6∗3

+ Jx
6∗3

= 0, (64)

where Jy is the Jacobian matrix of function f with respect to the control vari-

ables, and Jx is the Jacobian matrix of function f with respect to the state

variables.100

2. Simplified model without capital and G = 0

2.1. Algebra of complementarity

Assume α2 = α3 = 0 and Kn = Km = G = 0, where variables without time

subscript denote a steady state. Hence, Cn = hn and the household’s optimality
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condition (11) becomes105

Ul(Ct, lt)

(1− α1)UC(Ct, lt)

(
Cn,t
Ct

)1−b1
= 1, (65)

which, combined with the definition of λ, (3), can be rewritten as

Ul(Ct, lt)

λt

α1

1− α1

(
Cm,t
Cn,t

)b1−1

= 1. (66)

The system of equations (3), (5) and (66), together with feasibility constraints

(1), fully describes households’ intra-temporal optimality. At a zero-inflation

steady state Π = 1 and ∆ = 1, by firms’ optimality and by the clearing of all

markets W = 1 and Cm = hm, which imply, together with equations (1), (3),110

(5) and (66), all evaluated at the steady state, relations

λ = Ul(C, l), Ul(C, l) = UC(C, l)(1− α1)

(
Cn
C

)b1−1

, (67)

Ul(C, l) = UC(C, l)α1

(
Cm
C

)b1−1

, α1

(
Cm
C

)b1
=
hm
h
,

(1− α1)

(
Cn
C

)b1
=
hn
h
, Ul(C, l) = UC(C, l)

C

h
.

Log-linearization of (3), (5) and (66), respectively, around the steady state yields

λ̂t = (ν − γ)Ĉt +
νl

h
l̂t + (1− b1)

(
Ĉt − Ĉm,t

)
(68)

Ŵt = νĈt +
(ν − ϕ)l

h
l̂t − λ̂t

λ̂t = νĈt +
(ν − ϕ)l

h
l̂t + (1− b1)

(
Ĉn,t − Ĉm,t

)
where ·̂ denote log-deviations from the steady state and parameters are defined

as follows:115

γ ≡ −UC,CC
UC

+
UC,lC

Ul
; (69)

ϕ ≡ −Ul,lh
Ul

+
UC,lh

UC
;

ν ≡ UC,lh

UC
.
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Definitions (69) imply the following relations

UC,CC

UC
= ν − γ, Ul,lh

Ul
= ν − ϕ, UC,lC

Ul
= ν, (70)

where the last equality follows from the definition of ν and relations (67). More-

over, log-linearizing (1) yields

Ĉt =
hm
h
Ĉm,t +

hn
h
Ĉn,t, l̂t = − hm

1− h
ĥm,t −

hn
1− h

ĥn,t, Ĉn,t = ĥn,t. (71)

Relations (68) and (71) determine Ĉm,t, Ĉn,t, ĥm,t, ĥn,t, Ĉt and l̂t, given λ̂t and

Ŵt. Solving for Ĉm,t and ĥm,t yields equations (28) in the main text and the120

associated coefficients (29). In addition, solving for Ĉt and l̂t, one can find

ηl,λ ≡
∂l̂t

∂λ̂t

∣∣∣∣
Ŵt

=
γ

ϕ(ν − γ) + νγ

h

l
, ηC,λ ≡

∂Ĉt

∂λ̂t

∣∣∣∣
Ŵt

=
ϕ

ϕ(ν − γ) + νγ
. (72)

We derive restrictions on parameters ϕ, γ and ν such that ηl,λ and ηC,λ are

both non-positive, so that consumption and leisure increase with wealth for any

given price W , and they are thus non-inferior. To this purpose, we use equations

(72). The proof draws on Bilbiie [1]. Concavity of the utility function requires125

UCC ≤ 0, Ull ≤ 0, UCCUll − U2
Cl ≥ 0, which hold if and only if (i) γ ≥ ν, (ii)

ϕ ≥ ν, (iii) γϕ ≥ ν(ϕ + γ), respectively. By (72) and concavity requirements,

ηl,λ and ηC,λ are both non-positive if and only if γ ≥ 0 and ϕ ≥ 0. In fact, if one

of the two parameters is negative, either a non-inferiority condition is violated

or the last condition for concavity is violated. But if γ and ϕ are positive, it130

is also the case that γ ≥ γϕ/(γ + ϕ) and ϕ ≥ γϕ/(γ + ϕ). Hence, the last

condition for concavity, (iii), implies the first two, (i)-(ii). Therefore, γ ≥ 0,

ϕ ≥ 0 and ν ≤ γϕ/(γ + ϕ) are necessary and sufficient conditions for concavity

of preferences and joint non-inferiority of consumption and leisure. Finally

notice that, by equations (28) in the main text and the associated coefficients135

(29), market consumption is non-inferior if and only if total consumption is

non-inferior.

Let ηcm,λ, ηhm,λ, ηcm,w and ηhm,w be the elasticities generated by the model

for any given hn and b1. Then, a model with hn = 0 can be calibrated such that
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all its elasticities are equalized to ηcm,λ, ηhm,λ, ηcm,w and ηhm,w by choosing140

values of parameters γ, ϕ and ν.

Proof For hn = 0 the Frisch elasticities reported in Section 3.1 of the paper

state

ηcm,λ = − ϕ

ϕ(ν − γ) + νγ
(73)

ηhm,λ = ηcm,λ
γ

ϕ
(74)

ηcm,w =
ν

ϕ(ν − γ) + νγ
(75)

ηhm,w = ηcm,w + ηhm,λ (76)

From (74) we get

ϕ = γ
ηcm,λ
ηhm,λ

(77)

which, combined with (73) yields the following expression145

ν =
γηcm,λ − 1

ηcm,λ + ηhm,λ
(78)

Further combining (78) with (75) and (77) yields γ as a function of Frisch

elasticities, only

γ =
ηhm,λ

ηcm,ληhm,λ + ηcm,ληcm,w + ηhm,ληcm,w
≥ 0 (79)

Equivalently, we can solve for ν and ϕ

ν =
ηcm,λ

ηcm,λ + ηhm,λ

ηhm,λ
ηcm,ληhm,λ + ηcm,ληcm,w + ηhm,ληcm,w

− 1

ηcm,ληhm,λ
(80)

ϕ =
ηcm,λ

ηcm,ληhm,λ + ηcm,ληcm,w + ηhm,ληcm,w
≥ 0 (81)

Equality of the Frisch labor-supply elasticity between the model with and with-

out the home sector follows from (76). Moreover, given γ ≥ 0 and ϕ ≥ 0, for150

non-inferiority of preferences we further need to show that ν ≤ γϕ
γ+ϕ , where

γϕ

γ + ϕ
=

ηcm,ληhm,λ
(ηcm,λ + ηhm,λ)(ηcm,ληhm,λ + ηcm,ληcm,w + ηhm,ληcm,w)

(82)

The necessary condition for non-inferiority reduces to

− 1

ηcm,ληhm,λ
< 0 (83)

13



which, given ηhm,λ > 0 and ηcm,λ > 0 always holds. �

From the canonical form discussed in Section 3.2 in the main text, it follows

immediately that two models with the same elasticities ηcm,λ, ηhm,λ, ηcm,w and155

ηhm,w also generate the same dynamics for all market variables.

Finally, consider the utility specification

U(Ct, lt, Xt−1) =

[
Ct − ψ(1− lt)ν̄C γ̄t X

1−γ̄
t−1

]1−σ̄
1− σ̄

, Xt = C γ̄t X
1−γ̄
t−1 , X−1 = 1,

and assume hn,t = 0, so that Ct = Cm,t and lt = 1− hm,t. The marginal utility

of consumption is defined as

λt = UC(Ct, lt, Xt−1) =⇒ λt =
[
Ct − ψhν̄tC

γ̄
t X

1−γ̄
t−1

]−σ̄ (
1− ψγ̄hν̄tC

γ̄−1
t X1−γ̄

t−1

)
,

(84)

and the solution to the households’ problem needs to satisfy

λtWt = Ul(Ct, lt, Xt−1) =⇒ Wt =
ν̄ψhν̄−1

t C γ̄t X
1−γ̄
t−1

1− ψγ̄hν̄tC
γ̄−1
t X1−γ̄

t−1

, (85)

so that equations (84) and (85) replace (3) and (5), respectively, while equation160

(66) vanishes because of the assumption hn = 0. As in the housework model

analyzed above, we keep assumptions Km/Y = Kn/Y = G/Y = 0. Then,

log-linear relations (68) collapse to

λ̂t = (ν − γ)Ĉm,t − νĥm,t +
UC,XX

UC
X̂t−1 (86)

Ŵt = νĈm,t − (ν − ϕ)ĥm,t − λ̂t +
Ul,XX

Ul
X̂t−1

where ϕ, γ, and ν, defined as in (69), map into utility parameters as follows,

ϕ = ν̄ + γ̄ − 1, γ =
γ̄

ν̄
(ν̄ + γ̄ − 1), ν = γ̄ − σ̄ν̄

ν̄ + γ̄ − 1
,

and

UC,XX

UC
=

σ̄(1− γ̄)

ν̄ + γ̄ − 1
− γ̄(1− γ̄)

ν
,

Ul,XX

Ul
=

σ̄(1− γ̄)

ν̄ + γ̄ − 1
− (1− γ̄).

Solving for Cm and hm yields equation (31) in the text with coefficients

ηCm,x = −ηCm,W
1− γ̄
ν̄

, ηhm,x = −(ηhm,W + 1)
1− γ̄
ν̄

, (87)
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that are zero if and only if γ̄ = 0.165

Given (1− b1)−1 ∈ [1, 5], we choose parameters ν̄, σ̄ and γ̄ in the JR model

in order to make the market consumption multiplier, the Frisch elasticity of

labor supply and the intertemporal elasticity of substitution equal across the

two models. Parameter ψ is calibrated to match hours worked on the market.

For (1− b1)−1 ∈ [1, 5], figure 1 plots the following variables in both models after170

an exogenous increase in government expenditure normalized to one percentage

point of steady-state GDP: fiscal multipliers, percentage deviations of leisure

from the steady state, Frisch elasticities ηCm,W and ηhm,λ, and parameter γ̄.

We find some interesting facts. First, matching the market consumption multi-

plier also implies the same responses of output and hours worked. In addition,175

for (1− b1)−1 between 1 and 2.25, values close to the microeconomic estimates,

complementarity and wealth effects are also identical across models, but they

diverge for large substitutability. In this respect, evidence on time use seems to

suggest values of γ̄ closer to KPR rather than GHH preferences. Finally, irre-

spective of substitutability, in the model with home production, an increase in180

consumption expenditure is always associated with a fall in total consumption,

as compared to the JR model.
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2.2. Inspecting the mechanism

Combining equations (28) in the main text immediately gives equation (32)

and185

λ̂t =
ηCm,W
ηCm,λ

Ŵt −
1

ηCm,λ
Ĉm,t, (88)

while a first-order approximation of equation (15) yields

λ̂t = Etλ̂t+1 − Etπt+1 + rt + log(β). (89)

Equation (33) follows from combining (88) and (89). Using Ŷt = Ĉm,t + ĝt into

(28) and (33) to substitute for Ĉm,t implies2

Ŵt = κŶt − κ
ηhm,λ

ηCm,λ + ηhm,λ
ĝt, (90)

Ŷt = EtŶt+1 − ηCm,λ(rt − Etπt+1 + log(β))− ηCm,W
(
EtŴt+1 − Ŵt

)
− (Etĝt+1 − ĝt) ,

where κ is defined as in equation (34), while from firms’ optimality conditions,

R̂MCt = Ŵt. At the flexible-price equilibrium R̂MCt = 0 and the first equation

in (90) imply the expression for ynt displayed in the text, which, substituted for

Ŷt in the second equation yields rnt . A conventional Phillips curve is obtained

by log-linearizing firms’ optimality condition (20),

πt = βEtπt+1 +
(1− θ)(1− θβ)

θ
R̂MCt

Using the fact R̂MCt = 0 at the flexible-price equilibrium, together with equa-

tions (90), the definitions of natural output, the natural interest rate and the

output gap yields equations (34). We finally prove the statement in footnote

10. For simplicity define

κ̄ = κ
(1− θ)(1− θβ)

θ
.

Let r∗t , π∗t and y∗t satisfy both the IS and the Phillips curve (34). Then, the

locally unique solution to the system formed by equations (34) and the interest-190

rate rule rt = r∗t + φπ(πt − π∗t ), is r∗t , π∗t and y∗t for any φπ > 1. If indeed r∗t ,

2Recall that G/Y = 0, C/Y = 1 and ĝt = Gt
Y

.
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π∗t and y∗t satisfy both the IS and the Phillips curve (34), the system formed by

equations (34) and the interest-rate rule can be written as yt − y∗t
πt − π∗t

 = ΩAEt

 yt+1 − y∗t+1

πt+1 − π∗t+1

 (91)

where

Ω = (σ + κ̄φπ)
−1

(92)

195

A =

 σ 1− φπβ

σκ̄ κ̄+ βσ

 (93)

The system has a unique solution if and only if the eigenvalues of matrix A are

both inside the unit circle. As Bullard and Mitra [4] show, this is the case if

and only if φπ > 1. Hence, φπ > 1 guarantees that yt = y∗t and πt = π∗t is the

unique solution. Set

π∗t = φg ĝt,

y∗t =
φg(1− βρg)θ

κ(1− θ)(1− θβ)
ĝt.

and let r∗t be derived by substituting π∗t and y∗t in the IS equation. It must

then be the case that the locally unique solution to equations (34) and rt =

r∗t + φπ(πt − π∗t ) is r∗t , π∗t and y∗t .

2.3. Welfare: consumption versus expenditure

In this section we study the role of houswork for the impact of government200

expenditure shocks on welfare. We follow the lines of [2] and use the nonlin-

ear utility function together with the models’ equilibrium conditions. Having

households’ preferences defined over consumption and leisure, where

Ct =
[
α1C

b1
m,t + (1− α1)Cb1n,t

] 1
b1
, (94)

lt = 1− hm,t − hn,t, (95)

Cn,t = hn,t, (96)

18



the derivative of welfare with respect to Gt states as

dU

dG
= Ucα1

(
Cm,t
Ct

)b1−1
dCm
dG︸ ︷︷ ︸

A

+Uc(1− α1)

(
Cn,t
Ct

)b1−1
dhn
dG︸ ︷︷ ︸

B

+ Ul
dl

dhn

dhn
dG︸ ︷︷ ︸

C

+Ul
dl

dhm

dhm
dG︸ ︷︷ ︸

D

with dl
dhn

= dl
dhm

= −1. From households’ optimality conditions we have205

Ul (Ct, lt)

Uc (Ct, lt)
= Wtα1

(
Cm,t
Ct

)b1−1

(97)

Ul (Ct, lt)

Uc (Ct, lt)
= (1− α1)

(
Cn,t
Ct

)b1−1

(98)

such that terms B and C cancel out and we are left with terms A and D, only.

dU

dG
= Ucα1

(
Cm,t
Ct

)b1−1
dCm
dG
− Ul

dhm
dG

= Ucα1

(
Cm,t
Ct

)b1−1
dCm
dG
−WtUcα1

(
Cm,t
Ct

)b1−1
dhm
dG

= Ucα1

(
Cm,t
Ct

)b1−1 [
dCm
dG
−Wt

dhm
dG

]
(99)

The goods’ market clearing condition and the resource constraint, respectively,

read

Yt = Cm,t +Gt (100)

Yt = hm,t∆t (101)

Combining (100) and (101) then yields

hm,t = ∆tCm,t + ∆tGt (102)

such that210

dhm
dG

=
dCm
dG

∆t +
d∆

dG
Cm,t +

d∆

dG
Gt + ∆t (103)
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Finally, combining (99) with (103) yields

dU

dG
= Ucα1

(
Cm,t
Ct

)b1−1 [
dCm
dG
−Wt

(
dCm
dG

∆t +
d∆

dG
Cm,t +

d∆

dG
Gt + ∆t

)]
= Ucα1

(
Cm,t
Ct

)b1−1

Wt∆t

[(
1

Wt∆t
− 1

)
dCm
dG
− Cm,t

∆t

d∆

dG
− Gt

∆t

d∆

dG
− 1

]
= λtWt∆t

[(
1

Wt∆t
− 1

)
dCm
dG
− Cm,t

∆t

d∆

dG
− Gt

∆t

d∆

dG
− 1

]
(104)

3. Robustness: Modeling Assumptions

3.1. Distortionary Taxation and CES Production Functions

In this section, we show that our findings continue to hold in the case of

distortionary taxation on capital and labor, and in the more general case of215

constant elasticity of substitution (CES) production functions both in the home

and the market sector

Cn,t =
[
α2 (Kn,t)

b2 + (1− α2) (hn,t)
b2
] 1
b2
, (105)

Yt =
[
α3 (Km,t)

b3 + (1− α3) (hm,t)
b3
] 1
b3
, (106)

Assuming the presence of distortionary taxes on capital and labor, which we

assume not to respond to the shock since we focus on deficit spending, the

household’s budget constraint becomes

Et {Qt,t+1Bt+1}+ Pt(Cm,t + It)

≤ Bt + (1− τh)WtPthm,t + (1− τk)rkt PtKm,t + δτkPtKm,t + Tt. (107)

Accordingly, the household’s intratemporal conditions, (42) - (44), and the Euler

equation for the optimal intertemporal allocation of the capital stock, (45), are

replaced by220 (
α1

1− α1

)(
Cm,t
Cn,t

)b1−1

=

(
1− α2

Wt(1− τh)

)(
Cn,t
hn,t

)1−b2
(108)(

α1

1− α1

)(
Cm,t
Cn,t

)b1−1

=

(
α2

(1− τk)rkt + δτk

)(
Cn,t
Kn,t

)1−b2
(109)

Wt(1− τh)(1− hn,t − hm,t) =

(
1− b
bα1

)
C1−b1
m,t C

b1
t (110)
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βEt

{
λt+1

λt

[
1 +

ξ

Kt

(
Kt+1

Kt
− 1

)]−1

[
1− δ + ξ

(
Kt+2

Kt+1
− 1

)(
Kt+2

K2
t+1

)
+ (1− τk)rkt+1 + δτk

]}
= 1

(111)

The firms’ optimality conditions, (53) and (54), become

α3RMCt

(
Km,t(i)

Yt(i)

)b3−1

= rkt (112)

(1− α3)RMCt

(
hm,t(i)

Yt(i)

)b3−1

= Wt. (113)

with (52) being replaced by

Yt = ∆−1
t

[
α3 (Km,t)

b3 + (1− α3) (hm,t)
b3
] 1
b3

(114)

For the definition of the equilibrium with distortionary taxation and CES pro-

duction functions we further replace (39) by (105). All remaining equilibrium225

conditions, as defined in Appendix 1.4, remain unaffected. We set tax rates ac-

cording to the base case in McGrattan, Rogerson and Wright [10], i.e., τk = 0.55

and τh = 0.24, and set b2 = 0.269 and b3 = 0.054 according to the estimates

in McGrattan et al. [10]. Figure 2 shows that the relative performance of our

model, labeled as “GHP,”compared to a counterfactual model, labeled as “No230

Home Sector,”where hours worked and capital in the home sector are set to

zero, is unaffected by the presence of distortionary taxes and by the assumption

of CES production functions in both sectors.

3.2. External Habits in Consumption

In this section we analyze the implications of external habit formation.235

Households’ period utility function now reads

U(C̃t, hn,t, hm,t) =

[(
C̃t

)b
(1− hn,t − hm,t)1−b

]1−σ

− 1

1− σ
(115)

where

C̃t ≡ Ct − hCAt−1 (116)
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Figure 2: Impulse responses with distortionary taxation, τk = 0.55 and

τh = 0.24, and CES production functions both in the market (b2 = 0.269) and

the home sector (b3 = 0.054). All remaining parameters are calibrated as in

Table 1 in the main text.

22



with h > 0 being the habit persistence parameter, and CAt−1 representing past,

aggregate consumption, which is taken as given by the household. The corre-

sponding Lagrangian is now given by240

L = E0

∞∑
t=0

βt

[[[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 − hCAt−1

]b
(1− hn,t − hm,t)1−b

]1−σ

− 1

1− σ

+µt

[
(Kn,t)

α2 (hn,t)
1−α2 − Cn,t

]
+γt [Kt −Km,t −Kn,t]

+
λt
Pt

{
Bt +WtPthm,t + rkt PtKm,t + Tt − Et {Qt,t+1Bt+1} − PtCm,t

−Pt

[
Kt+1 + (1− δ)Kt +

ξ

2

(
Kt+1

Kt
− 1

)2
]}

The corresponding first-order conditions are:

{Cm,t} : λt = bα1(1− hn,t − hm,t)(1−b)(1−σ)C̃t
b(1−σ)−1

(
Cm,t
Ct

)b1−1

(117)

{Cn,t} : µt = b(1−α1)(1−hn,t−hm,t)(1−b)(1−σ)C̃t
b(1−σ)−1

(
Cn,t
Ct

)b1−1

(118)

{hm,t} : λtWt = (1− b)C̃t
b(1−σ)

(1− hn,t − hm,t)(1−b)(1−σ)−1 (119)

{hn,t} : µt(1− α2)

(
Cn,t
hn,t

)
= (1− b)C̃t

b(1−σ)
(1− hn,t − hm,t)(1−b)(1−σ)−1(120)

The remaining first-order conditions, (7) - (10), remain unaffected when assum-

ing external habit persistence in households’ utility function. Combining these

new first-order conditions as in Appendix 1.1 yields the same equilibrium condi-

tions as for our baseline model, except for the expression defining the marginal245

utility of wealth (47) and the optimality condition solving for the consumption-

leisure tradeoff (44)

Wt(1− hn,t − hm,t) =

(
1− b
bα1

)
C̃t

(
Cm,t
Ct

)1−b1
(121)
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The equilibrium with external habit formation is thus defined as in Appendix 1.4,

except for (44) and (47), which are replaced by (121) and (117), respectively,

and with C̃t ≡ Ct − hCt−1, given that in equilibrium Ct−1 = CAt−1. In the vein250

of Appendix 1.5 the corresponding Frisch system states as:

f1 = bα1(1− hn,t − hm,t)(1−b)(1−σ)(Ct − hCt−1)b(1−σ)−1

(
Cm,t
Ct

)b1−1

− λt

f2 = (1− b)(Ct − hCt−1)b(1−σ)(1− hn,t − hm,t)(1−b)(1−σ)−1 − λtWt

f3 = (1− hn,t − hm,t)b(1− α1)(1− α2)
Cb1n,t
hn,t

− (1− b)Cb1−1
t (Ct − hCt−1)

f4 = b(1− α1)α2(1− hn,t − hm,t)(1−b)(1−σ)(Ct − hCt−1)b(1−σ)−1C1−b1
t

Cb1n,t
Kn,t

− rkt λt

f5 =
[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 − Ct

f6 = (Kn,t)
α2 (hn,t)

1−α2 − Cn,t

where yt = {Cm,t, Cn,t, Ct, hm,t, hn,t,Kn,t} are the choice variables, whereas

xt = {λt,Wt, r
K
t , Ct−1} are taken as given. As for the baseline housework model,

we define f = [f1; f2; f3; f4; f5; f6] and the matrix of unknown derivatives we

are interested in255

Zy,x =



∂Cm,t
∂λt

∂Cm,t
∂Wt

∂Cm,t
∂rkt

∂Cm,t
∂Ct−1

∂Cn,t
∂λt

∂Cn,t
∂Wt

∂Cn,t
∂rkt

∂Cn,t
∂Ct−1

∂Ct
∂λt

∂Ct
∂Wt

∂Ct
∂rkt

∂Ct
∂Ct−1

∂hm,t
∂λt

∂hm,t
∂Wt

∂hm,t
∂rkt

∂hm,t
∂Ct−1

∂hn,t
∂λt

∂hn,t
∂Wt

∂hn,t
∂rkt

∂hn,t
∂Ct−1

∂Kn,t
∂λt

∂Kn,t
∂Wt

∂Kn,t
∂rkt

∂Kn,t
∂Ct−1


(122)

We then solve the following system for matrix Zy,x

Jy
6∗6

Zy,x
6∗3

+ Jx
6∗3

= 0, (123)

where Jy is the Jacobian matrix of function f with respect to the control vari-

ables, and Jx is the Jacobian matrix of function f with respect to the state

variables.
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3.3. Internal Habits in Consumption260

While in Appendix 3.2 we analyze external habits, in this section we study

the implications of internal habit formation. Households’ period utility function

is defined as

U(Ct, hn,t, hm,t) =

[(
Ct
)b

(1− hn,t − hm,t)1−b
]1−σ

− 1

1− σ
(124)

where

Ct ≡ Ct − hCt−1 (125)

with h > 0 being the habit persistence parameter. Different from the case of265

external habits, the internal habit stock represents the household’s own past

consumption, Ct−1. The corresponding Lagrangian is now given by

L = E0

∞∑
t=0

βt

(1− σ)

{[[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 − h

[
α1(Cm,t−1)b1 + (1− α1)(Cn,t−1)b1

] 1
b1

]b
(1− hn,t − hm,t)1−b}1−σ − 1

+µt

[
(Kn,t)

α2 (hn,t)
1−α2 − Cn,t

]
+γt [Kt −Km,t −Kn,t]

+
λt
Pt

{
Bt +WtPthm,t + rkt PtKm,t + Tt − Et {Qt,t+1Bt+1} − PtCm,t

−Pt

[
Kt+1 + (1− δ)Kt +

ξ

2

(
Kt+1

Kt
− 1

)2
]}

The only first-order conditions that are different compared to the external-habit

model are the first-order conditions with respect to market and non-market

consumption (Cm,t and Cn,t, respectively).270

{Cm,t} : λt = bα1

(
Cm,t
Ct

)b1−1 [
l
(1−b)(1−σ)
t (Ct)

b(1−σ)−1−

βhl
(1−b)(1−σ)
t+1 (Ct+1)b(1−σ)−1

] (126)
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where lt = 1 − hn,t − hm,t. Different to the baseline model and the case of

external habit formation, when the stock of habits is internal the marginal utility

of wealth (λt) is no longer equal to the marginal utility of market consumption

(UCm,t). Moreover, the marginal utility of wealth becomes a dynamic equation,

depending on expected marginal utility of market consumption (UCm,t+1) and275

on expected consumption levels.

{Cn,t} : µt = b(1− α1)

(
Cn,t
Ct

)b1−1 [
l
(1−b)(1−σ)
t (Ct)

b(1−σ)−1−

βhl
(1−b)(1−σ)
t+1 (Ct+1)b(1−σ)−1

] (127)

We can then combine the first-order conditions as in our baseline model (see Ap-

pendix 1.1). The resulting equilibrium equations coincide with the ones for our

baseline model (and with the ones for the model with external habits), except

for the expression for marginal utility of wealth and the optimality condition280

solving for the consumption-leisure tradeoff.

Wt(1− hn,t − hm,t) =

(
1− b
bα1

)
Ct

(
Cm,t
Ct

)1−b1
[

1− βh
(
lt+1

lt

)(1−b)(1−σ)

(
Ct+1

Ct

)b(1−σ)−1
]−1(128)

Equivalent to the case of external habits, the equilibrium with internal habit

formation is thus defined as in Appendix 1.4, except for (44) and (47), which

are replaced by (128) and (126), respectively, and with Ct ≡ Ct − hCt−1. The
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corresponding Frisch system states as:285

f1 = bα1

(
Cm,t
Ct

)b1−1 [
l
(1−b)(1−σ)
t (Ct − hCt−1)b(1−σ)−1 − βhl(1−b)(1−σ)

t+1 (Ct+1 − hCt)b(1−σ)−1
]

−λt

f2 = (1− b)(Ct − hCt−1)b(1−σ)l
(1−b)(1−σ)−1
t − λtWt

f3 =
[
l
(1−b)(1−σ)
t (Ct − hCt−1)b(1−σ)−1 − βhl(1−b)(1−σ)

t+1 (Ct+1 − hCt)b(1−σ)−1
]

b(1− α1)(1− α2)
Cb1n,t
hn,t

− (1− b)Cb1−1
t (Ct − hCt−1)b(1−σ)l

(1−b)(1−σ)−1
t

f4 =
[
l
(1−b)(1−σ)
t (Ct − hCt−1)b(1−σ)−1 − βhl(1−b)(1−σ)

t+1 (Ct+1 − hCt)b(1−σ)−1
]

b(1− α1)α2

Cb1n,t
Kn,t

C1−b1
t − rkt λt

f5 =
[
α1(Cm,t)

b1 + (1− α1)(Cn,t)
b1
] 1
b1 − Ct

f6 = (Kn,t)
α2 (hn,t)

1−α2 − Cn,t

f7 = lt − (1− hn,t − hm,t)

where yt = {Cm,t, Cn,t, Ct, hm,t, hn,t,Kn,t, lt} are the choice variables, whereas

xt = {λt,Wt, r
K
t ,Kt, Ct−1} are taken as given. As for the baseline housework

model, we define f = [f1; f2; f3; f4; f5; f6] and the matrix of unknown deriva-

tives we are interested in

Zy,x =



∂Cm,t
∂λt

∂Cm,t
∂Wt

∂Cm,t
∂rkt

∂Cm,t
∂Ct−1

∂Cn,t
∂λt

∂Cn,t
∂Wt

∂Cn,t
∂rkt

∂Cn,t
∂Ct−1

∂Ct
∂λt

∂Ct
∂Wt

∂Ct
∂rkt

∂Ct
∂Ct−1

∂hm,t
∂λt

∂hm,t
∂Wt

∂hm,t
∂rkt

∂hm,t
∂Ct−1

∂hn,t
∂λt

∂hn,t
∂Wt

∂hn,t
∂rkt

∂hn,t
∂Ct−1

∂Kn,t
∂λt

∂Kn,t
∂Wt

∂Kn,t
∂rkt

∂Kn,t
∂Ct−1

∂lt
∂λt

∂lt
∂Wt

∂lt
∂rkt

∂lt
∂Ct−1


(129)

We then solve the following system for matrix Zy,x290

Jy
6∗6

Zy,x
6∗3

+ Jx
6∗3

= 0, (130)

where Jy is the Jacobian matrix of function f with respect to the control vari-

ables, and Jx is the Jacobian matrix of function f with respect to the state
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variables.

3.4. Real Wage Rigidity

We consider real wage rigidities as in Blanchard and Gaĺı [3]. Hence, we295

assume that real wages respond sluggishly to labor market conditions, as a

result of some unmodelled frictions in labor markets. Specifically, we assume

wt = ωwt−1 + (1− ω)mrst

wt = ωwt−1 + (1− ω)ln

[(
1− b
bα1

)(
C1−b1
m,t C

b1
t

(1− hn,t − hm,t)

)]
(131)

where wt = ln(Wt) represents the natural logarithm of the real wage and

mrst = −Uhm,tUcm,t
the logarithm of the marginal rate of substitution between hours

worked on the market and market consumption. The equilibrium with real wage300

rigidities is thus defined as in Appendix 1.4, except for (44) which is replaced

by (131).

4. Robustness: Monetary Policy Rules

In this section, we assess the robustness of our findings to two additional

monetary policy rules for which we repeat the exercise presented in Section 4.4305

of the paper, following Canova and Paustian [6]. In particular, we consider the

following monetary policy rules.

• Taylor Rule with Output (in deviation from steady state) and

Interest Rate Smoother (Rule 1):

(1 +Rt) = (1 +Rt−1)
ρm

(
β−1ΠΦπ

t

(
Yt
Y

)ΦY
)1−ρm

(132)

Among others, this rule has been considered by Del Negro and Schorfheide310

[7], Rabanal and Rubio-Ramı́rez [11], Del Negro, Schorfheide, Smets and

Wouters [8], and Canova and Paustian [6].

• Simple Taylor Rule with Interest Rate Smoother (Rule 2):

(1 +Rt) = (1 +Rt−1)
ρm
(
β−1ΠΦπ

t

)1−ρm
(133)
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We take 50, 000 draws from uniform distributions of the following parameters,

with their respective bounds: θ ∈ [0.2, 0.9], σ ∈ [1, 4], ξ ∈ [0, 500], ρm ∈ [0, 0.9],315

Φπ ∈ [1.05, 2.5], ρg ∈ [0, 0.95] and ΦY ∈ [0, 0.1] for Rule 1. All the other

parameters are chosen as in Table 1 in the main text. As it becomes clear from

figure 3, the two monetary policy rules do not differ significantly from our main

specification.
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