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Abstract

This paper develops a new methodology for identifying the structure of VARMA time se-

ries models. The analysis proceeds by examining the echelon canonical form and presents

a fully automatic data driven approach to model specification using a new technique to

determine the Kronecker invariants. A novel feature of the inferential procedures devel-

oped here is that they work in terms of a canonical scalar ARMAX representation in

which the exogenous regressors are given by predetermined contemporaneous and lagged

values of other variables in the VARMA system. This feature facilitates the construction

of algorithms which, from the perspective of macroeconomic modeling, are efficacious in

that they do not use AR approximations at any stage. Algorithms that are applicable

to both asymptotically stationary and unit-root, partially nonstationary (cointegrated)

time series models are presented. A sequence of lemmas and theorems show that the

algorithms are based on calculations that yield strongly consistent estimates. The infer-

ential potential of the techniques are illustrated using an example drawn from the real

business cycle literature.

∗Corresponding address: Don Poskitt, Department of Econometrics and Business Statistics, Monash Uni-
versity, Victoria 3800, Australia Tel.:+61-3-9905-9378; fax:+61-3-9905-5474.

E-mail address: Don.Poskitt@Buseco.monash.edu.au



VARMA Models in Macroeconomics 1

1 Introduction

Since the appearance of the seminal work of Sims (1980) on the relationship between abstract

macroeconomic variables and stylized facts as represented by statistical time series models,

vector autoregressive (VAR) models of the form

A(B)yt = ut, t = 1, . . . , T, (1.1)

have become the cornerstone of much macroeconomic modeling. In equation (1.1) the vector

yt = (y1t, . . . , yvt)
′ denotes a v component observable process. The v × v matrix operator

A(z) = A0 +A1z
1 + · · · +Apz

p in the backward shift or lag operator B, viz. Byt = yt−1,

determines the basic evolutionary properties of the observed process yt and the stochastic

disturbance, ut = (u1t, . . . , uvt)
′, which is unobserved, determines how chance or random

influences enter the system.

Apart from their use as the main tool in numerous multivariate macroeconomic forecast-

ing applications (as in Doan, Litterman and Sims, 1984), VARs have found broad applica-

tion as the foundation of much dynamic macroeconomic modeling. They are used to study

long-run equilibrium behaviour, with researchers investigating vector error correction models

constructed from VARs fitted to macroeconomic time series (following Engle and Granger,

1987). In structural VAR (SVAR) models, VARs coupled with restrictions derived from

economic theory are used to examine the effects of structural shocks on key macroeconomic

variables (see Christiano, Eichenbaum and Vigfusson, 2006, for a recent contribution). In

dynamic stochastic general equilibrium (DSGE) models, VARs are used as auxiliary models

for indirect estimation of the DSGE model parameters (Smith, 1993), and to provide ap-

proximations to the solutions of DSGE models that have been expanded around their steady

state (Del Negro and Schrfheide, 2004).

This ubiquitous use of VARs has occurred despite their limitations being well known.

First, VAR specifications form an unattractive class of models for modeling macroeconomic

variables since they are not closed under aggregation, marginalization or the presence of

measurement error, see Fry and Pagan (2005) and Lütkepohl (2005). Secondly, economic

models often imply that the observed processes have a vector autoregressive moving aver-

age (VARMA) representation with a non-trivial moving average component, as in Cooley

and Dwyer (1998), and, more recently, Fernández-Villaverde, Rubio-Ramı́rez, Sargent and

Watson (2007).

In order to expand the representation in (1.1) into the more general VARMA class, let

us assume that ut is a full rank, zero mean, p-dependent stationary process with covariance

E[utu
′
t+τ ] = Γξ(τ) = Γξ(−τ)′, τ = 0,±1,±2, . . . , p. This implies the existence of a sequence

of zero mean, uncorrelated random variables εt, defined on the same probability space as ut,

such that ut = M(B)εt, t = 1, . . . , T, where E[εtε
′
t] = Σ > 0 and, without loss of generality,

the v× v matrix operator M(z) = M0 +M1z
1 + · · ·+Mpz

p satisfies det(M(z)) ̸= 0, |z| < 1

(see Hannan, 1971, Theorem 10’ and the associated discussion). Substituting ut = M(B)εt
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into equation (1.1) gives us the VARMA form

A(B)yt = M(B)εt. (1.2)

The process yt is assumed to evolve over the time period t = 1, . . . , T , according to the

specification given in (1.2), starting from initial values given by yt = εt = 0, t ≤ 0. The

stochastic behaviour of yt is now clearly dependent on the operator pair [A(z) : M(z)], with

random variation induced by the random disturbances, or shocks, εt. More formally, it will

be assumed that the disturbances, or innovations, possess the following probability structure:

Assumption 1 The process εt =
(
ε1t, . . . , εvt

)′
is a stationary, ergodic, martingale differ-

ence sequence. Thus if Ft denotes the σ-algebra generated by ε(s), s ≤ t, then E[εt | Ft−1] =

0. Furthermore, E[εtε
′
t | Ft−1] = Σ > 0 and E[εkjt] < ∞, j = 1, . . . , v, k ≥ 2.

In situations where the theoretical background gives rise to a VARMA model it might be

expected that a VAR of high order could be used to approximate the true VARMA structure.

Results in the recent literature suggest, however, that such an approach could be fraught

with difficulties. Conditions under which the economic shocks and impulse responses from

an economic model are matched by those of a (S)VAR are examined in Fernández-Villaverde

et al. (2007), and Chari, Kehoe and McGrattan (2007) conclude from their analysis that the

currently available data is prohibitive, leading to VARs that have too short a lag length and

that provide poor approximations and unreliable inferences. For a simulated model that has

both DSGE elements and data dynamics Kapetanios, Pagan and Scott (2007) suggest that

a sample of 30000 observations with a VAR of order 50 is required to adequately capture the

effect of some of the structural shocks. Ravenna (2007) also points out that using a VAR

to characterize the dynamics of a model that in truth leads to a VARMA structure can be

misleading, and warns researchers to be cautious when relying on evidence from VARs to

build such models.

Given that the limitations and pitfalls of VARs for macroeconomic analysis have been

well documented, one might imagine that applied macroeconomic researchers would have

been compelled to consider implementing VARMA models instead. Practitioners appear to

have been reluctant to embrace VARMA models however. The reason for this reluctance is,

perhaps, that the complexities associated with the identification and estimation of VARMA

models stand in sharp contrast to the ease and accessibility of VARs.

Multivariate time series models have, of course, been given considerable attention in the

past and accounts of many of the methods and techniques available are given in Hannan

and Deistler (1988) and Lütkepohl (2005), for example. Nevertheless, the question of how

best to determine the internal structure of a VARMA model in a direct and straightforward

manner has not been completely resolved. Two techniques of identification predominate:

1. The scalar-component methodology pioneered by Tiao and Tsay (1989), and further

developed in Athanasopoulos and Vahid (2008). This method uses an adaptation

of the canonical correlation analysis introduced in Akaike (1974b) to detect various

linear dependencies implied by different structures. It relies on the solution of different
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eigenvalue problems and solves the underlying multiple decision problem via a sequence

of hypothesis tests;

2. The echelon form methodology developed in Hannan and Kavalieris (1984) and Poskitt

(1992). In this approach the coefficients of an VARMA model expressed in echelon

canonical form are estimated and the associated Kronecker indices determined using

regression techniques and model selection criteria, à la AIC (Akaike, 1974a), BIC

(Schwarz, 1978) or HQ (Hannan and Quin, 1979).

An illuminating exposition of the similarities and differences between scalar-component mod-

els and echelon forms is given in Tsay (1991), and Athanasopoulos, Poskitt and Vahid (2010)

present a detailed analysis and comparison of these two techniques, highlighting the relative

merits and advantages of each method (c.f. Nsiri and Roy, 1992). The lack of a single well-

defined multivariate parallel to the classical Box-Jenkins ARMA methodology for univariate

time series has, no doubt, discouraged researchers from employing VARMAs in practice, de-

spite the fact that “While VARMA models involve additional estimation and identification

issues, these complications do not justify systematically ignoring these moving average com-

ponents, – – – – –.” (Cooley and Dwyer, 1998). The broad aim of this paper is to fill this

gap and operationalize the use of VARMA models to the point where they can be routinely

employed as part of the basic toolkit of the applied macroeconomist.

The paper develops a coherent methodology for identifying and estimating VARMA

models that can be fully automated. The approach adopted is to construct a modification of

the echelon form methodology using a new technique to determine the Kronecker invariants.

The scalar-components method is not considered here, firstly, because it is not amenable to

automation in a manor similar to that used for VARs as is the echelon form methodology.

Secondly, given the significance of cointegration in the practical analysis of economic and

financial time series we wish to investigate unit-root nonstationary cointegrated systems

and examine the consequences of applying our methods to identify cointegrated VARMA

structures. Extensions of the echelon form methodology to cointegrated VARMA models

have been analysised in Lütkepohl and Claessen (1997), Bartel and Lütkepohl (1998) and

Poskitt (2003, 2006) (See also Lütkepohl, 2005, Chapter 14.), but to our knowledge similar

extensions of the scalar-components methodology to cointegrated processes are not currently

available.

In both the scalar-components and the echelon form methodologies the initial step is to

fit a high-order VAR, the associated residuals are then used as plug in estimates for the

unknown innovations in subsequent stages of the analysis. The applied macroeconomic lit-

erature referred to earlier questions the practical efficacy of using long VAR approximations,

however, and intimates that the quality of the VAR innovations estimates is likely to be

poor. Moreover, Poskitt (2005) presents theoretical arguments showing why the use of the

first stage VAR residuals can lead to serious overestimation of the VARMA orders. A novel

feature of the inferential procedure developed here is that it does not require the use of

autoregressive approximations, thereby circumventing any problems that might be inherent

in using a VAR in a macroeconomic modeling context.
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The paper is organised as follows. The following section defines the the inverse echelon

form and Kronecker invariants. Section 3 analyzes a single equation canonical representation

that forms the basis of the identification of the Kronecker invariants. An Algorithm for the

identification of the Kronecker invariants of a stationary ARMA process is then presented

in Section 4. Section 5 gives theoretical results stating conditions under which almost sure

convergence of the estimated values to the true Kronecker invariants can be achieved. Section

6 shows how the canonical representation considered in Section 3 can be adapted to allow

for cointegrated processes and Section 7 then presents a modification of the identification

procedure that gives rise to a strongly consistent model selection process that is applicable

to cointegrated processes. The eighth section of the paper presents the theoretical results

underpinning the technique outlined in Section 7. Section 9 presents a brief conclusion and

illustrates the underlying ideas and results discussed in the paper by examining the impulse

responses derived from a real business cycle model.

2 The Inverse Echelon Form and Kronecker Invariants

Before continuing let us establish some additional notational conventions and assumptions.

The order of [A(z) : M(z)] is defined as p = max1≤i≤v ni where, for i = 1, . . . , v, ni =

δi [A(z) : M(z)] denotes the polynomial degree of the ith row of [A(z) : M(z)]. The integers

nr, r = 1, . . . , v, are called the Kronecker indices. The Kronecker indices determine the lag

structure of the, so called, inverse echelon form, which is characterized by an operator pair

[A(z) : M(z)] with polynomial elements that satisfy for all r, c = 1, . . . , v ,

(i) arc,0 = mrc,0 ,

(ii) mrr(z) = 1 +mrr,1z + . . .+mrr,nrz
nr ,

mrc(z) = mrc,nr−nrc+1z
nr−nrc+1 + . . .+mrc,nrz

nr and

(iii) arc(z) = arc,0 + arc,1z + . . .+ arc,nrz
nr , (2.1)

where

nrc =

{
min(nr + 1, nc) r ≥ c ,

min(nr, nc) r < c .

The restrictions implicit in (2.1) differ from those commonly found in the literature on

echelon forms, see Hannan and Deistler (1988, §2.5) for detailed a discussion of the conven-

tional case and Lütkepohl (2005, §14.2.2) for the structure in (2.1). Conditions (2.1)(i)&(ii)

imply that the standard normalization A0 = M0, with unit leading diagonal, is imposed, but

(2.1)(ii) implies that additional exclusion constraints are placed upon lower order coefficients

of M(z) according to the relative lag lengths, rather than A(z). The latter feature arises

because the inverse echelon form is constructed from the mapping [A(z) : M(z)] 7→ Ψ(z)

defined by M(z)Ψ(z) = A(z), wherein the coefficients Ψ0,Ψ1,Ψ2, . . . are derived from the
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recursive relationships

i∑
j=0

MjΨi−j = Ai, i = 0, . . . , p, and

p∑
j=0

MjΨi−j = 0, i = p+ 1, . . . . (2.2)

Note that Ψ0 = I and ∥Ψi∥ < ∞, i = 0, 1, . . ., where ∥Ψj∥2 = trΨjΨ
′
j , the Euclidean norm.

If detM(z) ̸= 0, |z| ≤ 1 then ∥Ψi∥ → 0 at an exponential rate as i → ∞ and the power

series Ψ(z) = limN→∞
∑N

0 Ψiz
i will be convergent for |z| ≤ 1. The nomenclature is based

on the fact that it is the mapping obtained via (2.2) which allows us to invert the VARMA

representation and express the innovation process in terms of the model parameters and the

observables, namely εt =
∑t−1

j=0Ψjyt−j . If we let ARMAE(ν) denote the class of all VARMA

models in inverse echelon form with multi-index ν = {n1, . . . , nv}, then ARMAE(ν) defines

a canonical structure for the set of VARMA models with McMillan degree m =
∑v

i=1 ni.

Assumption 2 The pair [A(z) : M(z)] are (left) coprime and [A(z) : M(z)] ∈ ARMAE(ν).

It will be supposed that neither detA(z) or detM(z) is identically zero and that the de-

terminants of the polynomial matrices A(z) and M(z) satisfy detA(z) ̸= 0 |z| < 1 and

detM(z) ̸= 0, |z| ≤ 1.

Note that Assumption 2 allows for the possibility that A(z) has zeroes on the unit circle.

Let us assume that detA(z) has ζ ≤ v roots of unity, all other zeroes lie outside the unit

circle, and that the individual series yit, i = 1, . . . , v, are asymptotically stationary after first

differencing, i.e., △yt = (1 − B)yt = yt − yt−1, t = 1, . . . , T , is asymptotically stationary.

Then the process yt is non-stationary and cointegrated. We will deal with cointegrated

processes in detail below, having first examined the asymptotically stationary case. For

the stationary case the condition on the zeroes of A(z) in Assumption 2 is strengthened

to detA(z) ̸= 0, |z| ≤ 1. We will refer to the strengthened version of Assumption 2 as

Assumption 2′.

The Kronecker indices are not invariant with respect to an arbitrary reordering of the

elements of yt and to this extent the inverse echelon canonical form is only unique mod-

ulo such rotations. The variables in yt = (y1t, . . . , yvt)
′ can be permuted, however, such

that the Kronecker indices of (yr(1)t, . . . , yr(v)t)
′ are arranged in descending order, nr(1) ≥

nr(2) ≥ · · · ≥ nr(v), where r(j), j = 1, . . . , v, denotes a permutation of 1, . . . , v that induces

the ordering. The r(j), j = 1, . . . , v, are unique modulo rotations that leave the ordering

nr(1) ≥ · · · ≥ nr(v) unchanged and (r(j), nr(j)), j = 1, . . . , v, are referred to as the Kronecker

invariants. When expressed in terms of the Kronecker invariants not only is the representa-

tion of the system in inverse echelon form canonical but the coefficient matrix A0 = M0 is

lower triangular and the individual variables yr(j)t, j = 1, . . . , v are uniquely characterized.

In practice, of course, the Kronecker invariants will not be known and we wish to consider

identifying them in the sense of estimating or determining them from the data. Moreover,

given that the numbering of the variables in yt assigned by the practitioner is arbitrary,
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identification of the Kronecker invariants involves the determination of not only the values of

nr(1) ≥ nr(2) ≥ · · · ≥ nr(v), but also the permutation (r(1), . . . , r(v))′ of the labels (1, . . . , v)′

attached to the variables. At the risk of getting ahead of ourselves, suppose that we know

that max{n1, . . . , nv} ≤ h. We might contemplate examining all ARMA structures in the

set {ARMAE(ν) : ν ∈ {ν = (n1, . . . , nv) : 0 ≤ nr ≤ h, r = 1, . . . , v}}. If a full search over

all such structures were to be conducted then a total of (h+1)v specifications would have to

be examined; if v = 5 and h = 12, say, this means estimating 371293 different ARMAE(ν)

models. This brings us face to face with the curse of dimensionality.

Considerable savings can be made, however, if the pairs (r(j), nr(j)) associated with

yr(j)t, j = 1, . . . , v, can be identified on a variable by variable, or equivalently, equation

by equation, basis. Identification of the Kronecker invariants equation by equation involves

examining v(h + 1) different specifications at most; if v = 5 and h = 12 this gives an

upper bound of 65, rather than the previous total of 371293. To determine the Kronecker

invariants variable by variable, however, we need to construct from the ARMAE(ν) system

representation a univariate specification for yr(j)t that allows the Kronecker invariant pairs

(r(j), nr(j)), j = 1, . . . , v, to be appropriately isolated. We derive such a specification in the

next section.

3 A Single Equation Canonical Structure

Various aspects of the relationship between VARMA models and the structure of the indi-

vidual univariate series have been discussed in the literature, but none consider specifications

that are suitable for our current purposes since they all convolve the individual operators in

such a way as to disguise their underlying polynomial degrees. The final form (Wallis, 1977),

for example, is obtained by pre-multiplying (1.2) by the adjoint of A(z), denoted adjA(z),

to give

detA(B)yt = adjA(B)M(B)εt . (3.1)

In general, the operators on the left and right hand sides of this expression all have degree

equal to m. Consequently, although (3.1) can be used to determine the McMillan degree of

the overall system (see Remark 3 below), it does not yield univariate specifications suitable

for the identification of the Kronecker invariants.

In order to identify nr(1) ≥ nr(2) ≥ · · · ≥ nr(v), we now introduce a single equation

canonical structure, derived from (1.2), that does not obscure the Kronecker invariants. The

single equation form depends upon the following lemma.

Lemma 3.1 Suppose that yt is an ARMA process as in (1.2) satisfying Assumptions 1 and

2. Then for each choice of the process νt = ujt, j = 1, . . . , v, where

ut =


u1t
...

uvt

 = A(B)yt ,

there exists a zero mean, scalar white noise process ηt, with variance σ2
η, defined on the same
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probability space as yt, such that

νt = ηt + µ1ηt−1 + . . .+ µnηt−n,

where n = nj and the coefficients µ1, . . . , µn of µ(z) − 1 =
∑n

s=1 µsz
s are such that the

auto-covariance generating function of νt equals σ2
ηµ(z)µ(z

−1) and µ(z) ̸= 0, |z| ≤ 1.

A consequence of Lemma 3.1 is that each variable in yt admits a scalar ARMAX rep-

resentation in which the exogenous variables are chosen from contemporaneous and lagged

values of other variables in the VARMA system.

Proposition 3.1 Let yt be an ARMA process satisfying Assumptions 1 and 2 , and suppose

that the variables have been ordered (renumbered) according to the Kronecker invariants, so

that, with a slight abuse of notation, yt = (y1t, . . . , yvt)
′ = (yr(1)t, . . . , yr(v)t)

′ and nj = nr(j),

j = 1, . . . , v. Then for each j = 1, . . . , v the jth equation in (1.2) is equivalent to a scalar

ARMAX specification for zt = yjt of the form

zt +

n∑
s=1

αszt−s +

j−1∑
i=1

βiyit +

v∑
i=1
i ̸=j

n∑
s=1

βi,syit−s = ηt +

n∑
s=1

µsηt−s , (3.2)

where the order n = nj. Moreover, α(z) = 1+
∑n

s=1 αsz
s, β(z) = (β1+

∑n
s=1 β1,sz

s, . . . , βj−1+∑n
s=1 βj−1,sz

s, 0,
∑n

s=1 βj+1,sz
s, . . . ,

∑n
s=1 βv,sz

s) and µ(z) = 1+
∑n

s=1 µsz
s are coprime, and

the regressors yit, i = 1, . . . , j − 1, and yit−s, i = 1, . . . , v, i ̸= j, s = 1, . . . , n are predeter-

mined relative to zt in the representation (3.2).

Two aspects of Proposition 3.1 that are of particular interest here are; (i) that the degree

of the lag operators in (3.2) depends only on the value of the Kronecker invariant associated

with the variable at hand, and (ii) that the contemporaneous component depends only on

those variables associated with a smaller Kronecker invariant. This means that knowledge of

the Kronecker index associated with yr(j)t tells us the lag length of all the variables appearing

in the ARMAX realization of yr(j)t, and knowing the ranking of the Kronecker index relative

to the other indices, i.e. knowledge that nr(j) ≥ nr(i), i = j + 1, . . . , v, tells us about

the recursive structure. Note that explicit knowledge of the values of the other Kronecker

invariants is not required, the ARMAX specification of the r(j)th equation being a known

function of dj(n) = (j − 1) + (v + 1)n parameters. These features suggest that a sensible

approach to adopt to the identification of the Kronecker invariants is to search through a

collection of ARMAX models for each variable supposing that the fitted order coincides with

the smallest unknown Kronecker invariant. The details of such a procedure are presented in

the following section.

4 Identification Algorithm: Stationary Case

Let yt, t = 1, . . . , T denote a realisation of T observations where yt is an ARMA process as

in (1.2) satisfying Assumptions 1 and 2′. We have already observed that identification of the

Kronecker invariants involves the determination of both the values of nr(1) ≥ · · · ≥ nr(v) and
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the permutation of the variables in yt, P(1, . . . , v)′ = (r(1), . . . , r(v))′ say, that results in an

ARMAE form with multi-index (nr(1), . . . , nr(v)) for Pyt = (yr(1)t, . . . , yr(v)t)
′. The following

algorithm identifies the Kronecker invariants equation by equation whilst constructing P

via a sequence of elementary row operations. The algorithm exploits the implications of

Proposition 3.1 and represents an adaptation to VARMA models of an approach to the

identification of the order of scalar processes first outlined in Poskitt and Chung (1996).

ALGORITHM–ARMAE(ν).

Initialization: Set n = 1, j = v, P = I and N = {1, . . . , v}. Compute the mean corrected

values ȳt = yt − ȳ, t = 1, . . . , T , where ȳ = T−1
∑T

i=1 yt. For each i ∈ N , set σ̃2
η,i(0)

equal to the residual mean square from the regression of ȳit on ȳkt, k = 1, . . . , v, k ̸= i.

while: j ≥ 1

for i(k) ∈ N , k = 1, . . . , v,

1. Set ỹt = Ei(k),j [Pyt], where Er1,r2 denotes the v × v elementary matrix that

induces an interchange of rows r1 and r2 in H when postmultiplied by H,

and evaluate initial estimates of the jth scalar ARMAX form for zt = ȳi(k)t:

(a) Construct estimates of the nonzero coefficients in ã(z) = e′jÃ(z), the jth

row of Ã(z) = Ei(k),jPA(z)P′E′
i(k),j , by solving the equations

n∑
s=0

̂̃asC̃y(r + s) = 0, r = n+ 1, . . . , 2n, (4.1)

for ̂̃a0 = (̂̃a1,0, . . . , ̂̃a(j−1),0, 1, 0, . . . , 0), and ̂̃as = (̂̃a1,s, . . . , ̂̃av,s), s =

1, . . . , n, where

C̃y(r) = C̃y(−r)′ = T−1

T−|r|∑
t=1

ỹtỹ
′
t−r

for r = 1, · · · , T − 1. Now set ̂̃αs = ̂̃aj,s, s = 1, . . . , n,
̂̃
βi = ̂̃ai,0, i =

1, . . . , j − 1, and
̂̃
βi,s =

̂̃ai,s, i = 1, . . . , v, i ̸= j, s = 1, . . . , n.

(b) For r = 1, · · · , n form

C̃v(r) = C̃v(−r) =

n∑
s=0

n∑
u=0

̂̃asC̃y(r + s− u)̂̃au
=

∫ π

−π

̂̃a(ω)̃Iy(ω)̂̃a(ω)∗ exp(−ıωr)dω (4.2)

where ã(ω) = ã0 + ã1 exp(ıω) + · · ·+ ãn exp(ıωn) = ã(z)
∣∣
z=eıω

and

Ĩy(ω) =
1

2π

T−1∑
s=−T+1

C̃y(s) exp(ıω) .

Set ̂̃
Sv(ω) =

1

2π

n∑
s=−n

C̃v(s) exp(ıωs) . (4.3)
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Compute estimates ̂̃µs, s = 1, . . . , n, of the coefficients in the scalar

moving average representation of vt = ũjt, where ũjt = e′jM̃(B)εt and

M̃(z) = Ei(k),jPM(z), by solving the equation system

n∑
s=0

̂̃µsC̃iv(l + s) = 0, l = 1, . . . , n

where

C̃iv(r) =

∫ π

−π

̂̃a(ω)̃Iy(ω)̂̃a(ω)∗̂̃
Sv(ω)2

exp(−ıωr)dω . (4.4)

2. Compute a pseudo maximum likelihood estimate (pseudo MLE) of the inno-

vation variance σ̃2
η.

(a) Form the v + 1 vector sequence (
̂̃
ξ
′
t,
̂̃φt, )

′ by solving[ ̂̃
ξt̂̃φt

]
+

n∑
s=1

̂̃µs

[ ̂̃
ξt−ŝ̃φt−s

]
=

[
ỹt̂̃ηt
]

for t = 1, . . . , T where

̂̃ηt =

n∑
s=0

̂̃aj,sỹ(t− s)−
n∑

s=1

̂̃µs
̂̃ηt−s

=

n∑
s=0

̂̃αszt−s +

j−1∑
i=1

̂̃
βiỹit +

v∑
i=1
i ̸=j

n∑
s=1

̂̃
βi,sỹit−s −

n∑
s=1

̂̃µs
̂̃ηt−s

and the recursions are initiated at ̂̃ηt = 0 and (
̂̃
ξ
′
t,
̂̃φt, )

′ = 0′, t ≤ 0.

(b) Set c̃η̂(0) = T−1
∑T

t
̂̃η2t and calculate

c̃
η̂ξ̂
(s) = T−1

T∑
t=s+1

̂̃ηt̂̃ξ′t−s and c̃η̂φ̂(s) = T−1
T∑

t=s+1

̂̃ηt ̂̃φt−s .

Now compute the mean squared error

̂̃σ2

η(n) = c̃η̂(0) +

n∑
s=0

∆̂̃asc̃η̂ξ̂(s)′ − n∑
s=1

∆̂̃µsc̃η̂φ̂(s)

where ∆̂̃as, s = 0, . . . , n, and ∆̂̃µs, s = 1, . . . , n, denote the coefficient

values obtained from the Toeplitz regression of ̂̃ηt on −̂̃ξit, i = 1, . . . , j−1,

and −̂̃ξt−s, s = 1, . . . , n, and ̂̃φt−s, s = 1, . . . , n.

3. Apply model selection rule:

(a) Evaluate the criterion function

ICT (n) = T log ̂̃σ2

η(n) + pT (dj(n))

where the penalty term pT (dj(n)) > 0 is a real valued function, mono-

tonically increasing in dj(n) and non-decreasing in T .
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(b) if ICT (n) > ICT (n− 1);

set r(j) = i(k); nr(j) = n− 1; and

update P = Ei(k),jP; N = N \ i(k); j = j − 1.

end

end for i(k) ∋ N .

if n < hT ;

increment n = n+ 1.

else

for i(k) ∈ N , k = 1, . . . , v,

set nr(j) = n; r(j) = i(k); and

update P = Ei(k),jP; N = N \ i(k); j = j − 1.

end for i(k) ∋ N .

end

end when j = 0.

Some remarks on the algorithm’s rationale and numerical implementation are in order:

REMARK 1. The first step of the algorithm is designed to provide first stage consistent

estimates of the parameters in the scalar ARMAX representation in (3.2). Step 1(a) is based

on the fact that from Proposition 3.1 it follows that ỹt−n−s, s = 1, . . . , n, are orthogonal to

e′jM̃(B)εt = ηt+µ1ηt−1+ . . .+µnηt−n, the scalar moving average corresponding to the right

hand side of the r(j)th equation. Thus, post multiplying by ỹ′
t−n−s, taking expectations, and

writing Γ̃y(r) = E[ỹtỹ
′
t−r] for the theoretical autocovariance function of ỹt, remembering

that in Proposition 3.1 the variables are assumed to be ordered according to the Kronecker

invariants, we find that

n∑
s=0

ãsΓ̃y(r + s) = 0, r = n+ 1, . . . , 2n . (4.5)

We can see that expression (4.1) forms an empirical counterpart to (4.5) in which the variables

have been appropriately permuted. Given that C̃y(r) is a strongly consistent estimator of

Γ̃y(r) it follows immediately that if the Kronecker invariant pairs (r(i), nr(i)), i = j, . . . , v,

are correctly specified, then ̂̃α(z) and
̂̃
β(z) will yield strongly consistent estimates of α̃(z)

and β̃(z) respectively.

A corollary of the consistency of ̂̃α(z) and ̂̃β(z) is that∫ π

−π

̂̃a(ω)̃Iy(ω)̂̃a(ω)∗ exp(−ıωr)dω =

∫ π

−π
ã(ω)S̃y(ω)ã(ω)

∗ exp(−ıωr)dω + o(1)

almost surely (a.s.) wherein S̃y(ω) denotes the spectral density of ỹt. Given that S̃y(ω) =

(2π)−1K̃(ω)ΣK̃(ω)∗ where K̃(ω) = Ã(ω)−1M̃(ω) it follows that the quadratic form

ã(ω)S̃y(ω)ã(ω)
∗ = 2π)−1e′jM̃(ω)ΣM̃(ω)∗ej

= (2π)−1σ2
η|µ̃(ω)|2
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and hence that the autocovariance estimate computed in Step 1(b) at (4.2) is consistent for

the autocovariance of νt = ũjt. The spectral estimator
̂̃
Sv(ω) computed at (4.3) is therefore

consistent for S̃v(ω), the spectrum of νt. Similarly,∫ π

−π

̂̃a(ω)̃Iy(ω)̂̃a(ω)∗̂̃
Sv(ω)2

exp(−ıωr)dω =

∫ π

−π

1

S̃v(ω)
exp(−ıωr)dω + o(1) a.s.

so the C̃iv(r) in (4.4) yield consistent estimates of the corresponding inverse autocovariances,

the coefficients in the Fourier expansion of S̃v(ω)
−1 = 2π/σ2

η|µ̃(ω)|2. From the latter it

follows that ̂̃µs, s = 1, . . . , n, provide consistent estimates of the coefficients in µ̃(z). Detailed

particulars of the arguments underlying this heuristic rationale are presented below.

REMARK 2. It is a straightforward to show that ̂̃α(z) is equivalent to the estimator

obtained using ỹt−n−s, s = 1, . . . , n, as instruments in an exactly–identified instrumental

variables regression estimate of the autoregressive coefficients of the r(j)th equation. Given

that ỹt−n−s for all s ≥ 1 are admissible instruments, we could increase the number of

instruments by taking ỹt−n−s, s = 1, . . . , h, where h > n, and calculate the over–identified

instrumental variables estimator, ̂̃αh(z) say. Stoica, Soderstrom and Friedlander (1985)

examine this possibility and show that the asymptotic variance of ̂̃αh(z) is monotonically

decreasing in h and converges to a finite limit, and hence that asymptotic efficiency is achieved

by letting h → ∞ as T → ∞. It is envisaged that in practice ̂̃αh(z) will be evaluated with

h = a log T , a > 0, but for ease of exposition and notational simplicity we will confine our

attention to ̂̃α(z) here.
REMARK 3. Under Gaussian assumptions −T

2 log 1
T

∑T
t η̃2t , where µ̃(B)η̃t = α̃(B)zt +

β̃(B)′ỹt = ã(B)ỹt, forms an approximation to the kernel of the marginal log likelihood of

the scalar ARMAX specification, concentrated with respect to σ2
η. Recalling the convention

about values before t = 1, we find that

∂η̃t
∂αs

= ξ̃j(t−s) ,

∂η̃t
∂βis

= ξ̃i(t−s) and

∂η̃t
∂µs

= −φ̃t−s ,

and hence that

∂
∑T

t η̃2t
∂a′j

= 2

T∑
t=1

ξ̃t−j η̃t and
∂
∑T

t η̃2t
∂µj

= −2

T∑
t=1

φ̃t−j η̃t .

Thus Step 2 may be viewed as a Gauss-Newton iteration designed to minimize T−1
∑T

t η̃2t , in

line with the univariate procedure of Hannan and Rissanen (1982), only now the calculations

are initiated with the consistent parameter estimates provided by ̂̃a(z) and ̂̃µ(z). Revised

parameter estimates are constructed as ̂̃αs +∆̂̃αs,
̂̃
βi,s +∆

̂̃
βi,s and ̂̃µs +∆̂̃µs, s = 1, · · · , n,

where the parameter adjustments are given by the regression coefficients in the regression of̂̃ηt on −̂̃ξit, i = 1, . . . , j − 1, and −̂̃ξt−s and ̂̃φt−s, s = 1, . . . , n. The iteration can then be
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repeated until convergence occurs, if so desired. Because T−1
∑T

t η̃2t is ‘quasi–quadratic’ it

seems likely that for large values of T no more than two or three iterations will be required for

convergence. For theoretical purposes we will therefore assume that the minimum residual

mean square has been achieved, although in order to maintain a closed form expression for

the algorithm we have chosen to express the pseudo MLE via a single iteration.

REMARK 4. The decision rule embodied in Step 3 leads to the identification of the

Kronecker invariants as the first local minimum of ICT (n) in the interval 0 ≤ n ≤ hT ,

so that ICT (n) ≥ ICT (nr(j)), for n < nr(j), and either ICT (nr(j) + 1) > ICT (nr(j)) or

nr(j) = hT , j = 1, . . . , v. It follows that once the practitioner has designated a specification

for the criterion function ICT (n), and prescribed the upper bound hT , the identification of

the Kronecker invariants is a fully automatic procedure.

Many well known information theoretic criteria, such as AIC and BIC, are encompassed

by ICT (n), and in light of the extensive literature on such criteria we can anticipate that

if the penalty term pT (dj(n)) is assigned appropriately then asymptotically the criterion

function ICT (n) will possess a global minimum when n equals the true Kronecker index,

nr(j)0. That this is indeed the case is verified below, where it is shown that the Kronecker

invariants identified by the algorithm will be strongly consistent if pT (dj(n)) → 0 as T → ∞
such that TpT (dj(n)) → ∞ and log log T/(T · pT (dj(n))) → 0. These requirements allow for

a wide range of possibilities beyond the conventional AIC or BIC type penalties, suggesting

that the most appropriate choice of ICT (n) may be an empirical issue.

Obviously the design parameter hT must be assigned such that hT ≥ max{n1, . . . , nv}.
This can be done by noting from the final form in (3.1) that each variable in yt has a

scalar ARMA(q, q) representation with q ≤ m and q = m for at least one yjt, j = 1, . . . , v.

By applying the univariate ARMA algorithm of Poskitt and Chung (1996) to each yjt,

j = 1, . . . , v, we can generate v estimates, q̂1, . . . , q̂v say. Suppose that this is done using

AIC(q) for the criterion function, for q over the range 0 ≤ q ≤ log T a, a > 1. Setting

hT = max{q̂1, . . . , q̂v} yields an ’estimate’ of the McMillan degree and by Theorem 4.1 of

Poskitt and Chung (1996) limT→∞ hT ≥ m with probability one. Thus, hT provides a value

for the upper bound that will exceed the largest Kronecker invariant almost surely.

REMARK 5. Thus far we have expressed the computational steps of the algorithm in

terms of the required statistical calculations but we have not commented on numerical im-

plementation. Various measures can be taken to optimize the efficiency of the computations.

For example, advantage can be taken of the fast Fourier transform (FFT) when evaluating

the covariances and convolutions required to implement the algorithm. Thus, the covariances

Cy(r), r = 0,± 1, . . . ,± (T − 1), of the raw data yt can be calculated once and for all from

Cy(r) =
2π

N

N∑
s=1

Iy(ωs) exp(−ıωsr)

where ωs = 2πs/N , s = 1, . . . , N ≥ 2T and Iy(ω) = (2πT )−1Zy(ω)Zy(ω)
∗ with Zy(ω) =∑T

t=1 yt exp(ıωt). It is well known (Bingham, 1974) that this method takes an order of

T log T operations rather than the order T 2 operations used with standard methods. The
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autocovariances and periodogram ordinates of ỹt can then be determined using elementary

row and column transformations, as in

C̃y(r) = Ei(k),jPCy(r)P
′E′

i(k),j and Ĩy(ω) = Ei(k),jPIy(ω)P
′E′

i(k),j .

Similarly, the frequency domain expression for C̃v(r) in (4.2) is not suitable for compu-

tation, but the integral may be replaced by an appropriate Riemann sum and evaluated via

the FFT using

C̃v(r) =

n∑
s=0

n∑
u=0

̂̃asC̃y(r + s− u)̂̃au
=

2π

N

N∑
s=1

̂̃a(ωs)̃Iy(ωs)̂̃a(ωs)
∗ exp(−ıωsr) . (4.6)

Since both Ĩy(ω) and ̂̃a(ω) are polynomial (time-limited) the use of (4.6) does not induce

aliasing, whereas, replacing the integral in (4.4) by

2π

N

N∑
s=1

̂̃a(ωs)̃Iy(ωs)̂̃a(ωs)
∗̂̃

Sv(ωs)2
exp(−ıωsr) =

∞∑
j=−∞

C̃iv(r + jN)

clearly results in some aliasing relative to the basic definition of C̃iv(r). However, S̃v(ω)

corresponds to the power spectrum of an invertible moving–average, implying that for T

sufficiently large |C̃iv(r)| < κλ|r| with probability one, where 0 < λ < 1 and κ denotes a

fixed constant. Thus |C̃iv(u) −
∑∞

j=−∞ C̃iv(r + jN)| < 2κ exp(N log λ)/(1 − λN ) and the

effects of aliasing will disappear asymptotically.

REMARK 6. The calculation of ̂̃α(z), ̂̃β(z) and ̂̃µ(z) are Toeplitz in nature, meaning that

the matrices in the linear equations being solved have constant elements down any diagonal.

This feature is particularly important in the context of ̂̃µ(z) because at Step 2 it is necessary

for ̂̃µ(z) to be invertible, for otherwise the recursions forming (
̂̃
ξ
′
t,
̂̃φt, )

′ will explode. The

requirement that ̂̃µ(z) ̸= 0, |z| ≤ 1, is met since solving (4.4) for ̂̃µ(z) is equivalent to solving

Yule-Walker equations in the inverse autocovariances. When computing ̂̃µ(z) advantage

can therefore be taken of the Levinson-Durbin recursions. Indeed, we can also embed the

evaluation of ̂̃α(z) and ˜̃β(z), as well as the calculations of Step 2, into appropriate multivariate

Levinson-Durbin (Whittle) recursions. Details of the latter, which follow the development

in Hannan and Deistler (1988, pp. 249-251), are omitted.

It is well known that the use of Toeplitz calculations can have undesirable end-effects.

These effects can be ameliorated by the use of Burg-type procedures (Paulsen and Tjøstheim,

1985; Tjøstheim and Paulsen, 1983), but the use of a data-taper in conjunction with Whittle

type estimators, such as those implicitly being employed here, can be equally beneficial

(Dahlhaus, 1988). Moreover, the benefits obtained via a data-taper can be achieved without

incurring the additional computational burden entailed in using Burg-type procedures. Given

that we envisage conducting the computations using the FFT the employment of data-

tapering seems natural.
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5 Some Theoretical Properties

This section of the paper presents the main theorems for the asymptotically stationary case.

The results provide conditions on the penalty term pT (dj(n)) assigned to the criterion func-

tion ICT (n) that will ensure that the indices obtained by implementing the above algorithm

will yield consistent estimates of the Kronecker invariants. Recall that identification of the

Kronecker invariants also involves the determination of the permutation (r(1), . . . , r(v))′ of

the original labels (1, . . . , v)′ attached to the variables. In what follows we will let r(q)T ,

q = 1, . . . , v, denote the reordering of r = 1, . . . , v induced by nr(j)T , j = 1, . . . , v, and

we will employ the labels r(1)0, . . . , r(v)0 for the reordering associated with true Kronecker

invariants n0
r(j), j = 1, . . . , v.

Theorem 5.1 Suppose that yt is an ARMA process satisfying Assumptions 1 and 2′, and let

{r(j)T , nr(j)T }, j = 1, . . . , v, denote the Kronecker invariant pairs obtained obtained when

employing the above algorithm with pT (dj(n)) a possibly stochastic function of n and T .

Then:

(i) If (r(i)T , nr(i)T ) = (r(i)0, n0
r(i)), i = q + 1, . . . , v, and pT (dq(n))/T → 0 almost surely

as T → ∞, then nr(q)T ≥ n0
r(q) with arbitrarily large probability, as T → ∞.

(ii) If (r(i)T , nr(i)T ) = (r(i)0, n0
r(i)), i = q + 1, . . . , v, and liminfT→∞pT (dq(n))/L(T ) > 0

almost surely, where L(T ) is a real valued, increasing function of T such that loglogT/L(T ) →
0, then Pr(limT→∞ nr(q)T ≤ n0

r(q)) = 1.

From Theorem 5.1 it is clear that if nr(j)T = nr(j)0 and r(j)T = r(j)0, for j = q+1, . . . , v,

and provided that pT (dq(n))/T → 0 and log log T/pT (dq(n) → 0 as T → ∞, then for

T sufficiently large we will have nr(q)T = n0
r(q) with probability one. Hence, bar invariant

rotations, r(q)T must coincide with r(q)0 almost surely if pT (dq(n)) satisfies the requirements

of parts (i) and (ii) of Theorem 5.1. Induction on nr(q)T and r(q)T for q = 1, . . . , v, now

yields the following theorem.

Theorem 5.2 Suppose that yt is an ARMA process satisfying Assumptions 1 and 2′, and let

{r(j)T , nr(j)T }, j = 1, . . . , v, denote the Kronecker invariant pairs obtained by implementing

the above algorithm. If pT (dq(n))/T → 0 and log log T/pT (dq(n) → 0 as T → ∞ then, mod-

ulo invariant rotations, r(j)T = r(j)0 a.s. for T sufficiently large, and Pr(limT→∞ nr(j)T =

nr(j)0) = 1, j = 1, . . . , v.

In what follows we will append a zero superscript to quantities of interest to indicate those

values corresponding to the actual data generating mechanism giving rise to the observations,

as we have already done for the Kronecker invariants. Thus, Σ0 will denote the true system

innovation variance-covariance matrix, and K̃0(ω) = Ã0(ω)−1M̃0(ω) will represent the true

transfer function of ỹt. Similarly, α0(z), β0(z) and µ0(z) will denote the true autoregressive,

exogenous and moving-average operators associated with the scalar ARMAX representation

outlined in Proposition 3.2.
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6 Adaptations for Cointegrated Processes

Suppose that the operator A(z) has v − ϱ roots of unity and all other zeroes line outside

the unit circle so that detA(z) = as(z)(1 − z)v−ϱ, as(z) ̸= 0, |z| ≤ 1, ϱ < v. Applying

the Beveridge-Nelson decomposition A(z) = B(z)(1 − z) + A(1)z in (1.2), where B(z) =

B0 +B1z + · · · +Bp−1z
p−1 with B0 = A0 and Bi = −(Ai+1 + · · · +Ap), i = 1, . . . , p − 1,

leads to the (Engle and Granger, 1987) error correction (EC) representation

B(B)△yt +CEyt−1 = M(B)εt , (6.1)

wherein the cointegrating relations are summarised in the reduced rank representation of the

coefficient A(1) =
∑p

s=0As = CE where C and E′ are (v × ϱ) matrices with full column

rank ρ. Now consider an EC representation in which [B(z) : M(z)] satisfy the conditions

(i’) brc,0 = mrc,0,

(ii) mrr(z) = 1 +mrr,1z + . . .+mrr,nrz
nr ,

mrc(z) = mrc,nr−nrc+1z
nr−nrc+1 + . . .+mrc,nrz

nr ,

(iii’) brc(z) = brc,0 + brc,1z + . . .+ brc,nrz
nr−1,

and the coefficients in the cointegrating relations are normalized such that

(iv’) E is in row-reduced echelon form.

When conditions (i’) through (iv’) are imposed the structure in (6.1) is canonical and equiv-

alent to an ARMAE(ν) representation for yt in which the cointegrating rank ϱ has been

imposed. A system satisfying these conditions will be labeled an ECARMAE(ν, ϱ) form.

For detailed particulars see Poskitt (2006).

A row-reduced echelon form is a matrix in which the first nonzero entry in any row is

unity and appears to the right of the first nonzero entry in the preceding row, and all other

entries in the same column as the first nonzero entry in any row are zero. Imposing this

structure on E provides a solution to the statistical identification problem, but it implies that

certain variables can be excluded from the cointegrating relations. Since when identifying

the Kronecker invariants we wish to consider different permutations of the variables in yt

we will work here with a different characterization of the cointegrating space, as different

permutations of yt may not be compatible with the exclusion constraints implicit in the

(admittedly arbitrary) row-reduced echelon form normalization. Following the argument

in Poskitt (2000, Remark 1), we can determine a v × v nonsingular transformation matrix

T = [T′
c : T′

u]
′, where the partition occurs after the first ϱ ≥ 0 rows, such that A(z) =

As(z)T
−1∆(z)T where detAs(z) = as(z) and, without loss of generality, ∆(z) = diag[Iϱ :

Iv−ϱ(1 − z)]. Moreover, if xt = [x′
ct : x

′
ut]

′ = Tyt then ∆(B)xt = TAs(B)−1M(B)εt and

the elements in the first ϱ rows of xt, the variables in xct, are asymptotically stationary

processes and those in the remaining v − ϱ rows, xut, are first difference stationary. Note

also that A(1) = As(1)T
−1∆(1)T = FTc, say, so Tc corresponds to the coefficient matrix

in a reduced rank factorization of the error correction term.

Proposition 6.1 Let yt be an ECARMAE(ν, ρ) process satisfying Assumptions 1 and 2 ,

and suppose that the variables have been ordered according to the Kronecker invariants. Then

for each choice of the variable △zt = △yjt, j = 1, . . . , v, there exists coprime polynomial
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operators α(z), β(z) and µ(z) of order n = nj, and a coefficient vector c, such that △zt

admits the representation

α(B)△zt + β(B)△yt + c′xc(t−1) = µ(B)ηt , (6.2)

wherein xct = Tcyt, Moreover, in the scalar ARMAX specification (6.2) of △zt the variables

△yit, i = 1, . . . , j − 1, △yit−s, i = 1, . . . , v, i ̸= j, s = 1, . . . , n, and xc(t−1), are stationary

predetermined regressors.

7 Identification Algorithm: Cointegrated Case

The following algorithm uses the structure in Proposition 6.1 to identify the cointegrating

rank and the Kronecker invariants in two stages. The first stage identifies ρ and a basis for

Tc, a basis for the cointegrating space. The second stage then exploits the formulation in

(6.2) and identifies the Kronecker invariants using a modification of the previous algorithm.

ALGORITHM–ECARMAE(ν, ϱ).

Stage 1: Determine the solutions to the eigenvalue-eigenvector problem

[λIv −Cy(0)
−1Cy(1)Cy(0)

−1Cy(1)
′]vT = 0

where the pairs [λ(i),T : v(i),T ], i = 1, . . . , v, are arranged according to the ordering λ(1),T ≤
λ(2),T ≤ · · · ≤ λ(v),T of the eigenvalues and the associated eigenvectors are normalised such

that v′
(i),TCy(0)v(j),T = δi,j , the Kronecker delta. For ϱ = 0, . . . , v − 1 determine

∇T (ϱ) =T (v − ϱ) log

 v∑
j=ϱ+1

λ(j),T /(v − ϱ)

− T

v∑
j=ϱ+1

log(λ(j),T )

+ ϱ(2v − ϱ+ 1) log log T/2

and set

ϱ = min
0≤ϱ<v

∇T (ϱ) .

Now set BT = [v(1),T : · · · : v(ϱ),T ]
′.

Stage 2:

Initialization: Set n = 1, j = v, P = I and N = {1, . . . , v}. Compute the first differenced

values △yt = yt − yt−1 and the regressor ζt = BTyt for t = 1, . . . , T . For each i ∈ N ,

set σ̃2
η,i(0) equal to the residual mean square from the regression of △yit on △ykt,

k = 1, . . . , v, k ̸= i, and ζ(t−1).

while: j ≥ 1

for i(k) ∈ N , k = 1, . . . , v,

1. Set △ỹt = Ei(k),j [P△yt] and for △zt = △yi(k)t evaluate initial estimates of

the jth scalar ARMAX form :
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(a) Construct estimates of the nonzero coefficients in d̃(z) = e′jD̃(z), the jth

row of D̃(z) = [Ei(k),jPB(z)P′E′
i(k),j ,Ei(k),jPC], by solving the equations∫ π

−π

̂̃
d(ω)̃Iw(ω) exp(−ıωr)dω = 0, r = n+ 1, . . . , 2n, (7.1)

for d̃(ω) = d̃0 + d̃1 exp(ıω) + · · ·+ d̃n exp(ıωn) = d̃(z)
∣∣
z=eıω

where

Ĩw(ω) =
1

2π

T−1∑
s=−T+1

C̃w(s) exp(ıω)

and

C̃w(r) = T−1

T−|r|∑
t=1

w̃tw̃
′
t−r

for r = 1, · · · , T − 1 where w̃t = [△ỹ′
t, ζ

′
t−1]

′. Now set ̂̃αs =
̂̃
dj,s, s =

1, . . . , n,
̂̃
βi =

̂̃
di,0, i = 1, . . . , j − 1,

̂̃
βi,s =

̂̃
di,s, i = 1, . . . , v, i ̸= j,

s = 1, . . . , n and cr =
̂̃
dv+r,1, r = 1, . . . , ϱ.

(b) For r = 1, · · · , n form

C̃v(r) =

∫ π

−π

̂̃
d(ω)̃Iw(ω)

̂̃
d(ω)∗ exp(−ıωr)dω

and set ̂̃
Sv(ω) =

1

2π

n∑
s=−n

C̃v(s) exp(ıωs) . (7.2)

Compute estimates of the moving average coefficients ̂̃µs, s = 1, . . . , n, by

solving the equation system

n∑
s=0

̂̃µsC̃iv(l + s) = 0, l = 1, . . . , n

where

C̃iv(r) =

∫ π

−π

̂̃
d(ω)̃Iw(ω)

̂̃
d(ω)∗̂̃

Sv(ω)2
exp(−ıωr)dω . (7.3)

2. Compute a pseudo maximum likelihood estimate (pseudo MLE) of the inno-

vation variance σ̃2
η.

(a) Form the v + ϱ+ 1 vector sequence (
̂̃
ξ
′
t,
̂̃φt, )

′ by solving[ ̂̃
ξt̂̃φt

]
+

n∑
s=1

̂̃µs

[ ̂̃
ξt−ŝ̃φt−s

]
=

[
w̃t̂̃ηt

]

for t = 1, . . . , T where

̂̃ηt = ̂̃d(B)w̃t + (1− ̂̃µ(B))̂̃ηt
and the recursions are initiated at ̂̃ηt = 0 and (

̂̃
ξ
′
t,
̂̃φt, )

′ = 0′, t ≤ 0.
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(b) Set c̃η̂(0) = T−1
∑T

t
̂̃η2t and calculate

c̃
η̂ξ̂
(s) = T−1

T∑
t=s+1

̂̃ηt̂̃ξ′t−s and c̃η̂φ̂(s) = T−1
T∑

t=s+1

̂̃ηt ̂̃φt−s .

Now compute the mean squared error

̂̃σ2

η(n) = c̃η̂(0) +

n∑
s=0

∆
̂̃
dsc̃η̂ξ̂(s)

′ −
n∑

s=1

∆̂̃µsc̃η̂φ̂(s)

where ∆
̂̃
ds, s = 0, . . . , n, and so on, denote the coefficient values obtained

from the Toeplitz regression of ̂̃ηt on −̂̃ξit, i = 1, . . . , j − 1, and −̂̃ξ(v+r)t,

r = 1, . . . , ϱ, and −̂̃ξt−s and ̂̃φt−s, s = 1, . . . , n.

3. Apply model selection rule:

(a) Evaluate the criterion function

ICT (n) = T log ̂̃σ2

η(n) + pT (dj(n))

where the penalty term pT (dj(n)) > 0 is a real valued function, mono-

tonically increasing in dj(n) and non-decreasing in T .

(b) if ICT (n) > ICT (n− 1);

set r(j) = i(k); nr(j) = n− 1; and

update P = Ei(k),jP; N = N \ i(k); j = j − 1.

end

end for i(k) ∋ N .

if n < hT ;

increment n = n+ 1.

else

for i(k) ∈ N , k = 1, . . . , v,

set nr(j) = n; r(j) = i(k); and

update P = Ei(k),jP; N = N \ i(k); j = j − 1.

end for i(k) ∋ N .

end

end when j = 0.

REMARK 6. The eigenvalues and eigenvectors calculated in the first stage of Algorithm–

ECARMAE(ν, ϱ) correspond to the raw canonical correlations and discriminant functions

(using classical nomenclature) between yt and yt−1 (See Box and Tiao, 1977; Poskitt, 2000).

The estimate of the cointegrating rank, ϱT , and the basis for the cointegrating space, BT ,

are known functions of these canonical variables. Unlike the Johansen procedure (Johansen,

1995), the technique employed here for identifying the cointegrating structure does not

require the specification of an underlying parametric model, both ϱT and BT are non-

parametric in nature and can be determined without knowledge of the Kronecker invariants.
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8 Further Theoretical Properties

Theorem 8.1 below is derived from a sequence of lemmas that recognize that since by Theorem

2.2 of Poskitt (2000) ϱT provides a strongly consistent estimate of the cointegrating rank,

ϱT = ϱ0 with probability one for T sufficiently large and we can therefore assume for the

purposes of asymptotic derivations that ϱT = ϱ0. Given ϱT = ϱ0, Lemma 3.1 of Poskitt

(2000) indicates that BT provides a super-strongly consistent estimate of a basis for the

cointegrating space in that there exists a nonsingular matrix RT such that T [BT −RTT
0
c ] =

O(1) as T → ∞. Now, noting that FR−1
T ζt−1 − Fxc(t−1) = FR−1

T (BT − RTT
0
c)yt−1, it

follows that the regressors ζt−1 and xc(t−1) are asymptotically equivalent up to a nonsingular

transformation determined byRT . As is shown in the Appendix, a consequence of this is that

the value ̂̃σ2

η(n) obtained at the second stage of Algorithm–ARMAE(ν, ϱ) is asymptotically

equivalent to the value that would have been obtained had ζt−1 been replaced by xc(t−1).

This equivalence, namely, that for T sufficiently large the mean squared error estimates based

on △yt−j , j = 0, . . . , n, and ζt−1, and △yt−j , j = 0, . . . , n, and xc(t−1), are equal almost

surely, underpins the following result.

Theorem 8.1 Suppose that yt is an ECARMAE(ν, ρ) process satisfying Assumptions 1 and

2 , and that ϱT = ϱ0. Let {r(j)T , nr(j)T }, j = 1, . . . , v, denote the Kronecker invariant pairs

obtained when employing Algorithm ECARMAE(ν, ϱ) with pT (dj(n)) a possibly stochastic

function of n and T . Then:

(i) If (r(i)T , nr(i)T ) = (r(i)0, n0
r(i)), i = q + 1, . . . , v, and pT (dq(n))/T → 0 almost surely

as T → ∞, then nr(q)T ≥ n0
r(q) with arbitrarily large probability, as T → ∞.

(ii) If (r(i)T , nr(i)T ) = (r(i)0, n0
r(i)), i = q + 1, . . . , v, and liminfT→∞pT (dq(n))/L(T ) > 0

almost surely, where L(T ) is a real valued, increasing function of T such that loglogT/L(T ) →
0, then Pr(limT→∞ nr(q)T ≤ n0

r(q)) = 1.

The first part of the following theorem is simply a restatement of the fact that Pr(limT→∞ ϱT =

ϱ0) = 1 (Poskitt, 2000, Theorem 2.2).

Theorem 8.2 Suppose that yt is an ECARMAE(ν, ρ) process satisfying Assumptions 1

and 2 . Let ϱT and {r(j)T , nr(j)T }, j = 1, . . . , v, denote the cointegrating rank and Kro-

necker invariant pairs obtained by implementing the above algorithm. Then for T sufficiently

large ϱT = ϱ0 with probability one, and if pT (dq(n))/T → 0 and log log T/pT (dq(n) → 0 as

T → ∞ then, modulo invariant rotations, r(j)T = r(j)0 a.s. for T sufficiently large, and

Pr(limT→∞ nr(j)T = nr(j)0) = 1, j = 1, . . . , v.

The latter part of Theorem 8.2 can be deduced from Theorem 8.1 in the same way that

Theorem 5.2 follows on from Theorem 5.1.

9 Illustration and Conclusion

In this paper a new methodology for identifying the structure of VARMA models has been

developed. The approach that has been adopted is to construct an estimate of the echelon
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canonical form using a new technique to determine the Kronecker invariants. Algorithms

that are applicable to both asymptotically stationary and cointegrated time series were

presented. The algorithms facilitate a fully automatic approach to model specification, and

the estimates that are so provided have been shown to be strongly consistent.

A novel feature of the inferential procedures developed here is that they work in terms of a

canonical scalar ARMAX representation for each variable in which the exogenous regressors

are chosen from predetermined contemporaneous and lagged values of other variables in the

VARMA system. By working in terms of the scalar ARMAX specification the algorithms ad-

dress two issues. First, using the scalar ARMAX specification reduces the range of VARMA

structures that needs to be investigated by several orders of magnitude, significantly ame-

liorating the curse of dimensionality inherent in the analysis of VARMA models. Second,

any problems that might be inherent in using a (long) VAR in a macroeconomic modeling

context are avoided, since use of the scalar ARMAX specification allows parameter estimates

to be constructed directly, obviating the need to use autoregressive approximations.

To illustrate the inferential potential of the methods advanced here, Figure 1 graphs

(a) Impulse Response of log Yt

(b) Impulse Response of nt

Figure 1: RBC Model: Impulse Responses to a Technology Shock

the theoretical impulse responses derived from a real business cycle (RBC) model together

with those calculated from four statistical models fitted to data generated from the model.

The experiment uses the RBC model due to Hansen (1985), and following Ravenna (2007)
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and Erceg, Guerrieri and Gust (2005) takes the capital stock as unobservable and treats

total output, Yt, and hours worked, nt, as the observable variables available for empirical

modelling. The model was calibrated as in Ravenna (2007) and Erceg et al. (2005) and it can

be shown (Yao and Kam, 2011) that the parameter values imply that the data generating

mechanism for yt = (nt,∆log Yt)
′ has the representation(

1− 0.941B −1.045B

−0.770 + 0.724B 1

)
yt =

(
1− 0.250B −0.917B

−0.770 1

)
εt , (9.1)

a bivariate ARMAE({1, 1}) process where the elements of the innovation εt equal linear

combinations of two uncorrelated exogenous structural shocks, a technology shock and a

labor supply shock. The four statistical models comprise an estimated VARMA model and

three VAR approximations constructed from a realization of 20000 observations on yt.

For each model the transformation from the innovations to the structural shocks is ob-

tained using the Blanchard and Quah (1989) identification strategy. Neither structural shock

has a permanent impact on either component of yt, since yt is stationary, and the long run

identifying restrictions imply that a labor supply shock has no long run effect on the level of

Yt, while the opposite is true for a technology shock.

Preliminary analysis of the raw simulated data nt and Yt, t = 1, . . . , T = 20000, in-

dicated that yt = (nt,∆log Yt)
′ could be treated as a stationary process. An augmented

Dickey–Fuller test unequivocally rejected the hypothesis that nt was a unit root process at

all conventional significance levels, whereas the same was not true of log Yt, and ϱT unam-

biguously indicated that nt and log Yt have a cointegrating rank of one. The VARMA model

for yt was correctly identified as an ARMAE({1, 1}), and eliminating redundant parameters

using the rules outlined in Athanasopoulos and Vahid (2008) gave the following estimated

structure (
1− 0.941B −1.003B

−0.785 + 0.740B 1− 0.005B

)
yt =

(
1− 0.257B −0.870B

−0.785 1

)
ε̂t (9.2)

when the resulting model was fitted using FIML. The VAR approximations were estimated

using (Gaussian) QML with different autoregressive orders, h, chosen by reference to AIC,

BIC and HQ, giving h = 24, 3 and 12 respectively.

Given the proximity of the parameter values in (9.2) to those in (9.1) it is perhaps not

surprising to find that the VARMA modelling procedure has produced reasonable estimates

of the impulse response functions, and it is of interest to note that the impulse responses

generated from an unconstrained ARMAE({1, 1}) model are almost indistinguishable from

those generated from (9.2). The worst fitting impulse response profile from the VARMA

model is that estimating the impact of a technology shock on total output, but even here

the long run effect is under estimated by less than 5%.

It is clear from both panels in Figure 1, however, that the autoregressive approximations

do not mimic the true dynamics of the theoretical model very well, even with the longest lag

length. Interestingly enough, increasing the value of h does little to improve the general shape

of the VAR impulse response estimates, it merely serves to increase the minor oscillations
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around the overall impulse response profiles given by the VAR(24) approximation. This

feature is clearly seen in Figure 2. Figure 2 graphs the theoretical impulse responses together

with those calculated from the estimated VARMA model, the VAR(24) and three additional

VAR(h) approximations with h = 30, 50 and 100, corresponding to h = (log T )a with a =

1.48, 1.7 and 2.0 respectively.

(a) Impulse Response of log Yt

(b) Impulse Response of nt

Figure 2: RBC Model: Impulse Responses to a Technology Shock

These large sample outcomes amply demonstrate the concepts, ideas and results discussed

above and lend strong support to the conclusions of Kapetanios et al. (2007). When dealing

with real macroeconomic data, however, it is usually the case that only limited sample sizes

are available, typically around 200 with quarterly observations, and hence a comparison

between VARMA models and VAR approximations based on data from small samples may

be of more practical importance.

At this smaller sample size the structure inherent in the RBC model is not reliably es-

timated. All three criteria, AIC, BIC and HQ, select an autoregression with h = 1. This

is related to the fact that the zeroes of M(z) in (9.1) are 1.0459 and ∞, and those of A(z)

are 1.0584 and 1.2488. The proximity of the two smallest roots suggests that a near can-

celation occurs, a phenomenon previously encountered by Cogley and Nason (1993). As a

consequence, the coefficients in the VARMA model cannot be estimated with any degree of

precision unless T is very large, and this results in the impulse responses calculated from the
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estimated VARMA model tracking their VAR(1) approximation counterparts fairly closely

when T = 200, the performance of both being equally disappointing. Changing the pa-

rameter settings in the Hansen (1985) RBC model does little to alter these small sample

properties and highlights a challenging problem: Even though a theoretical model might

lead to a VARMA data generating mechanism, with insufficient observations it may be hard

to distinguish inferences based on VARMA models from those produced using VAR approx-

imations. Such outcomes are in accord with the findings of Kascha and Mertens (2009), who

suggest that the disadvantages of using VAR approximations rather than VARMA models

may therefore be over stated.

Recent work of Yao and Kam (2011) indicates, however, that behaviour of the type seen

above when T = 20000 can also be observed at sample sizes as small as T = 200. They

consider a two sector business–cycle monetary–search model that is an adaptation of Hansen

(1985) along the lines of Lagos and Wright (2005). Their model nests the one used here

and introduces more complicated interactions that result in the observed variables having a

more complex stochastic structure. Yao and Kam (2011) confirm that with large samples the

true ARMAE(ν) form is identified almost surely and that the VARMA modelling procedure

can produce quite precise impulse response function estimates. Their results also show that

VARs can yield poor approximations in spite of T being large (c.f. Chari et al., 2007).

Furthermore, Yao and Kam (2011) find that even at small sample sizes VARMA models

yield better estimates of the dynamics of their true business–cycle monetary–search model

than VAR approximations.

In summary, existing experimental evidence on the relative merits of using VARMA mod-

els vis–â–vis VAR approximations for macroeconomic modelling indicates that performance

is critically influenced by the sample size examined and, perhaps less obviously but possibly

more importantly, by the choice of economic model underlying the simulated data generating

mechanism. When taken together the overall conclusions are at best inconclusive. Although

asymptotic properties and results of the type presented in this paper can give an indication

of the likely behaviour of the procedures, their scope may be limited to very large samples

and additional insight into performance in small finite sample situations is needed. It is

hoped to present some guidance on the latter via more extensive simulation experiments and

empirical applications elsewhere.

Acknowledgement: I am grateful to George Athanasopoulos and Farshid Vahid for help-

ful and constructive comments on a previous version of this paper. I am also indebted to

Wenying Yao for conducting the numerical work reported above and for permission to refer-

ence the draft working paper with Tim Kam. Financial support by the Australian Research

Council under grant DP-0984399 is gratefully acknowledged.

References

Akaike, H. (1974a). A new look at the statistical model identification. IEEE-Transactions

on Automatic Control AC-19 716–723.



VARMA Models in Macroeconomics 24

Akaike, H. (1974b). Stochastic theory of minimal realization. IEEE Transactions on

Automatic Control AC-19 667–674.

Athanasopoulos, G., Poskitt, D. S. and Vahid, F. (2010). Two canonical VARMA
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Appendix: Proofs

Proof of Lemma 3.1: That ut is a moving-average process of order p is obvious from

expression (1.2). Now let ej = (0, . . . , 0, 1, 0, . . . , 0)′ denote the j’th v element Euclidean

basis vector. From standard results on linear filtering we know that the spectral density of

νt = e′jut is

Sν(ω) =
1

2π
e′jM(ω)ΣM(ω)∗ej ,

with corresponding autocovariance generating function

ρ(z) =

n∑
s=−n

ρsz
s

= e′jM(z)ΣM(z−1)′ej ,

where n = nj . The remainder of the proof is standard. The polynomial znρ(z) has 2n roots

and since the coefficients ρs = ρ−s, s = 1, . . . , n, of ρ(z) are real, the roots are real or occur

in complex conjugate pairs. Now, ρ(ω) = 2πSν(ω) > 0, −π < ω ≤ π, so ρ(z) has no zeroes

on the unit circle and we may number and group the roots into two sets {ζ1, . . . , ζn} and

{ζ̄−1
1 , . . . , ζ̄−1

n } such that |ζs| < 1, s = 1, . . . , n. Hence we can construct the operator

m(z) = m0

n∏
s=1

(1− ζsz)

where m0 = {
∏
(−ζs)ρn}

1
2 such that

ρ(z) = ρnz
−n

n∏
s=1

(1− ζsz)(1− ζ̄−1
s z)

= m(z)m(z−1) .

Thus we can select n roots of ρ(z) to construct µ(z) = 1 + µ1z + . . . + µnz
n such that

ρ(z) = σ2
ηµ(z)µ(z

−1), where µ(z) = m(z)/m0 and σ2
η = m2

0, and the roots are chosen in

such a way that µ(z) ̸= 0, |z| ≤ 1. The existence of the white noise process ηt providing

a moving-average representation of νt now follows from the spectral factorization theorem,

Rozanov (1967, Theorem 9.1, p. 41) (c.f. Lütkepohl, 2005, §11.6). 2

Proof of Proposition 3.1: To begin, recall that for yt ordered according to the Kronecker

invariants the echelon form in (2.1) is such that A0 = M0 is lower triangular and the system

representation is (contemporaneously) recursive. Let a(z) = e′jA(z) denote the nonzero

coefficients in the jth row of A(z). Then, for the jth equation of (1.2) we have

a(B)yt = yjt +

j−1∑
i=1

aji,0yit +
v∑

i=1

nj∑
s=1

aji,syit−s = ujt (A.1)

where, by Lemma 3.1,

ujt = νt = ηt + µ1ηt−1 + . . .+ µnηt−n . (A.2)
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Setting zt = yjt and reorganizing (A.1), adopting the notational conventions αs = ajj,s,

s = 1, . . . , n = nj , βi = aji,0, i = 1, . . . , j − 1, and βi,s = aji,s, i = 1, . . . , v, i ̸= j,

s = 1, . . . , n, now gives us the scalar ARMAX specification in (3.2).

To show that a(z) and µ(z), and hence the polynomials α(z), β(z) and µ(z), are coprime,

assume otherwise. Then we could cancel the common factors in the representation a(B)yt =

µ(B)ηt obtained by combining (A.1) and (A.2) to give ā(B)yt = µ̄(B)ηt where δ[ā, µ̄] < nj .

Implementing the same technique as employed in Poskitt (2005, pp. 179-180), we could now

use rows 1, . . . , j − 1 and j + 1, . . . , v of (1.2), together with ā(B)yt = µ̄(B)ηt, to construct

a unimodular matrix Ū(z) ̸= I and an operator pair [Ā(z) : M̄(z)] ∈ ARMAE(ν̄), with

multi-index ν̄ = {n̄1, . . . , n̄v}, n̄j ≤ nj , such that [A(z) : M(z)] = Ū(z)[Ā(z) : M̄(z)],

contradicting Assumption 2.

Finally, it is obvious that the lagged values yit−s, i = 1, . . . , v, i ̸= j, s = 1, . . . , n, are

predetermined. That the same is true of the contemporaneous regressors yit, i = 1, . . . , j−1,

follows from the fact that the structure is recursive and we can orthogonalize the innovation

process whilst maintaining both the recursive structure and the moving average row degrees.

To verify this, let Σ = CDC′ denote the Choleski decomposition of Σ where C is lower

triangular with unit leading diagonal elements and D = diag(d1
2 . . . , d2v). Then wt = C−1εt

is a martingale difference innovation sequence with covariance matrix D and we can rewrite

the ARMA system in (1.2) as

A0yt +

p∑
s=1

Asyt−s = L0wt +

p∑
s=1

Lswt−s . (A.3)

where L0 = M0C is again lower triangular with unit leading diagonal elements, and because

pre–multiplication by Ms reproduces zero-row structure, each Ls = MsC, s = 1, . . . , n, has

the same null rows as the corresponding Ms. From the jth equation of (A.3) we now have

ujt = wjt +

j−1∑
i=1

lji,0wit +

v∑
i=1

nj∑
s=1

lji,swit−s . (A.4)

Thus, from (A.1) and (A.4) we see that in addition to wit, the variable yit depends at most

on w1t, . . . , wi−1t. Since by construction the elements of wt are mutually uncorrelated, it

follows that for i = 1, . . . , j − 1 we have E[yitwjt | Ft−1] = 0, as required. 2

Proof of Theorem 5.1: The proof of Theorem 5.1 is based on the following lemmas.

Lemma A.1 Suppose that yt is an ARMA process satisfying Assumptions 1 and 2′ and

assume that (r(i), nr(i)) = (r(i)0, n0
r(i)) for i = j+1, . . . , v. Let ã†(z) =

∑n
s=0 ã

†
szs where the

coefficients ã†s, s = 0, . . . , n belong to the solution set of the equation system

n∑
s=0

ã†sΓ̃y(r + s) = 0, r = n+ 1, . . . , 2n . (A.5)

Set α̃†(z) = ã†(z)ej and β̃
†
(z) = ã†(z)(I−eje

′
j). Given α̃†(z) and β̃

†
(z), let µ̃†(z) be formed
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from ∫ π

−π

n∑
s=0

µ̃†
s

ã†(ω)S̃y(ω)ã
†(ω)∗

S̃†
v(ω)2

expıω(s−r) dω = 0, r = 1, . . . , n , (A.6)

where

S̃†
v(ω) =

1

2π

∫ π

−π

n∑
r=−n

ã†(θ)S̃y(θ)ã
†(θ)∗ expı(ω−θ)r dθ . (A.7)

Then, provided that for i = j+1, . . . , v the Kronecker invariant pairs satisfy {r(i)T , nr(i)T } =

{r(i)0, n0
r(i)}, we have:

(i) If n < nr(j)0, ̂̃α(z) = α̃†(z)+O(QT ),
̂̃
β(z) = β̃

†
(z)+O(QT ) and ̂̃µ(z) = µ̃†(z)+O(QT )

uniformly in |z| ≤ 1 where QT = (loglogT/T )1/2;

(ii) If n = nr(j)0, ̂̃α(z) = α̃0(z)+O(QT ),
̂̃
β(z) = β̃

0
(z)+O(QT ) and ̂̃µ(z) = µ̃0(z)+O(QT )

uniformly in |z| ≤ 1;

(iii) If n > nr(j)0, ̂̃α(z) = ϕ̃(z)α̃0(z) + O(QT ),
̂̃
β(z) = ϕ̃(z)β̃

0
(z) + O(QT ) and ̂̃µ(z) =

ϕ̃(z)µ̃0(z)+O(QT ) uniformly in |z| ≤ 1 where ϕ̃(z) = 1+ϕ̃1z+. . .+ϕ̃rz
r, r = n−nr(j)0,

and ϕ̃(z) ̸= 0, |z| ≤ 1.

Proof of Lemma A.1: From Theorem 5.3.2 of Hannan and Deistler (1988) we know that

∥C̃y(r) − Γ̃y(r)∥ = O(QT ), r = 0, . . . , HT ≤ (log T )a, a < ∞. From (4.1) and (A.5) we

recognize that ̂̃a(z) and ã†(z) correspond to the solutions of systems of linear equations in

which the coefficient matrices of the two systems differ by terms of order O(QT ). Moreover,

the coefficient matrix of the system of equations is nonsingular by a direct application of

Theorem 6.2.5 of Hannan and Deistler (1988). We can therefore conclude that ̂̃as − ã†s =

O(QT ), s = 0, . . . , n. See also Theorem 6.2.4 of Hannan and Deistler (1988). Treating the

polynomial operators as elements of the Hardy space H2, the space of functions analytic for

|z| < 1 and square integrable on |z| = 1, now yields the result that

∥̂̃α(z)− α̃†(z)∥2 = ∥(̂̃a(z)− ã†(z))ej∥2 =
n∑

s=0

(̂̃αs − α̃†
s)

2 = O(Q2
T )

and

∥̂̃β(z)− β̃†
(z)∥2 = ∥(̂̃a†(z)− ã†(z))(I− eje

′
j)∥2

=

j−1∑
i=1

(
̂̃
βi − β̃†

i )
2 +

v∑
i=1
i̸=j

n∑
s=1

(
̂̃
βi,s − β̃†

i,s)
2 = O(Q2

T ) .

A parallel argument to that just employed will show that ̂̃µ(z) = µ̃†(z)+O(QT ), |z| ≤ 1,

if it can be verified that the difference in the coefficient matrices of the two equation systems

that define the operators ̂̃µ(z) and µ̃†(z) are, likewise, O(QT ). To establish the latter, observe
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that

C̃v(r) =

n∑
s=0

n∑
u=0

̂̃asC̃y(r + s− u)̂̃a′u
=

n∑
s=0

n∑
u=0

(
ã†s +O(QT )

)(
Γ̃y(r + s− u) +O(QT )

)(
ã†u +O(QT )

)′
=

n∑
s=0

n∑
u=0

ã†sΓ̃y(r + s− u)ã†′u +O(QT )

= γ̃†v(r) +O(QT ) , say, (A.8)

where γ̃†v(r) =
∫ π
−π ã

†(ω)S̃y(ω)ã
†(ω)∗ exp−ıωr dω. From (A.8) it follows directly that

̂̃
Sv(ω) =

1

2π

n∑
s=−n

C̃v(s) exp(ıωs)

=
1

2π

n∑
s=−n

(
γ̃†v(s) +O(QT )

)
exp(ıωs)

= S̃†
v(ω) +O(QT )

uniformly in ω ∈ [−π, π].

Let
̂̃
H(ω) = ̂̃a(ω)/|̂̃Sv(ω)| and set H̃†(ω) = ã†(ω)/|S̃†

v(ω)|. It is established below that̂̃
H(ω) and H̃†(ω) belong to L2, with Fourier coefficients that decline at a geometric rate, and

that
∫ π
−π ∥

̂̃
H(ω)− H̃†(ω)∥2dω = O(Q2

T ). Now set

γ̃i†v(r) =

∫ π

−π
H̃†(ω)S̃y(ω)H̃

†(ω)∗ exp(−ıωr)dω .

Then, by definition,

|C̃iv(r)− γ̃i†v(r)| =
∣∣∣ ∫ π

−π

( ̂̃
H(ω)̃Iy(ω)

̂̃
H(ω)∗ − H̃†(ω)S̃y(ω)H̃

†(ω)∗
)
exp(−ıωr)dω

∣∣∣ , (A.9)

and suppressing the argument ω for convenience we have

̂̃
HĨy

̂̃
H

∗
− H̃†S̃yH̃

†∗ =(
̂̃
H− H̃†)̃Iy(

̂̃
H− H̃†)∗ + (

̂̃
H− H̃†)̃IyH̃

†∗

H̃†Ĩy(
̂̃
H− H̃†)∗ + H̃†(̃Iy − S̃y)H̃

†∗ . (A.10)

Substituting (A.10) into (A.9) we can now bound |C̃iv(r)− γ̃i†v(r)| by the sum of four terms.

The first term is∣∣∣ ∫ π

−π
(
̂̃
H− H̃†)̃Iy(

̂̃
H− H̃†)∗ exp(−ıωr)dω

∣∣∣ ≤ ∫ π

−π
(
̂̃
H− H̃†)̃Iy(

̂̃
H− H̃†)∗dω . (A.11)
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Applying the Cauchy-Schwartz inequality to the right hand side integrand in (A.11), recog-

nizing that Ĩy is Hermitian positive semi-definite, we find that∫ π

−π
(
̂̃
H− H̃†)̃Iy(

̂̃
H− H̃†)∗dω =

1

2πT

∫ π

−π
|( ̂̃H− H̃†)Z̃y(ω)|2dω

≤
∫ π

−π
∥( ̂̃H− H̃†∥2tr{Ĩy}dω

≤ sup
ω∈[−π,π]

tr{Ĩy}
∫ π

−π
∥( ̂̃H− H̃†∥2dω

= O(log T )O(Q2
T ) ,

since lim supT→∞[supω∈[−π,π] tr{Ĩy(ω)}/ log T ] ≤ supω∈[−π,π] 2tr{S̃y(ω)} (Brillinger, 1975,

Theorem 5.3.2.) Similarly, the second term,
∣∣∣ ∫ π

−π(
̂̃
H − H̃†)̃IyH̃

†∗ exp(−ıωr)dω
∣∣∣ , and the

third term,
∣∣∣ ∫ π

−π H̃
†Ĩy(

̂̃
H− H̃†)∗ exp(−ıωr)dω

∣∣∣ , are both bounded by

∫ π

−π
|H̃†Ĩy(

̂̃
H− H̃†)∗| ≤

∫ π

−π

(
H̃†ĨyH̃

†∗
)1/2(

(
̂̃
H− H̃†)̃Iy(

̂̃
H− H̃†)∗

)1/2

dω

≤
∫ π

−π

(
H̃†ĨyH̃

†∗
)
dω

∫ π

−π

(
(
̂̃
H− H̃†)̃Iy(

̂̃
H− H̃†)∗

)
dω

≤ ( sup
ω∈[−π,π]

tr{Ĩy})2
∫ π

−π
∥H̃†∥2dω

∫ π

−π
∥( ̂̃H− H̃†∥2dω

= (O(log T ))2O(Q2
T ) .

The fourth term is
∣∣∣ ∫ π

−π H̃
†(̃Iy − S̃y)H̃

†∗ exp−ı ωr dω
∣∣∣, which equals

∣∣∣ ∞∑
u=−∞

∞∑
s=−∞

h̃†
u[C̃y(r + u− s)− Γ̃y(r + u− s)]h̃†′

s

∣∣∣
≤

∞∑
u=−∞

∞∑
s=−∞

∣∣∣h̃†
u[C̃y(r + u− s)− Γ̃y(r + u− s)]h̃†′

s

∣∣∣
≤

∞∑
u=−∞

∞∑
s=−∞

∥h̃†
u∥ · ∥C̃y(r + u− s)− Γ̃y(r + u− s)∥ · ∥h̃†

s∥ , (A.12)

wherein we set C̃y(τ) = 0, |τ | ≥ T , and h̃†
u =

∫ π
−π H̃

†(ω) exp−ı ωu dω, u = 0,±1, . . .. Since

there exists a constant κ > 0 and a parameter λ, 0 < λ < 1, such that ∥h̃†
u∥ < κλ|u|, the

right hand side of equation (A.12) is less than or equal to

κ2
∑

|u|<c log T

∑
|s|<c log T

∥C̃y(r + u− s)− Γ̃y(r + u− s)∥λ|u|+|s|

+ κ2(∥C̃y(0)∥+ ∥Γ̃y(0)∥)
∑

|u|≥c log T

∑
|s|≥c log T

λ|u|+|s| . (A.13)

By Theorem 5.3.2 of Hannan and Deistler (1988), the order of magnitude of the first term

in this expression is O(QT )4κ
2(1−λc log T )2/(1−λ)2 = O(QT ). The second term is bounded

by a constant times 4κ2λ2c log T /(1− λ)2, which is of order O(T−1) for any c ≥ −1/(2 log λ).
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Hence we can conclude that the coefficient matrices of the two equation systems that

define the operators ̂̃µ(z) and µ̃†(z) differ by terms that are of order O(QT ) or smaller, as

was required to be shown.

(i) The first statement of the lemma now follows without further ado.

(ii) When n = n0
r(j) it is readily verified that ã†(z) = ã0(z) provides the solution to (A.5).

By definition ã0(z) = e′jÃ
0(z), from which it follows that ã0(ω)K̃0(ω) = e′jM̃

0(ω) where

ã0(ω) = ã0(z)
∣∣
z=eıω

and, given that S̃y(ω) = (2π)−1K̃0(ω)Σ0K̃0(ω)∗,

ã0(ω)S̃y(ω) = (2π)−1e′jM̃
0(ω)Σ0K̃0(ω)∗ . (A.14)

From (A.14) we can conclude that
∫ π
−π ã

0(ω)S̃y(ω) exp
−ıωu dω = 0 for u > n and therefore

∫ π

−π
ã0(ω)S̃y(ω) exp

−ıωr dω =

n∑
s=0

ã0sΓ̃y(r + s) = 0 , r = n+ 1, . . . , 2n .

Similarly, the quadratic form

ã0(ω)S̃y(ω)ã
0(ω)∗ = (2π)−1e′jM̃

0(ω)Σ0M̃0(ω)∗ej

= (2π)−1(σ0
η)

2|µ̃0(ω)|2 .

Substituting ã†(ω) = ã0(ω) into (A.7) we find that the equation system (A.6) corresponds to

the Yule-Walker equations constructed from the (inverse) power spectrum 2π/(σ0
η)

2|µ̃0(ω)|2,
and hence that µ̃†(z) = µ̃0(z).

We are therefore lead to the conclusion that ̂̃α(z) = αo(z)+O(QT ),
̂̃
β(z) = β̃

o
(z)+O(QT )

and ̂̃µ(z) = µ̃o(z) +O(QT ), verifying the strong consistency claimed in Remark 1.

(iii) Now consider the case n > n0
r(j). Using the relationship in (A.14) it is straightforward

to show that the solutions to Eq. (A.5) are characterized by operators of the form ã†(z) =

ϕ(z)ã0(z) where ϕ(z) = 1+ϕ1z+. . .+ϕrz
r, r = n−n0

r(j). Moreover, since
∑n

s=0 ã
†
jΓ̃y(s−j) =

0, s ≥ n,

|
n∑

j=0

ã†jC̃y(s− j)| ≤
n∑

j=0

∥ã†j∥∥C̃y(s− j)− Γ̃y(s− j)∥ = O(QT )

n∑
j=0

∥ã†j∥.

Thus for T sufficiently large we can determine a measurable solution ̂̃a(z) to (4.1) such that,

with arbitrarily large probability, ̂̃a(z) = ϕ̂(z)ã0(z) +O(QT ) where ϕ̂(z) ̸= 0, |z| ≤ 1.

Substituting ã†(ω) = ϕ̂(ω)ã0(ω) into (A.7) we find that

S̃†
v(ω) =

1

2π

n∑
r=−n

∫ π

−π
|ϕ̂(θ)|2ã0(θ)S̃y(θ)ã

0(θ)∗ expı(ω−θ)r dθ

=
(σ0

η)
2

2π
|ϕ̂(ω)|2|µ̃0(ω)|2
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and hence, via (A.6), that ̂̃µ(z) = µ̃†(z) +O(QT ) where the coefficients of µ̃†(z) are derived

from the Yule-Walker equations

n∑
j=0

µ̃†
j γ̃i

†
v(r + j) = 0 , r = 1, . . . , n,

with

γ̃i†v(s) =

∫ π

−π

2π exp−iωs

(σ0
η)

2|ϕ̂(ω)µ̃0(ω)|2
dω .

This gives the desired conclusion.

To complete the proof it remains to be shown that
̂̃
H, H̃† ∈ L2, with Fourier coefficients

that decline at a geometric rate, and that ∥ ̂̃H− H̃†∥2 = O(Q2
T ).

Consider H̃†. Given that ã†(z) is polynomial it is sufficient to show that S̃†
v(ω)−2 is

absolutely integrable to verify that H̃† ∈ L2. By Weierstrass’s approximation theorem, for

any ϵ > 0, no matter how small, there exists a polynomial p(z) =
∑

j≥0 pjz
j , with p(z) ̸= 0,

|z| ≤ 1, such that |S̃†
v(ω)2 − |p(ω)|2| ≤ ϵ uniformly in ω. Clearly, p−1 ∈ L2 and∫ π

−π

1

S̃†
v(ω)2 + ϵ

dω =

∫ π

−π

1

|p(ω)|2
+

1

|p(ω)|2

{
|p(ω)|2

S̃†
v(ω)2 + ϵ

− 1

}
dω

≤
∫ π

−π

1

|p(ω)|2

∣∣∣∣∣1 + {|p(ω)|2 − S̃†
v(ω)2 − ϵ}

S̃†
v(ω)2 + ϵ

∣∣∣∣∣ dω
≤ 3

∫ π

−π

1

|p(ω)|2
dω < ∞ .

Letting ϵ → 0 we can therefore conclude from Lebesgue’s monotone convergence theorem

that S̃†
v(ω)−2 is absolutely integrable and hence that H̃† ∈ L2. Moreover, if H̃p(ω) =

ã†(ω)/|p(ω)|, then H̃p ∈ L2 and H̃p can be expanded in a mean–square convergent Fourier

series, (2π)−1
∑

h̃p
s exp(ıωs) say, where ∥h̃p

s∥ → 0 at a geometric rate as |s| → ∞. Now,

∥H̃† − H̃p∥2 =

∫ π

−π

∥ã†∥2

S̃†2
v

∣∣∣|p| − |S̃†
v|
∣∣∣2

|p|2
dω

≤ ∥H̃†∥2 sup
[−π,π]

ϵ2

|p|4
, (A.15)

and ∥h̃†
s∥ ≤ ∥h̃p

s∥+∥h̃†
s− h̃p

s∥, implying that there exists a constant κ > 0 and a parameter λ,

0 < λ < 1, such that ∥h̃†
s∥ < κλ|s|, since by Bessel’s inequality and (A.15) sups ∥h̃

†
s− h̃p

s∥2 ≤
∥H̃†− H̃p∥2 → 0 as ϵ → 0. A parallel proof, replacing ã† by ̂̃a and S̃†

v by
̂̃
Sv, also shows that̂̃

H ∈ L2, with Fourier coefficients that decline at a geometric rate.

Finally, ∥ ̂̃H− H̃†∥2 = O(Q2
T ) follows from the triangular inequality and the expansion

̂̃
H− H̃† = (̂̃a− ã†)

1

|̂̃Sv|
+ ã†

 |S̃†
v| − |̂̃Sv|

|̂̃SvS̃
†
v|


because ∥̂̃a(ω)− ã†(ω)∥ = O(QT ) and

̂̃
Sv(ω) = S̃†

v(ω) +O(QT ) uniformly in ω ∈ [−π, π]. 2

Lemma A.2 Suppose that yt is an ARMA process satisfying Assumptions 1 and 2′, and
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assume that for j = q+1, . . . , v the Kronecker invariant pairs {r(j)T , nr(j)T } = {r(j)0, n0
r(j)}.

Then for all T sufficiently large

(i) ̂̃σ2

η(n) >
̂̃σ2

η(n+ 1) with probability one if n < n0
r(q), and

(ii) if n ≥ n0
r(q),

̂̃σ2

η(n)− ̂̃σ2

η(n+ 1) = O(Q2
T ) almost surely.

Proof of Lemma A.2: As observed in Remark 2, Step 2 corresponds to a Gauss-Newton

iteration designed to minimize

1

T

T∑
t

̂̃η2t = ∫ π

−π

̂̃a(ω)̃Iy(ω)̂̃a(ω)∗
|̂̃µ(ω)|2 dω +O((log T/T 1/2)) . (A.16)

Set

FT (n) = min
{ã(z),µ̃(z)}

∫ π

−π

ã(ω)̃Iy(ω)ã(ω)
∗

|µ̃(ω)|2
dω

where ã(z) and µ(z) are of degree n. Clearly, FT (n + 1) ≤ FT (n). Now suppose that

FT (n+ 1) = FT (n). This implies that the function

F(a, b) =

∫ π

−π

|1− a expiω |2

|1− b expiω |2
|ã(ω)Z̃y(ω)|2

2πT |µ̃(ω)|2
dω

is minimised at a = b, |b| < 1. Following the method of argument used by Pötscher (1983,

pp. 877–878) in the proof of his Theorem 5.2 we find that this leads to the conclusion that

ã(z)Z̃y(z)/µ̃(z) ≡ 1 and the ’transfer function’ Z̃y(z) is rational of degree n. But the order,

or McMillan degree, of Z̃y(z) =
∑T

t=1 ỹtz
t is T with probability one. Hence we can infer that

FT (n+ 1) < FT (n), reductio ad absurdum. Now set 0 < δn < (FT (n)− FT (n+ 1))/4. From

(A.16), which follows from Theorems 4.5.2 and 5.3.2 of Brillinger (1975), it follows that when

T is sufficiently large both the events ̂̃σ2

η(n) > FT (n)−δn and ̂̃σ2

η(n+1) < FT (n+1)+δn will

occur with probability arbitrarily close to one. Thus ̂̃σ2

η(n)− ̂̃σ2

η(n+ 1) > (FT (n)− FT (n+

1))− 2δn > 1
2(FT (n)− FT (n+ 1)) > 0, confirming the result in (i) for n < n0

r(q).

We will now establish that ̂̃σ2

η(n) = T−1
∑

η̃2t + O(Q2
T ) whenever n ≥ n0

r(q), from which

the stated equality in (ii) follows directly. By definition,

̂̃σ2

η(n) =
1

T

T∑
t

̂̃η2t + n∑
j=0

∆̂̃aj 1
T

T∑
t=1

̂̃
ξt−j

̂̃ηt − n∑
j=1

∆̂̃µj

1

T

T∑
t=1

̂̃φt−j
̂̃ηt

=
1

T

T∑
t

̂̃η2t + T−1
T∑
t=1

(∆̂̃a(B)
̂̃
ξt −∆̂̃µ(B)̂̃φt)̂̃ηt , (A.17)

the residual mean squared error from regressing ̂̃ηt on the derivative processes −̂̃ξt−j , j =

0, . . . , n, and ̂̃φt−j , j = 1, . . . , n.

Consider first T−1
∑T

t
̂̃η2t . By Lemma A.1 ̂̃a(z) = ϕ̃(z)ã0(z) + O(QT ) and ̂̃µ(z) =

ϕ̃(z)µ̃0(z) + O(QT ) uniformly in |z| where ϕ̃(z) ≡ 1 when n = n0
r(q) and ϕ̃(z) ̸= 0, |z| ≤ 1,

when n > n0
r(q). Then

ã0(z)

µ̃0(z)
−
̂̃a(z)̂̃µ(z) =

∑
j≥0

ψ0
jz

j
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where the ψ0
j are O(QT ) and decline at a geometric rate, so that ∥ψ0

j∥ < O(QT )λ
j ,

j = 0, 1, 2, . . ., for some λ, 0 < λ < 1. This implies that |η̃t − ̂̃ηt| ≤ ∑
j≥0 ∥ψ

0
j∥ · ∥ỹt−j∥ ≤

O(QT )
∑

j≥0 λ
j∥ỹt−j∥ and hence that T−1

∑
(η̃t − ̂̃ηt)2 ≤ O(Q2

T )tr{C̃y(0)}/(1 − λ)2. Fur-

thermore,

T−1
T∑
t=1

(η̃t − ̂̃ηt)η̃t = a log T∑
j=0

ψ0
j [T

−1
T∑
t=1

ỹt−j η̃t] +RT (A.18)

where the remainderRT is dominated byO(QT )(tr{C̃y(0)}T−1
∑

η̃2t )
1/2λa log T /(1−λ). From

Proposition 3.1 we know that the variables in ỹt−j , j = 0, 1, . . . , a log T that are present in the

mean cross products T−1
∑T

t=1 ỹt−j η̃t occurring in (A.18) are predetermined relative to η̃t.

From Theorem 5.3.1 of Hannan and Deistler (1988) it follows that these mean cross products

are O(QT ). This then leads to the conclusion that T−1
∑T

t=1(
̂̃ηt − ̂̃ηct)η̃t = O(Q2

T )(1 −
λa log T )/(1− λ) +O(QT )λ

a log T /(1− λ). Taking a > −1/ log λ gives the result that

T−1
∑̂̃η2t = T−1

∑
η̃2t + T−1

∑
(η̃t − ̂̃ηt)2 − 2T−1

T∑
t=1

(η̃t − ̂̃ηt)η̃t
= T−1

∑
η̃2t +O(Q2

T ) . (A.19)

Turning to the regression mean square, a similar argument to that just employed can

be used to establish that when n ≥ n0
r(q) the mean cross products of ̂̃ηt with the derivative

processes
̂̃
ξt−j , j = 0, . . . , n, and φ̃t−j , j = 1, . . . , n, are O(QT ). First,

T−1
T∑
t=1

̂̃
ξt−j

̂̃ηt = T−1
a log T∑
s=0

̂̃
ks{

T∑
t=1

ỹt−j−sη̃t −
T∑
t=1

ỹt−j−s(η̃t − ̂̃ηt)}+RT (A.20)

where
∑

s≥0
̂̃
ksz

s = 1/̂̃µ(z) and |̂̃ks| ≤ κλs, κ > 0, 0 < λ < 1. As above, Theorem 5.3.1

of Hannan and Deistler (1988) implies that T−1
∑T

t=1 ỹt−j−sη̃t = O(QT ), and from what

has already been shown ∥T−1
∑T

t=1 ỹt−j−s(η̃t − ̂̃ηt)∥ ≤ (tr{C̃y(0)}T−1
∑T

t=1(η̃t − ̂̃ηt)2)1/2 =

O(QT ). The norm of the right hand side summations in (A.20) is therefore bounded by

O(QT )2κ(1 − λa log T )/(1 − λ). The remainder RT =
∑

s>a log T
̂̃
ksT

−1
∑T

t=1 ỹt−j−s
̂̃ηt can

be similarly bounded to give ∥RT ∥ ≤ κ(tr{C̃y(0)}T−1
∑T

t=1
̂̃η2t )1/2λa log T /(1 − λ). Taking

a > −1/ log λ implies that ∥RT ∥ = O(T−1) and hence T−1
∑T

t=1
̂̃
ξt−j

̂̃ηt = O(QT ). Second,

T−1
T∑
t=1

̂̃φt−j
̂̃ηt = T−1

a log T∑
s=0

̂̃
ks{

T∑
t=1

ỹt−j−sη̃t −
T∑
t=1

ỹt−j−s(η̃t − ̂̃ηt)}+RT (A.21)

where
∑

s≥0
̂̃
ksz

s = a(z)/̂̃µ(z)2 and ∥̂̃ks∥ ≤ κλs, κ > 0, 0 < λ < 1. An argument that

exactly parallels that used in the development immediately preceeding (A.21) leads to the

conclusion that T−1
∑T

t=1
̂̃φt−j

̂̃ηt = O(QT ).

Given that the parameter adjustments ∆̂̃aj , j = 0, . . . , n, and ∆̂̃µj , j = 1, . . . , n, can be

expressed as weighted sums of T−1
∑̂̃
ξt−j

̂̃ηt, j = 0, . . . , n, and T−1
∑

φ̃t−j
̂̃ηt, j = 1, . . . , n,

with weights that are almost surely O(1), it follows that ∥∆̂̃a(z)∥2 = O(Q2
T ) and ∥∆̂̃µ(z)∥2 =

O(Q2
T ).
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Applying the Cauchy-Schwartz inequality we can therefore conclude that when n ≥ n0
r(q)

the regression mean square

T−1
T∑
t=1

(∆̂̃a(B)
̂̃
ξt −∆̂̃µ(B)̂̃φt)̂̃ηt = O(Q2

T ) . (A.22)

Substituting (A.19) and (A.22) into (A.17) produces the desired result, namely that̂̃σ2

η(n) = T−1
∑

η̃2t +O(Q2
T ) when n ≥ n0

r(q). This completes the proof of Lemma (A.2). 2

Proof of Theorem 5.1: Lemma (A.2) (i) implies that when n < n0
r(q)

lim inf
T→∞

log
[̂̃σ2

η(n)/
̂̃σ2

η(n+ 1)
]
> log(1 + ̂̃ρ(n)(1− δ)) > 0

with probability one for any δ, 0 < δ < 1, where ̂̃ρ(n) = ̂̃σ2

η(n)/
̂̃σ2

η(n + 1) − 1 > 0. The

assumption that pT (dq(n))/T → 0 a.s. as T → ∞ therefore implies that ICT (n+1) < ICT (n)

a.s. for n < n0
r(q) because pT (dq(n))/(T log(1+̂̃ρ(1−δ))) → 0 a.s.. Hence lim infT→∞ nr(q)T ≥

n0
r(q). When n ≥ n0

r(q), Lemma (A.2) (ii) implies

log
[̂̃σ2

η(n)/
̂̃σ2

η(n+ 1)
]
= log(1 +O(Q2

T )) = O(Q2
T ) .

If lim infT→∞ pT (dq(n))/L(T ) > 0, then since dq(n) < dq(n+ 1)

ICT (n)− ICT (n+ 1)

L(T )
=

TO(Q2
T )

L(T )
+

pT (dq(n))− pT (dq(n+ 1))

L(T )
< 0 ,

implying that ICT (n + 1) > ICT (n) a.s. for n ≥ n0
r(q) and lim supT→∞ nr(q)T ≤ n0

r(q).

Theorem (5.1) follows on directly. 2

Proof of Proposition 6.1: Since Proposition 3.1 depends on Assumption 2 and not the

more restrictive Assumption 2′ it holds in its entirety for the ARMAE(ν) representation

of the levels yt when yt is an ECARMAE(ν, ρ) cointegrated process. In order to couch

Proposition 3.1 in terms of the EC representation in (6.1) we apply the Beveridge-Nelson

decomposition before proceeding as in the development of (3.2) to give

b(B)△yt + π
′yt−1 = ηt +

n∑
s=1

µsηt−s , (A.23)

where b(z) = e′jB(z) and π′ = e′jCE. Now set △zt = e′j△yt. Then given Tc we can

manipulate (A.23) to produce expression (6.2) where α(z) = b(z)ej , β(z) = b(z)(I− eje
′
j)

and c′ = π′T′
c(TcT

′
c)

−1 = e′jF. Recall that in Proposition 3.1 the variables are assumed

to have been ordered according to the Kronecker invariants, and note that xct = Tcyt is

invariant to the ordering of the variables in yt. 2

Proof of Theorem 8.1: In what follows we will use the appendage of the subscript c

to denote quantities calculated by applying Stage 2 of Algorithm–ARMAE(ν, ϱ) to z̃t =

[△ỹ′
t,x

′
c(t−1)]

′ rather than w̃t = [△ỹ′
t, ζ

′
(t−1)]

′. Set D = diag(I,RT ). Then w̃t − Dz̃t =
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(0, (BT −RTT
0
c)yt−1) and

T−1
T∑
t=1

∥w̃t −Dz̃t∥2 = T−1tr[(BT −RTT
0
c)

T∑
t=1

yt−1y
′
t−1(BT −RTT

0
c)

′]

= O(Q2
T ) (A.24)

where the order of magnitude in (A.24) follows by Lemma 3.1 and Lemma A1 (i) of Poskitt

(2000). Furthermore, C̃w(r)−DC̃z(r)D
′ equals

1

T

[
0

∑T
t=r+1△ỹty

′
t−r−1(BT −RTT

0
c)

′∑T
t=r+1(BT −RTT

0
c)yt−1△ỹ′

t−r−1

∑T
t=r+1(BTyt−1y

′
t−r−1B

′
T −RTT

0
cyt−1y

′
t−r−1T

0′
c R

′
T )

]

and using the Cauchy–Schwartz inequality in conjunction with (A.24) to bound the nonzero

entries, having first rewritten the (2, 2) block as

T−1
T∑

t=r+1

(BT −RTT
0
c)yt−1y

′
t−r−1(BT −RTT

0
c)

′+T−1
T∑

t=r+1

(BT −RTT
0
c)yt−1y

′
t−r−1T

0′
c R

′
T

+ T−1
T∑

t=r+1

RTT
0
cyt−1y

′
t−r−1(BT −RTT

0
c)

′ ,

we find that

C̃w(r)−DC̃z(r)D
′ =

[
0 O(QT )

O(QT ) O(QT )

]
(A.25)

uniformly in r. Using equation (A.25) we can now establish the following lemma.

Lemma A.3 Suppose that yt is an ECARMAE(ν, ρ) process satisfying Assumptions 1 and

2 and that ϱT = ϱ0. Then ∥̂̃d(z) − ̂̃dc(z)D
−1∥2 = O(Q2

T ) and ∥̂̃µ(z) − ̂̃µc(z)∥2 = O(Q2
T ),

|z| ≤ 1, where
̂̃
d(z) and ̂̃µ(z), and ̂̃dc(z) and ̂̃µc(z), denote the operators obtained from the

coefficient values calculated by applying the first step of Stage 2 of Algorithm–ARMAE(ν, ϱ)

to w̃t and z̃t respectively.

Proof of Lemma A.3: Replacing Theorem 5.3.2 of Hannan and Deistler (1988), as used in

the proof of Lemma A.1, by (A.25), it follows from (7.1) that the coefficients of
̂̃
d(z) and̂̃

dc(z)D
−1 are derived from the solutions of nonsingular linear equation systems in which

the terms differ by order O(QT ). We can therefore conclude that
̂̃
ds −

̂̃
dcsD

−1 = O(QT ),

s = 0, . . . , n, and hence that ∥̂̃d(z)− ̂̃dc(z)D
−1∥2 = O(Q2

T ), as required.

It now follows that

C̃cv(r) =
n∑

s=0

n∑
u=0

̂̃
dcsC̃z(r + s− u)

̂̃
d
′
cu

=
n∑

s=0

n∑
u=0

(̂̃
ds +O(QT )

)(
DC̃z(r + s− u)D′

)(̂̃
du +O(QT )

)′

=
n∑

s=0

n∑
u=0

̂̃
dsC̃w(r + s− u)

̂̃
d
′
u +O(QT )

= C̃v(r) +O(QT ) , (A.26)
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and hence, by the same argument that follows (A.8),
̂̃
Scv(ω) =

̂̃
Sv(ω) +O(QT ) uniformly in

ω.

Let
̂̃
Hc(ω) =

̂̃
dc(ω)/|

̂̃
Scv(ω)|. By definition C̃icv(r) =

∫ π
−π
̂̃
Hc(ω)̃Iz(ω)

̂̃
Hc(ω)

∗ exp(−ıωr)dω,

and

|C̃icv(r)−C̃iv(r)| =
∣∣∣ ∫ π

−π

( ̂̃
Hc(ω)̃Iz(ω)

̂̃
Hc(ω)

∗ − ̂̃
H(ω)̃Iw(ω)

̂̃
H(ω)∗

)
exp(−ıωr)dω

∣∣∣ . (A.27)

where
̂̃
H(ω) =

̂̃
d(ω)/|̂̃Sv(ω)|. Suppressing the argument ω for convenience, we can substitute

̂̃
HcĨz

̂̃
H

∗
c −

̂̃
HĨw

̂̃
H

∗
=
̂̃
HcD

−1DĨzD
′D′−1 ̂̃H∗

c −
̂̃
HĨw

̂̃
H

∗

=(
̂̃
HcD

−1 − ̂̃
H)DĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗ +

̂̃
H(DĨzD

′ − Ĩw)
̂̃
H

∗

+
̂̃
HDĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗ + (

̂̃
HcD

−1 − ̂̃
H)DĨzD

′ ̂̃H∗
(A.28)

into (A.27) and bound |C̃icv(r)− C̃iv(r)| by the sum of

I1 =
∣∣∣ ∫ π

−π
(
̂̃
HcD

−1 − ̂̃
H)DĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗ exp(−ıωr)dω

∣∣∣ ,

I2 =
∣∣∣ ∫ π

−π
2ℜ{ ̂̃HDĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗} exp(−ıωr)dω

∣∣∣
and

I3 =
∣∣∣ ∫ π

−π

̂̃
H(̃Iw −DĨzD

′)
̂̃
H

∗
exp(−ıωr)dω

∣∣∣ .

As in Lemma A.1,
̂̃
H,
̂̃
HcD

−1 ∈ L2, with Fourier coefficients that decline at a geometric rate,

and ∥ ̂̃HcD
−1 − ̂̃

H∥2 = O(Q2
T ). It follows that the first term

I1 ≤
∫ π

−π
(
̂̃
HcD

−1 − ̂̃
H)DĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗dω

≤
∫ π

−π
∥ ̂̃HcD

−1 − ̂̃
H∥2tr{DĨzD

′}dω

≤ sup
ω∈[−π,π]

tr{DIzD
′}∥ ̂̃HcD

−1 − ̂̃
H∥2

= O(log T )O(Q2
T ) ,

and the second

I2 ≤ 2

∫ π

−π
| ̂̃HDĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗|dω

≤ 2

∫ π

−π

( ̂̃
HDĨzD

′ ̂̃H∗)1/2(
(
̂̃
HcD

−1 − ̂̃
H)DĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗

)1/2

dω

≤ 2

∫ π

−π

( ̂̃
HDĨzD

′ ̂̃H∗)
dω

∫ π

−π

(
(
̂̃
HcD

−1 − ̂̃
H)DĨzD

′(
̂̃
HcD

−1 − ̂̃
H)∗

)
dω

≤ 2( sup
ω∈[−π,π]

tr{DĨzD
′)2∥ ̂̃H∥2∥ ̂̃HcD

−1 − ̂̃
H∥2

= (O(log T ))2O(Q2
T ) .
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The third term

I3 ≤
∞∑

u=−∞

∞∑
s=−∞

∣∣∣̂̃hu[C̃w(r + u− s)−DC̃z(r + u− s)D′]
̂̃
h
′
s

∣∣∣ (A.29)

wherein C̃w(τ) = C̃z(τ) = 0, |τ | ≥ T . Since ∥̂̃hu∥ < κλ|u| the right hand side of (A.29) can

be bounded by

κ2
∑

|u|<a log T

∑
|s|<a log T

∥C̃w(r + u− s)−DC̃z(r + u− s)D′∥λ|u|+|s|

+ κ2(∥C̃w(0)∥+ ∥DC̃z(0)D∥)
∑

|u|≥a log T

∑
|s|≥a log T

λ|u|+|s| . (A.30)

The first term in (A.30) is O(QT )4κ
2(1−λa log T )2/(1−λ)2 = O(QT ), by (A.25). The second

term is dominated by a constant times 4κ2λ2a log T /(1 − λ)2, and taking a ≥ −1/(2 log λ)

makes this term of order O(T−1).

The difference in the coefficient matrices of the two systems of Yule–Walker equations

that define the operators ̂̃µ(z) and ̂̃µc(z) have thus been shown to be O(QT ), and hencễµ(z) = ̂̃µc(z) +O(QT ), |z| ≤ 1, giving the desired result. 2

Lemma A.4 Suppose that yt is an ECARMAE(ν, ρ) process satisfying Assumptions 1 and

2 , and assume that ϱT = ϱ0 and that for j = q + 1, . . . , v the Kronecker invariant pairs

{r(j)T , nr(j)T } = {r(j)0, n0
r(j)}. If ̂̃σ2

η(n) and ̂̃σ2

cη(n) denote the mean squared error values

obtained at the second step of Stage 2 of Algorithm–ARMAE(ν, ϱ) when the algorithm is

applied to w̃t and z̃t respectively, then for all T sufficiently large

(i) ̂̃σ2

η(n) =
̂̃σ2

cη(n) +O(QT ) with probability one if n < n0
r(q), and

(ii) ̂̃σ2

η(n) =
̂̃σ2

cη(n) +O(Q2
T ) almost surely if n ≥ n0

r(q).

Proof of Lemma A.4: Let ̂̃ηct be defined as was ̂̃ηt except that
̂̃ηct = ̂̃dc(B)z̃t + (1− ̂̃µc(B))̂̃ηct .

Then the difference in the innovations estimates can be expressed as

̂̃ηt − ̂̃ηct = ̂̃
d(B)̂̃µ(B)

(w̃t −Dz̃t) +

̂̃d(B)̂̃µ(B)
−
̂̃
dc(B)D−1̂̃µc(B)

Dz̃t .

Furthermore, Lemma A.3 implies that

̂̃
d(z)̂̃µ(z) −

̂̃
dc(z)D

−1̂̃µc(z)
=
∑
j≥1

̂̃
ψcjz

j

where the
̂̃
ψcj are such that ∥ ̂̃ψcj∥ < O(QT )λ

j , j = 1, 2, . . ., for some λ, 0 < λ < 1.

Combining this result with (A.24) it therefore follows that T−1
∑

(̂̃ηt − ̂̃ηct)2 = O(Q2
T ).
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Similarly, the two derivative processes are such that

̂̃
ξt −D

̂̃
ξct =

1̂̃µ(B)
(w̃t −Dz̃t) +

(
1̂̃µ(B)

− 1̂̃µc(B)

)
Dz̃t

and ̂̃φt − ̂̃φct =
1̂̃µ(B)

(̂̃ηt − ̂̃ηct)+
(

1̂̃µ(B)
− 1̂̃µc(B)

)̂̃ηct ,
from which we can conclude that T−1

∑
∥̂̃ξt − D

̂̃
ξct∥2 = O(Q2

T ) and T−1
∑

(̂̃φt − ̂̃φct)
2 =

O(Q2
T ).

It now follows that the mean squares and cross products of ̂̃ηt, ̂̃ξt−j and ̂̃φt−j , j = 0, . . . , n,

differ from those of ̂̃ηct, D̂̃ξc(t−j) and ̂̃φc(t−j), j = 0, . . . , n, by terms of order O(QT ). For

example,

T∑
t=1

̂̃
ξt−j

̂̃ηt − T∑
t=1

D
̂̃
ξc(t−j)

̂̃ηct = T∑
t=1

(
̂̃
ξt−j −D

̂̃
ξc(t−j))(̂̃ηt − ̂̃ηct) + T∑

t=1

(
̂̃
ξt−j −D

̂̃
ξc(t−j))̂̃ηct

+

T∑
t=1

D
̂̃
ξc(t−j)(̂̃ηt − ̂̃ηct) ,

from which the conclusion that T−1
∑̂̃
ξt−j

̂̃ηt = T−1
∑

D
̂̃
ξc(t−j)

̂̃ηct+O(QT ) can be deduced

via application(s) of the Cauchy–Schwartz inequality.

Given that the difference in the various mean squares and cross products is O(QT ),

the difference in the normal equations that define the operators ∆
̂̃
d(z) and ∆̂̃µ(z), and

∆
̂̃
dc(z)D

−1 and ∆̂̃µc(z), are likewise O(QT ), and hence ∥∆̂̃d(z) −∆
̂̃
dc(z)D

−1∥2 = O(Q2
T )

and ∥∆̂̃µ(z)−∆̂̃µc(z)∥2 = O(Q2
T ), |z| ≤ 1.

Now, by the Chain–Rule,

∂dcjD
−1

∂d′
cj

∂
∑T

t
̂̃η2ct

∂(dcjD−1)′
=

∂
∑T

t
̂̃η2ct

∂d′
cj

= 2

T∑
t=1

̂̃
ξc(t−j)

̂̃ηct ,
and

∂
∑T

t
̂̃η2ct

∂µcj
= 2

T∑
t=1

̂̃φc(t−j)
̂̃ηct .



VARMA Models in Macroeconomics 41

Expanding the difference ̂̃σ2

η(n)− ̂̃σ2

cη(n) in terms of the differences in the coefficient adjust-

ments and the associated derivative processes gives

1

T

T∑
t

(̂̃ηt − ̂̃ηct)2 − 2

T

T∑
t

(̂̃ηt − ̂̃ηct)̂̃ηct + n−1∑
j=0

(∆
̂̃
dj −∆

̂̃
dcjD

−1)
1

T

T∑
t=1

(
̂̃
ξt−j

̂̃ηt −D
̂̃
ξc(t−j)

̂̃ηct)
+

n−1∑
j=0

(∆̂̃µj −∆̂̃µcj)
1

T

T∑
t=1

(̂̃φt−j
̂̃ηt − ̂̃φc(t−j)

̂̃ηct) + n−1∑
j=0

(∆
̂̃
dj −∆

̂̃
dcjD

−1)
1

T

T∑
t=1

D
̂̃
ξc(t−j)

̂̃ηct
+

n−1∑
j=0

(∆̂̃µj −∆̂̃µcj)
1

T

T∑
t=1

̂̃φc(t−j)
̂̃ηct + n−1∑

j=0

∆
̂̃
dcjD

−1 1

T

T∑
t=1

(
̂̃
ξt−j

̂̃ηt −D
̂̃
ξc(t−j)

̂̃ηct)
+

n−1∑
j=0

∆̂̃µcj

1

T

T∑
t=1

(̂̃φt−j
̂̃ηt − ̂̃φc(t−j)

̂̃ηct) , (A.31)

Recognizing that the previous derivations and almost sure bounds are applicable for

all values of n ≥ n0
r(q+1), we can now deduce, after application of the Cauchy–Schwartz

inequality, that all the terms in (A.31) are of order O(QT ), or smaller, and Part (i) of

Lemma A.4 follows on directly.

When n ≥ n0
r(q) we can tighten the bounds on the terms in (A.31) by noting from Lemma

A.5 below that
̂̃
dc(z) = ϕ̃(z)d̃0(z) +O(QT ) and ̂̃µc(z) = ϕ̃(z)µ̃0(z) +O(QT ) uniformly in |z|

where ϕ̃(z) ≡ 1 when n = n0
r(q) and ϕ̃(z) ̸= 0, |z| ≤ 1, when n > n0

r(q). Then

η̃t − ̂̃ηct =
(
d̃0(B)

µ̃0(B)
−
̂̃
dc(B)̂̃µc(B)

)
z̃t =

∑
j≥0

ψ0
cj z̃t−j

where ∥ψ0
cj∥ < O(QT )λ

j , j = 1, 2, . . ., for some λ, 0 < λ < 1. This implies that the mean

squared differences T−1
∑

(η̃t − ̂̃ηct)2 ≤ O(Q2
T )tr{C̃z(0)}(1− λ)−2. Similarly,

T−1
T∑
t=1

(̂̃ηt − ̂̃ηct)η̃t = a log T∑
j=0

̂̃
ψcj [T

−1
T∑
t=1

z̃t−j η̃t] +RT (A.32)

where |RT | ≤ O(QT )(tr{C̃z(0)}T−1
∑T

t=1 η̃
2
t )

1/2λa log T /(1 − λ). From Proposition 6.1 we

know that the variables in z̃t−j , j = 0, 1, . . . , a log T that occur in the mean cross products

T−1
∑T

t=1 z̃t−j η̃t appearing in (A.32) are predetermined relative to η̃t. From Theorem 5.3.1

of Hannan and Deistler (1988) it follows that these mean cross products are O(QT ). Taking

a > −1/ log λ implies that |RT | = O(QTT
−1) and given the bounds on the mean cross

products we can infer that T−1
∑T

t=1(
̂̃ηt− ̂̃ηct)η̃t = O(Q2

T )(1−λa log T )/(1−λ)+O(QTT
−1).

This then leads to the conclusion that 1
T

∑T
t (
̂̃ηt − ̂̃ηct)̂̃ηct = 1

T

∑T
t (
̂̃ηt − ̂̃ηct)(̂̃ηct − η̃t) +

1
T

∑T
t=1(

̂̃ηt − ̂̃ηct)η̃t = O(Q2
T ).

Furthermore, in a manner analogous to (A.20) and (A.21), the mean cross products

T−1
∑T

t=1
̂̃
ξc(t−j)

̂̃ηct and T−1
∑T

t=1 φ̃c(t−j)
̂̃ηct can be expanded as weighted sums of T−1

∑
z̃t−j−kη̃t

and T−1
∑

z̃t−j−k[η̃t − ̂̃ηct], for k = 0, . . . , a log T , with weights that decline geometrically,

plus a remainder that is O(1)λa log T /(1−λ). Using a repetition of the previous logic and em-

ploying arguments equivalent to those surrounding (A.20) and (A.21), it can be shown that
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when n ≥ n0
r(q) the first two components contribute terms that are O(QT ) and the remainder

is O(T−1). Hence T−1
∑T

t=1
̂̃
ξc(t−j)

̂̃ηct, j = 0, . . . , n and T−1
∑T

t=1 φ̃c(t−j)
̂̃ηct, j = 1, . . . , n,

are O(QT ), from which it follows that ∆
̂̃
dcj , j = 0, . . . , n, and ∆̂̃µcj , j = 1, . . . , n, are likewise

O(QT ).

Applying these bounds to the terms in (A.31) we now find that when n ≥ n0
r(q) (A.31) is

O(Q2
T ) , which completes the proof of Part (ii) of Lemma A.4. 2

Lemma A.5 Suppose that yt is an ECARMAE(ν, ρ) process satisfying Assumptions 1 and

2 . Assume also that ϱT = ϱ0 and that for j = q + 1, . . . , v the Kronecker invariant pairs

{r(j)T , nr(j)T } = {r(j)0, n0
r(j)}. Let d̃†

s, s = 0, . . . , n − 1, belong to the solution set of the

equation system
n∑

s=0

d̃†
sΓ̃z(r + s) = 0, r = n, . . . , 2(n− 1) , (A.33)

set d̃†(z) =
∑n−1

s=0 d̃
†
szs, and let µ̃†(z) be formed from∫ π

−π

n∑
s=0

µ̃†
s

d̃†(ω)S̃z(ω)d̃
†(ω)∗

S̃†
v(ω)2

expıω(s−r) dω = 0, r = 1, . . . , n , (A.34)

where

S̃†
v(ω) =

1

2π

∫ π

−π

n∑
r=−n

d̃†(θ)S̃z(θ)d̃
†(θ)∗ expı(ω−θ)r dθ . (A.35)

Then uniformly in |z| ≤ 1;

(i)
̂̃
dc(z) = d̃†(z) +O(QT ) and ̂̃µc(z) = µ̃†(z) +O(QT ) if n < n0

r(q),

(ii)
̂̃
dc(z) = d̃0(z) +O(QT ) and ̂̃µc(z) = µ̃0(z) +O(QT ) if n = n0

r(q), and

(iii) if n > n0
r(q),

̂̃
dc(z) = ϕ̃(z)d̃0(z) + O(QT ) and ̂̃µc(z) = ϕ̃(z)µ̃0(z) + O(QT ) where

ϕ̃(z) = 1 + ϕ̃1z + . . .+ ϕ̃rz
r, r = n− nr(j)0, and ϕ̃(z) ̸= 0, |z| ≤ 1 .

Proof of Lemma A.5: Upon making the translations ỹt 7→ z̃t, ã(z) 7→ d̃(z), µ̃(z) 7→ µ̃(z),̂̃a(z) 7→ ̂̃
dc(z) and ̂̃µ(z) 7→ ̂̃µc(z), it is clear that Lemma A.5 provides a direct parallel to

Lemma A.1, and having made the translations the proof of Lemma A.5 parallels that of

Lemma A.1 in a similar manner. The detailed steps of the argument, which are akin to

those already employed in the proof of Lemma A.3, are omitted. 2

Lemma A.6 Suppose that yt is an ECARMAE(ν, ρ) process satisfying Assumptions 1 and

2 . Assume also that ϱT = ϱ0 and that for j = q + 1, . . . , v the Kronecker invariant pairs

{r(j)T , nr(j)T } = {r(j)0, n0
r(j)}. Then for all T sufficiently large

(i) ̂̃σ2

cη(n) >
̂̃σ2

cη(n+ 1) with probability one if n < n0
r(q), and

(ii) if n ≥ n0
r(q),

̂̃σ2

cη(n) =
̂̃σ2

cη(n+ 1) +O(Q2
T ) almost surely.

Proof of Lemma A.6: Lemma A.6 parallels Lemma A.2 in the same way that Lemma A.5

parallels Lemma A.1, and on making the translations ỹt 7→ z̃t, ã(z) 7→ d̃(z), µ̃(z) 7→ µ̃(z),
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̂̃a(z) 7→ ̂̃
dc(z) and ̂̃µ(z) 7→ ̂̃µc(z), the proof of Lemma A.6 proceeds as in the proof of Lemma

A.2.

Recognizing that without exception xc(t−1) enters each candidate specification through

the error correction term, we find that the incorporation of the cointegrating relations has

no bearing on the proof of (i). This is so because

FT (n|ϱ) = min
{d̃(z),µ̃(z)}

∫ π

−π

d̃(ω)̃Iz(ω)d̃(ω)
∗

|µ̃(ω)|2
dω

depends on n but does not depend on ϱ, which is held constant. The proof of Lemma A.6

(i) can therefore proceed along the same lines as the proof of Lemma 5.2 (i).

Similarly, the proof of Lemma A.6 (ii) follows that of Lemma A.2 (ii). Indeed, a

substantial part of the proof of (ii) has already been given in the proof of Lemma A.3,

where it was shown that T−1
∑

(η̃t − ̂̃ηct)2 = O(Q2
T ), that T−1

∑T
t=1
̂̃
ξc(t−j)

̂̃ηct = O(QT ),

j = 0, . . . , n, and T−1
∑T

t=1 φ̃c(t−j)
̂̃ηct = O(QT ), j = 1, . . . , n, and that ∥∆̂̃dc(z)∥2 = O(Q2

T )

and ∥∆̂̃µc(z)∥2 = O(Q2
T ) when n ≥ n0

r(q). To complete the proof it is only necessary to

add the expansion T−1
∑T

t=1(η̃t − ̂̃ηct)η̃t =
∑a log T

j=0 ψ0
cj [T

−1
∑T

t=1 z̃t−j η̃t] + RT , which fol-

lowing the argument after (A.32) can be shown to be O(Q2
T ). Hence we can conclude that

T−1
∑T

t=1
̂̃η2ct = T−1

∑T
t=1 η̃

2
t +O(Q2

T ), from which the statement in Lemma A.6 (ii) follows.

2

Proof of Theorem 8.1: By Lemma A.4 (i), when n < n0
r(q)

log
[̂̃σ2

η(n)/
̂̃σ2

η(n+ 1)
]
= log

[̂̃σ2

cη(n)/
̂̃σ2

cη(n+ 1) +O(QT )
]
,

which implies via Lemma (A.6) (i) that

lim inf
T→∞

log
[̂̃σ2

η(n)/
̂̃σ2

η(n+ 1)
]
> log(1 + ̂̃ρc(n)(1− δ) +O(QT )) > 0

with probability one for any δ, 0 < δ < 1, where ̂̃ρc(n) = ̂̃σ2

cη(n)/
̂̃σ2

cη(n+1)− 1 > 0. We can

therefore conclude that ICT (n + 1) < ICT (n) a.s. when n < n0
r(q) because the assumption

pT (dq(n))/T → 0 almost surely as T → ∞ implies that pT (dq(n))/(T log(1 + ̂̃ρ(1 − δ) +

O(QT ))) → 0 a.s.. Hence lim infT→∞ nr(q)T ≥ n0
r(q). When n ≥ n0

r(q), Lemma A.4 (ii) and

Lemma A.6 (ii) imply that

log
[̂̃σ2

η(n)/
̂̃σ2

η(n+ 1)
]

= log
[̂̃σ2

cη(n)/
̂̃σ2

cη(n+ 1) +O(Q2
T )
]

= log(1 +O(Q2
T ))

= O(Q2
T ) .

If lim infT→∞ pT (dq(n))/L(T ) > 0 then since dq(n) < dq(n+ 1)

ICT (n)− ICT (n+ 1)

L(T )
=

TO(Q2
T )

L(T )
+

pT (dq(n))− pT (dq(n+ 1))

L(T )
< 0 ,

implying that ICT (n+ 1) > ICT (n). Theorem (8.1) now follows directly. 2


