Deposit Insurance without Commitment: Wall St. vs. Main St.

Russell Cooper* Hubert Kempf**

*European University Institute

**Banque de France and Paris School of Economics

March 2012

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - laxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4) Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4) Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- commitment is less clear
 - UK: Northern Rock
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: DI evidently in process
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an ex post bailout) be provided?

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- commitment is less clear
 - UK: Northern Rock
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: DI evidently in process
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an ex post bailout) be provided?

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- commitment is less clear
 - UK: Northern Rock
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: DI evidently in process
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an *ex post* bailout) be provided?

- assumed to be credible
- avoids runs equilibrium

- Prevalent in various forms around the globe
- commitment is less clear
 - UK: Northern Rock
 - US: redesign of program mid-crisis
 - EMU: how is DI financed?
 - China: DI evidently in process
 - bailouts of non-bank intermediaries in many countries
- Question: in the absence of commitment, will DI (an ex post bailout) be provided?

- "Weak CB" prints money to finance debt obligations of regional government (Cooper and Kempf, REStud)
- tax and consumption smoothing motivates bail-out (multiplicity) (Cooper, Kempf and Peled, *IER*)
- o financial stability vs. incentives (Ennis and Keister), AER
- Focus here on insurance vs. redistribution

- "Weak CB" prints money to finance debt obligations of regional government (Cooper and Kempf, *REStud*)
- tax and consumption smoothing motivates bail-out (multiplicity) (Cooper, Kempf and Peled, IER)
- o financial stability vs. incentives (Ennis and Keister), AER
- Focus here on insurance vs. redistribution

- "Weak CB" prints money to finance debt obligations of regional government (Cooper and Kempf, *REStud*)
- tax and consumption smoothing motivates bail-out (multiplicity) (Cooper, Kempf and Peled, IER)
- o financial stability vs. incentives (Ennis and Keister), AER
- Focus here on insurance vs. redistribution

- "Weak CB" prints money to finance debt obligations of regional government (Cooper and Kempf, *REStud*)
- tax and consumption smoothing motivates bail-out (multiplicity) (Cooper, Kempf and Peled, IER)
- financial stability vs. incentives (Ennis and Keister), AER
- Focus here on insurance vs. redistribution

Study Using

- Diamond-Dybvig model
- heterogeneity in endowments across households
- Wall St. vs. Main St. tension through claims on entire financial system
- redistribution through the provision of deposit insurance relative to tax contributions
- steps of analysis
 - characterize optimal (simple) deposit contract (planner and decentralized)
 - ask if there is a expectations driven bank-run (systemic or not)
 under the optimal allocation
 - if yes, determine if deposit insurance will be provided ex post
 - study this for progressively less flexible taxation systems

Table: Bank run

Others / You	Others don't run	Others run
You don't run	110	0
You run	100	30

Table: Adding Deposit Insurance: Unique Equilibrium

Others / You	Others don't run	Others run
You don't run	110	100
You run	100	100

Question: is the promise of DI credible?

- Ex ante: Yes if commitment is possible
- Ex post: ?
 - how is it financed?
 - how does it redistribute consumption?
- if not, then promise of DI may not prevent a run

Table: Adding Deposit Insurance: Unique Equilibrium

Others / You	Others don't run	Others run
You don't run	110	100
You run	100	100

Question: is the promise of DI credible?

• Ex ante: Yes if commitment is possible

• Ex post: ?

how is it financed?

how does it redistribute consumption?

o if not, then promise of DI may not prevent a run

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

Households

- t = 0, 1, 2
- type α^0 endowment of single good: $(\alpha^0, \bar{\alpha}, 0)$
- $f(\cdot)$ is pdf, $F(\cdot)$ is cdf
- preferences
 - early consumer: $u(c^0) + v(c^E)$
 - late consumer: $u(c^0) + v(c^L)$
 - $u(\cdot)$ and $v(\cdot)$ are strictly increasing and strictly concave
 - $\sigma = \pi \in (0,1)$: fraction early, independent of endowment type

Technology

- one period technology: return of 1
- two-period technology:
 - return of R > 1
 - return of ε if liquidated early

Table: Technology

	period 0	period 1	period 2
liquid	-1	1	1
illiquid	-1	arepsilon	R

Optimal Allocation

- endowment types are known, tastes are not
- choose: $(d(\alpha^0), x^E(\alpha^0), x^L(\alpha^0))$ and ϕ
- objective function:

$$\int \omega(\alpha^0) [u(\alpha^0 - d(\alpha^0)) + \pi v(\bar{\alpha} + x^E(\alpha^0)) + (1 - \pi)v(\bar{\alpha} + x^L(\alpha^0))] f(\alpha^0) d\alpha^0.$$
(1)

resource constraints

$$\phi D = \pi \int x^{E}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0}$$
 (2)

$$(1-\phi)DR = (1-\pi)\int x^L(\alpha^0)f(\alpha^0)d\alpha^0$$
 (3)

- welfare weights: $\omega(\alpha^0)$
- o ignore prospect of run

FOCs: insurance and redistribution

$$\omega(\alpha^0)u'(\alpha^0 - d(\alpha^0)) = \lambda \tag{4}$$

$$v'(\bar{\alpha} + x^{E}(\alpha^{0})) = Rv'(\bar{\alpha} + x^{L}(\alpha^{0}))$$
 (5)

and

$$v'(\bar{\alpha} + x^{\mathcal{E}}(\alpha^0)) = u'(\alpha^0 - d(\alpha^0)) \tag{6}$$

for all α^0 .

Runs

- truth-telling is a Nash Equilibrium: $c^L(\alpha^0) > c^E(\alpha^0)$
- bank run is an equilibrium too:
 - $\pi < 1$ is sufficient if ε is near 0
 - $\phi D = \pi \int x^{E}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0} < \int x^{E}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0}$
 - o not enough resources to meet demands for all households
 - sequential service: some households served, others are not $\zeta v(\bar{\alpha} + x^E(\alpha^0)) + (1 \zeta)v(\bar{\alpha})$
- how does the planner respond to a run?

Runs

- truth-telling is a Nash Equilibrium: $c^{L}(\alpha^{0}) > c^{E}(\alpha^{0})$
- bank run is an equilibrium too:
 - $\pi < 1$ is sufficient if ε is near 0
 - $\phi D = \pi \int x^{E}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0} < \int x^{E}(\alpha^{0}) f(\alpha^{0}) d\alpha^{0}$
 - not enough resources to meet demands for all households
 - sequential service: some households served, others are not $\zeta v(\bar{\alpha} + x^E(\alpha^0)) + (1 \zeta)v(\bar{\alpha})$
- how does the planner respond to a run?

Figure: Responding to a Run

Responses to a Run: Haircut

Proposition

Given a bank run, the planner has an incentive to reallocate consumption relative to the outcome under sequential service.

Objective:

$$\int \omega(\alpha^{0})[\pi+\nu(\alpha^{0})(1-\pi)][\nu(\bar{\alpha}+\bar{x}^{E}(\alpha^{0}))]f(\alpha^{0})d\alpha^{0}+\int \omega(\alpha^{0})[(1-\nu(\alpha^{0}))(1-\pi)][\nu(\bar{\alpha}+\bar{x}^{L}(\alpha^{0}))]f(\alpha^{0})d\alpha^{0}$$
(7)

where $u(\alpha^0)$ of type α^0 late consumers announce early

period 1 resource constraint:

$$\int [\pi + \nu(\alpha^0)(1-\pi)]\tilde{x}^E(\alpha^0)f(\alpha^0)d\alpha^0 = \phi D - S + \epsilon L.$$
 (8)

period 2 resource constraint:

$$((1-\pi)\int (1-\nu(\alpha^0))\tilde{x}^L(\alpha^0)f(\alpha^0)d\alpha^0 = ((1-\phi)D - L)R + S.$$
 (9)

 \circ S=0 and L>0 imply

$$v'(\bar{\alpha} + \tilde{x}^{E}(\alpha^{0})) = \frac{R}{\epsilon}v'(\bar{\alpha} + \tilde{x}^{L}(\alpha^{0})). \tag{10}$$

orisk sharing and reallocation across types, dominates sequential service

Does this intervention prevent a run?

Corollary

In the allocation characterized in Proposition 1, there is no bank run.

- $\circ c^L(\alpha^0) > c^E(\alpha^0)$
- illiquid investment remains intact to fund late consumers
- commitment not needed
- but not quite deposit insurance

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

Optimal Contract

- banks: max HH utility st feasibility and zero expected profit
- contract is α^0 specific
- Household optimization

$$\max_{d} u(\alpha^0 - d) + \pi v(\bar{\alpha} + r^1(\alpha^0)d) + (1 - \pi)v(\bar{\alpha} + r^2(\alpha^0)d)$$
 (11)

 \circ Bank constraints for all $lpha^0$

$$r^{1}(\alpha^{0})\pi d(\alpha^{0}) + r^{2}(\alpha^{0})(1-\pi)d(\alpha^{0}) = \phi(\alpha^{0})d(\alpha^{0}) + (1-\phi(\alpha^{0}))d(\alpha^{0})R;$$
(12)

and

$$\phi(\alpha^0)d(\alpha^0) \ge r^1(\alpha^0)d(\alpha^0)\pi, \qquad (1-\phi(\alpha^0))d(\alpha^0)R \ge r^2(\alpha^0)(1-\pi)d(\alpha^0).$$
(13)

Equilibrium

- constraints on banks bind
- number of banks not determined
- distribution of types across banks not determined: assume a symmetric equilibrium
- Intertemporal consumption in optimal contract:

$$v'(\bar{\alpha} + r^1(\alpha^0)d(\alpha^0)) = Rv'(\bar{\alpha} + r^2(\alpha^0)d(\alpha^0)). \tag{14}$$

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

Timing

- sequential service of households in period 1
- bank exhausts liquid assets
- $\circ \varepsilon$ is near zero
- contacts government: will you provide DI?
- look at expected utilities with and without DI
- discuss prevention of runs below

welfare with DI

$$W^{DI} = \int \omega(\alpha^0) \nu(\bar{\alpha} + \chi(\alpha^0) - T(\alpha^0)) f(\alpha^0) d\alpha^0 \qquad (15)$$

welfare without DI

$$W^{NI} = \int \omega(\alpha^0) [\zeta v(\bar{\alpha} + \chi(\alpha^0)) + (1 - \zeta)v(\bar{\alpha})] f(\alpha^0) d\alpha^0$$
(16)

- $\chi(lpha^0) \equiv r^1(lpha^0) d(lpha^0)$ is total owed under deposit contract
- \circ ζ is the probability of getting served
- $T(\alpha^0)$ is type specific tax
- when is $\Delta \equiv W^{DI} W^{NI}$ positive?

$$\Delta = \int \omega(\alpha^0) \underbrace{\left[v(\chi(\alpha^0) + \bar{\alpha} - T(\alpha^0)) - v(\chi(\alpha^0) + \bar{\alpha} - \bar{T})\right] f(\alpha^0) d\alpha^0}_{\text{Redistribution through taxes}} + \underbrace{\int \omega(\alpha^0) \underbrace{\left[v(\chi(\alpha^0) + \bar{\alpha} - \bar{T}) - v(\zeta\chi(\alpha^0) + \bar{\alpha})\right] f(\alpha^0) d(\alpha^0)}_{\text{Redistribution through Deposit Insurance}} + \underbrace{\int \omega(\alpha^0) \underbrace{\left[v(\zeta\chi(\alpha^0) + \bar{\alpha}) - \zeta v(\chi(\alpha^0) + \bar{\alpha}) - (1 - \zeta)v(\bar{\alpha})\right] f(\alpha^0) d\alpha^0}_{\text{Insurance gains to DI}}$$

where $\bar{T} = \int T(\alpha^0) f(\alpha^0) d\alpha^0$.

Role of Heterogeneity

Proposition

If $F(\alpha^0)$ is degenerate, v(c) is strictly concave, then the government **will** have an incentive to provide deposit insurance.

Note:

- Diamond-Dybvig case
- \circ $F(lpha^0)$ degenerate could reflect optimal reallocation in period 0

Study Effects of Heterogeneity by:

- ex post optimal taxes
- o ex ante taxes
- progressively weaken optimality of tax system to study redistribution costs

Role of Heterogeneity

Proposition

If $F(\alpha^0)$ is degenerate, v(c) is strictly concave, then the government **will** have an incentive to provide deposit insurance.

Note:

- Diamond-Dybvig case
- $\sim F(lpha^0)$ degenerate could reflect optimal reallocation in period 0

Study Effects of Heterogeneity by:

- ex post optimal taxes
- ex ante taxes
- progressively weaken optimality of tax system to study
 redistribution costs

Ex Post Optimal Taxes

 W^{DI} as the solution to an optimal tax problem:

$$W^{DI} = \max_{T(\alpha^0)} \int \omega(\alpha^0) v(\chi(\alpha^0) + \bar{\alpha} - T(\alpha^0)) f(\alpha^0) d\alpha^0 \quad (17)$$

Proposition^b

If $T(\alpha^0)$ solves the optimization problem (17), then deposit insurance is always provided.

- with optimal reallocation, no conflict with insurance provision
- o like the optimal haircut of the planner
- set tax structure to fund DI along with its provision

Ex Ante Lump Sum Taxes

$$\Delta = \int \omega(\alpha^{0}) \underbrace{\left[v(\chi(\alpha^{0}) - \bar{T} + \bar{\alpha}) - v(\zeta\chi(\alpha^{0}) + \bar{\alpha})\right] f(\alpha^{0}) d(\alpha^{0})}_{\text{Redistribution}} + \int \omega(\alpha^{0}) \underbrace{\left[v(\zeta\chi(\alpha^{0}) + \bar{\alpha}) - \zeta v(\chi(\alpha^{0}) + \bar{\alpha}) - (1 - \zeta)v(\bar{\alpha})\right] f(\alpha^{0}) d\alpha^{0}}_{\text{Insurance}}.(18)$$

Redistribution

- DI plus lump sum taxes creates redistribution from poor to rich
- o cost of redistribution higher with MPS in claims, $H(\cdot)$

Redistribution May be Costly

Proposition

If $\omega(\alpha^0)$ is weakly decreasing in α^0 , then the redistribution effects of deposit insurance reduce social welfare.

Proposition

If $v'''(\cdot) < 0$ and $\omega(\alpha_0)$ is constant, then Δ is lower when $H(\cdot)$ is replaced by a mean preserving spread.

Example

- two types
- $\alpha^0 = 3$ for poor, $\alpha^0 = 5$ for rich
- 50% rich

Computed Example: Effects of Risk Aversion

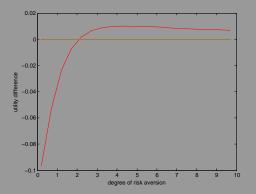


Figure: Effects of Risk Aversion

Computed Example: Effects of MPS

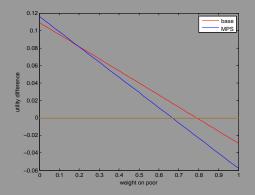


Figure: MPS on Endowment Distribution

Restricted Contract

$$r^1(\alpha^0) = r, r^2(\alpha^0) = r^2$$

Proposition

If households are not too risk averse and $\omega(\alpha^0)$ is strictly decreasing in α^0 , then a government will not have an incentive to provide deposit insurance.

KEY: explore limit of risk neutrality where redistribution is costly when weights are declining.

Ex ante Taxes

- redistribution through DI reflects deposit claims and tax liabilities
- all else the same, a tax schedule which redistributes more, reduces welfare

Proposition

Compare two tax schedules, $T(\cdot)$ and $\tilde{T}(\cdot)$. If $\tilde{T}(\cdot)$ induces a MPS on consumption relative to $T(\cdot)$ then Δ falls when we replace $T(\cdot)$ with $\tilde{T}(\cdot)$.

Ex ante Taxes

- $c(\alpha^0) = (\bar{\alpha} + \chi(\alpha^0))^{(1-\tau)} \bar{\mathcal{T}}^{\tau}$
- \circ $ar{\mathcal{T}}^{ au}$ balances the budget

Proposition

Compare two tax rates, τ^L and τ^H with $\tau^H > \tau^L > 0$, then Δ is higher under the tax rate τ^H compared to τ^L .

Outline

- 1 Motivation
- 2 Planner's Problem
- (3) Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

Bank Specific Runs

- a fraction *n* of the households run on multiple symmetric banks
- probability of run is independent of type
- DI redistributes across types and groups (run, no run)

$$\Delta = \int \omega(\alpha^{0}) \{ n[v(c^{E}(\alpha^{0}) - \overline{T}) - \zeta v(\overline{\alpha} + \chi(\alpha^{0})) - (1 - \zeta)v(\overline{\alpha})] + (1 - n)[v(c^{E}(\alpha^{0}) - \overline{T}) - v(c^{E}(\alpha^{0}))] \} f(\alpha^{0}) d\alpha^{0}.$$
 (19)

- first term captures insurance gain plus redistribution to those at failed banks (Wall St.)
- second term captures tax obligation of those at surviving banks (Main St.)

Proposition

If $F(\alpha^0)$ is degenerate, then the gains from deposit insurance are positive for any n.

If $F(\alpha^0)$ is not degenerate, two forms of redistribution interact.

Proposition

If $F(\alpha^0)$ is degenerate, then the gains from deposit insurance are positive for any n.

If $F(\alpha^0)$ is not degenerate, two forms of redistribution interact.

Computed Example: Partial Runs

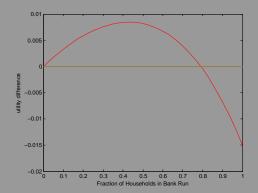


Figure: Partial Runs

Outline

- 1 Motivation
- 2 Planner's Problem
- 3 Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

Does DI Prevent Runs?

NO

- bank liquidates to meet depositor demands
- DI redistributes what is left to "early consumers"

YES

- provision of DI involves optimal liquidation
- implement haircut allocation of planner
- late consumption exceeds early consumption: no incentive to

Does DI Prevent Runs?

NO

- bank liquidates to meet depositor demands
- DI redistributes what is left to "early consumers"

YES

- provision of DI involves optimal liquidation
- implement haircut allocation of planner
- late consumption exceeds early consumption: no incentive to run

Outline

- 1 Motivation
- 2 Planner's Problem
- (3) Decentralization
- 4 Systemic Runs and DI: Timing
 - Optimal Taxes Ex Post
 - Taxes Set Ex Ante: Type Independent
 - Taxes Set Ex Ante: Type Dependent
- 5 Partial Runs
- 6 Preventing Runs
- 7 Conclusions

Conclusions

- DI will be provided ex post if insurance gains dominate
- DI will not be provided if it redistributes consumption away from favored types
- To consider:
 - distortionary taxation
 - o cap on DI
 - interbank loans
 - too big to fail
 - monetary financing of DI
 - DI in a MU
 - reputation effects of bailout
 - model with political pressure