Bank Asset Channel

Vincenzo Quadrini University of Southern California

November 14, 2013

CREDIT AND EMPLOYMENT LINKS

- When credit is tight, employers lack the liquidity for investing and hiring:
 - Credit Channel.

- When the supply of assets is low, the economy is in shortage of insurance instruments. Employers become more averse to risk and reduce hiring:
 - Asset Channel.

- When credit is tight, employers face weaker bargaining conditions with workers.
 - Bargaining channel.

THREE SECTOR MODEL

1. Entrepreneurial sector

2. Workers sector

3. Financial intermediation sector

1. Entrepreneurial sector

• Continuum of entrepreneurs with utility $E_0 \sum_{t=0}^{\infty} \beta^t \ln(c_t^i)$

 $\bullet \ \ \text{Technology} \ F(z_t^i, h_t^i) = z_t^i h_t^i$

 $h_t^i = \text{Input of labor}$

 $z_t^i = \text{Idiosyncratic shock observed } \underline{\textbf{after}} \text{ choosing } h_t^i.$

ullet They can hold non-contingent bonds, b_t^i . So the budget constraint is

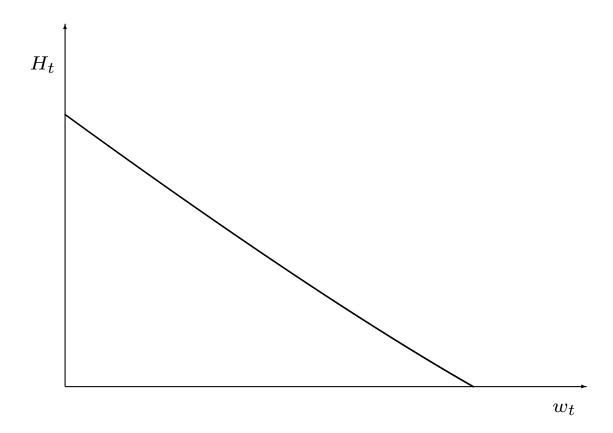
$$c_t^i + \frac{b_{t+1}^i}{R_t^b} = (z_t^i - w_t)h_t^i + b_t^i$$

1. Entrepreneurial sector (continue)

Define the entrepreneurial wealth after production (so z_t^i becomes known)

$$a_t^i = b_t^i + (z_t^i - w_t)h_t^i$$

Lemma 1. Let $\phi(w_t)$ the value of ϕ_t that satisfies $\mathbb{E}_z\left\{\frac{z-w_t}{1+(z-w_t)\phi_t}\right\}=0$. The optimal entrepreneur's policies take the form


$$h_t^i = \phi(w_t)b_t^i,$$

$$c_t^i = (1 - \beta)a_t^i,$$

$$b_{t+1}^i = \beta R_t^b a_t^i.$$

Aggregate demand of labor

$$H_t = \phi(w_t) \int_{i}^{b_t^i} b_t^i$$

2. Workers sector

- Continuum of workers with utility $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \ln \left(c_t \alpha \frac{h_t^{1+\nu}}{1+\nu} \right)$
- They hold a non-reproducible asset in fixed supply \bar{K} , traded at price p_t . Each unit produces χ units of consumption goods.
- They can borrow subject to the collateral constraint

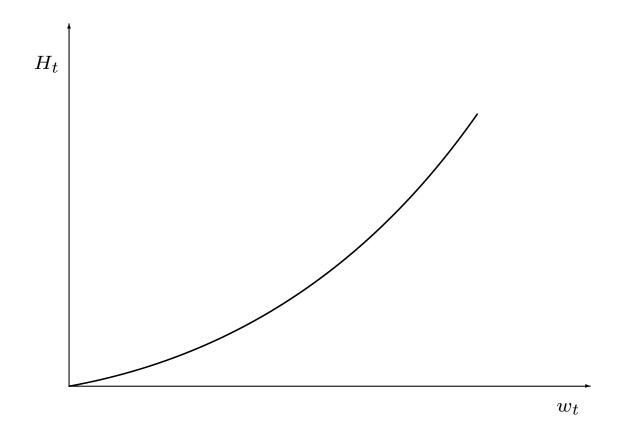
$$\frac{l_{t+1}}{R_t^l} \le \eta k_{t+1} p_t$$

Budget constraint

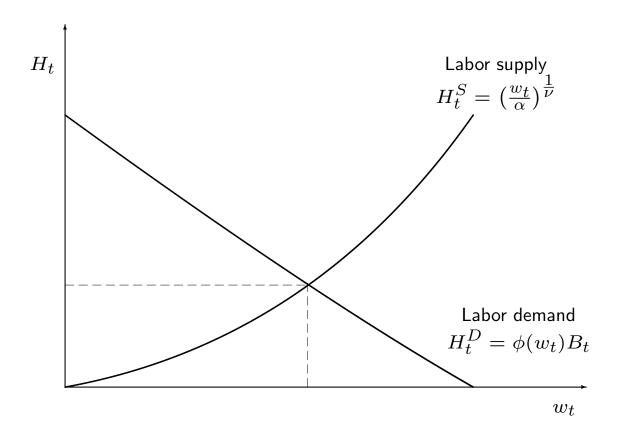
$$c_t + l_t + (k_{t+1} - k_t)p_t = \frac{l_{t+1}}{R_t^l} + w_t h_t + \chi k_t$$

2. Workers sector (continue)

First order conditions

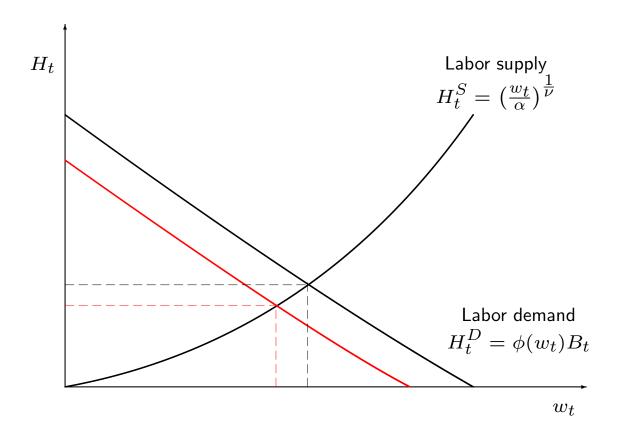

$$\alpha h_t^{\nu} = w_t,$$

$$U_c(c_t, h_t) \geq \beta R_t^l \mathbb{E}_t U_c(c_{t+1}, h_{t+1}),$$


$$U_c(c_t, h_t) \geq \beta \mathbb{E}_t U_c(c_{t+1}, h_{t+1}) \left(\frac{\chi + p_{t+1}}{p_t} \right).$$

Aggregate supply of labor

$$H_t = \left(\frac{w_t}{\alpha}\right)^{\frac{1}{\nu}}$$



LABOR MARKET EQUILIBRIUM

LABOR MARKET EQUILIBRIUM

(Decreased supply of assets)

THERE IS NOT INTERMEDIATION

(Borrowing and lending is direct)

EQUILIBRIUM WITH DIRECT LENDING

Market clearing in lending

$$B_{t+1} = L_{t+1}$$

• Interest rates

$$R_t^b = R_t^l < \frac{1}{\beta}$$

• Binding borrowing constraint in steady state

$$\frac{L}{R} = \eta \bar{K} p$$

INTRODUCING THE INTERMEDIATION SECTOR

3. Intermediation sector

- Continuum of investors with utility $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \ln(c_t)$
- Hold diversified portfolio of banks and consume their dividends, d_t .
- Banks discount future dividends by $m_{t+1} = \beta \left(\frac{d_t}{d_{t+1}} \right)$
- Banks' budget constraint

$$b_t + \frac{l_{t+1}}{R_t^l} + d_t = l_t + \frac{b_{t+1}}{R_t^b}$$

Banks' no-default constraint

$$\frac{b_{t+1}}{R_t^b} \le \xi_t \left(\frac{l_{t+1}}{R_t^l}\right)$$

Bank's problem

$$V_t(b,l) = \max_{d,b',l'} \left\{ d + Em'V_{t+1}(b',l') \right\}$$
 subject to:
$$b + d + \frac{l'}{R^l} = l + \frac{b'}{R^b}$$

$$\frac{b'}{R^b} \le \xi \left(\frac{l'}{R^l} \right)$$

First order conditions

$$R^b E m' = 1 - \mu$$
$$R^l E m' = 1 - \mu \xi$$

Endogenous ξ

Assumption 1. In the event of liquidation, the bank's assets l are perfectly divisible and can be sold either to other banks or to other sectors (households or entrepreneurs). However,

- Banks can recover a fraction $\overline{\xi}$ of the liquidated assets;
- Other sectors can recover a smaller fraction $\xi < \xi$.

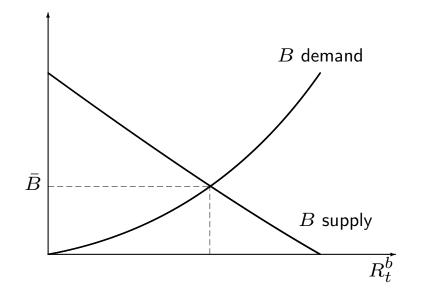
Assumption 2. Banks can purchase the assets of liquidated banks only if they have liquidity.

Definition. Banks are **liquid** if the enforcement constraint is not binding,

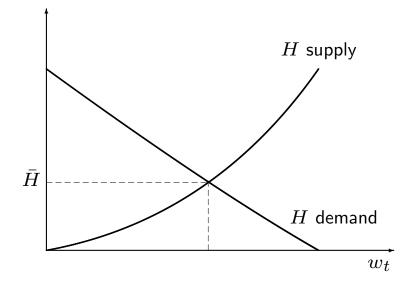
$$\frac{b'}{R^b} < \xi \left(\frac{l'}{R^l}\right)$$

Multiple equilibria

• If the market expects $\xi_t = \overline{\xi}$, banks will not borrow up to the limit and the ex-post price of the liquidated assets is $\xi_t = \overline{\xi}$.


• If the market expects $\xi_t = \underline{\xi}$, banks will borrow up to the limit and the ex-post price of the liquidated assets is $\xi_t = \underline{\xi}$.

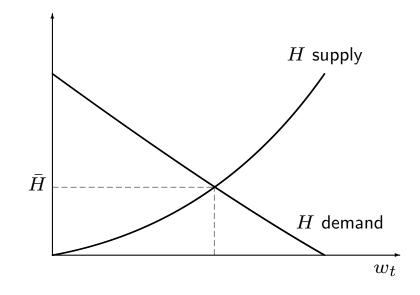
The anatomy of a banking crisis


- 1. The market turns pessimistic
- 2. Banks need more (costly) equity to fund loans. So they cut lending and issue less liabilities.
- 3. In equilibrium, the lower supply of liabilities implies that entrepreneurs hold less bonds b_t which in turn discourages the demand of labor.

GENERAL EQUILIBRIUM

ASSET MARKET

LABOR MARKET

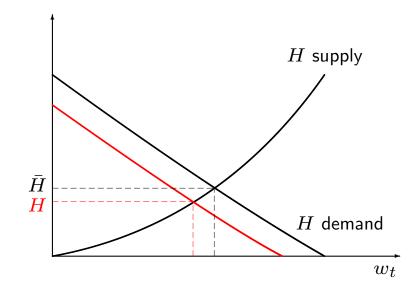


GENERAL EQUILIBRIUM (banking crisis)

ASSET MARKET

$ar{B}$ B demand B supply R_t^b

LABOR MARKET



GENERAL EQUILIBRIUM (banking crisis)

ASSET MARKET

$ar{B}$ B demand B supply R_t^b

LABOR MARKET

