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Revision: OLS
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Outline

Interpretation of Marginal Effects
I Linear model: Yi = β0 + β1Xi + εi

∂Yi
∂Xi

= β1

Interpretation: When X goes up by 1 unit, Y goes up by β1 units.
I Log-Log model (constant elasticity model):

ln(Yi ) = β0 + β1 ln(Xi ) + εi Yi = eβ0Xβ1i eεi

∂Yi
∂Xi

= eβ0β1Xβ1−1i eεi
∂Yi/Yi
∂Xi/Xi

= β1

Interpretation: When X goes up by 1%, Y goes up by β1 %.
I Log-lin model:

ln(Yi ) = β0 + β1Xi + εi

∂Yi
∂Xi

= β1eβ0eβ1Xi eεi

∂Yi/Yi
∂Xi

= β1

Interpretation: When X goes up by 1 unit, Y goes up by 100β1 %.
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Instrumental Variables 2SLS

Endogeneity and Simultaneity
I Consider the model:

Yi = α + βXi + εi

I In many problems studied in econometrics it is not possible to
maintain restrictions requiring that the expected value of the latent
variable in an equation is zero given the values of the right hand side
variables in the equation:

E (ε|X ) 6= 0

I This leads to a biased OLS estimate.
I There are many cases in which the OLS identification assumption

does not hold:
I simultaneous equations.
I explanatory variables measured with error.
I omitted variables correlated with explanatory variables.
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Instrumental Variables 2SLS

Simultaneity

I Definition: Simultaneity arises when the causal relationship between
Y and X runs both ways. In other words, the explanatory variable X
is a function of the dependent variable Y , which in turn is a function
of X .

I This arises in many economic examples:
I Income and health.
I Sales and advertizing.
I Investment and productivity.

I What are we estimating when we run an OLS regression of Y on X?
Is it the direct effect, the indirect effect or a mixture of both.
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Instrumental Variables 2SLS

Implications of Simultaneity
I 

Yi = β0 + β1Xi + ui (direct effect)

Xi = α0 + α1Yi + vi (indirect effect)
I Replacing the second equation in the first one, we get an equation

expressing Yi as a function of the parameters and the error terms ui
and vi only. Substituting this into the second equation, we get Xi also
as a function of the parameters and the error terms:

Yi = β0 + β1α0
1− α1β1 + β1vi + ui

1− α1β1 = B0 + ũi

Xi = α0 + α1β0
1− α1β1 + vi + α1ui

1− α1β1 = A0 + ṽi

I This is the reduced form of our model. In this rewritten model, Yi is
not a function of Xi and vice versa. However, Yi and Xi are both a
function of the two original error terms ui and vi .
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Instrumental Variables 2SLS

Implications of Simultaneity

I Now that we have an expression for Xi , we can compute:

cov(Xi , ui ) = cov(
α0 + α1β0
1− α1β1

+
vi + α1ui
1− α1β1

, ui )

=
α1

1− α1β1
Var(ui )

which, in general is different from zero. Hence, with simultaneity, our
assumption 1 is violated. An OLS regression of Yi on Xi will lead
to a biased estimate of β1. Similarly, an OLS regression of Xi on Yi
will lead to a biased estimate of α1.
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Instrumental Variables 2SLS

What are we estimating?

I For the model:
Yi = β0 + β1Xi + ui

I The OLS estimate is:

β̂1 = β1 +
cov(Xi , ui )

Var(Xi )

= β1 +
α1

1− α1β1
Var(ui )

Var(Xi )

I So
I E β̂1 6= β1

I E β̂1 6= α1

I E β̂1 6= an average of β1 and α1.
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Instrumental Variables 2SLS

Identification

I Suppose a more general model:{
Yi = β0 + β1Xi + β2Ti + ui
Xi = α0 + α1Yi + α2Zi + vi

I We have two sorts of variables:
I Endogenous: Yi and Xi because they are determined within the

system. They appear on the right and left hand side.
I Exogenous: Ti and Zi . They are determined outside of our model,

and in particular are not caused by either Xi or Yi . They appear only
on the right-hand-side.
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Instrumental Variables 2SLS

Example

I Consider a simple version of the Mincer model for returns to
schooling with the following structural equations.

W = α0 + α1S + α2Z + ε1

S = β0 + β1Z + ε2

Here W is the log wage, S is years of schooling, Z is some
characteristic of the individual, and ε1 and ε2 are unobservable latent
random variables.

I We might expect those who receive unusually high levels of schooling
given Z to also receive unusually high wages given Z and S, a
situation that would arise if ε1 and ε2 were affected positively by
ability, a characteristic not completely captured by variation in Z .
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Instrumental Variables 2SLS

Example
I In this problem we might be prepared to impose the following

restrictions.

E [ε1|Z = z ] = 0
E [ε2|Z = z ] = 0

but not
E [ε1|S = s,Z = z ] = 0

unless ε1 was believed to be uncorrelated with ε2.
I Considering just the first (W ) equation,

E [W |S = s,Z = z ] = α0 + α1s + α2z + E [ε1|S = s,Z = z ]

I A variable like S, appearing in a structural form equation and
correlated with the latent variable in the equation, is called an
endogenous variable.
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Instrumental Variables 2SLS

Reduced Form Equations
I Substitute for S in the wage equation:

W = (α0 + α1β0) + (α1β1 + α2)Z + ε1 + α1ε2

S = β0 + β1Z + ε2

I Equations like this, in which each equation involves exactly one
endogenous variable are called reduced form equations.

I The restrictions E [ε1|Z = z ] = 0 and E [ε2|Z = z ] = 0 imply that

E [W |Z = z ] = (α0 + α1β0) + (α1β1 + α2) z
E [S|Z = z ] = β0 + β1z

I Given enough (at least 2) distinct values of z and knowledge of the
left hand side quantities we can solve for (α0 + α1β0), (α1β1 + α2),
β0 and β1. So, the values of these functions of parameters of the
structural equations can be identified.
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Instrumental Variables 2SLS

Reduced Form Equations

I In practice we do not know the left hand side quantities but with
enough data we can estimate the data generating values of
(α0 + α1β0), (α1β1 + α2), β0 and β1, for example by OLS applied
first to (W ,Z ) data and then to (S,Z ) data.

I The values of β0 and β1 are identified but the values of α0, α1 and
α2 are not, for without further restrictions their values cannot be
deduced from knowledge of (α0 + α1β0), (α1β1 + α2), β0.
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Instrumental Variables 2SLS

Identification using an Exclusion Restriction
I One restriction we might be prepared to add to the model is the

restriction α2 = 0. Whether or not that is a reasonable restriction to
maintain depends on the nature of the variable Z .

I If Z were a measure of some characteristic of the environment of the
person at the time that schooling decisions were made (for example
the parents’ income, or some measure of an event that perturbed the
schooling choice) then we might be prepared to maintain the
restriction that, given schooling achieved (S), Z does not affect W ,
i.e. that α2 = 0.

I This restriction may be sufficient to identify the remaining parameters.
If the restriction is true then the coefficients on Z become α1β1.

I We have already seen that (the value of) the coefficient β1 is
identified. If β1 is not itself zero (that is Z does indeed affect years of
schooling) then α1 is identified as the ratio of the coefficients on Z in
the regressions of W and S on Z . With α1 identified and β0 already
identified, identification of α0 follows directly.
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Instrumental Variables 2SLS

Indirect Least Squares Estimation

I Estimation could proceed under the restriction α2 = 0 by calculating
OLS (or GLS) estimates of the “reduced form” equations:

W = π01 + π11Z + U1

S = π02 + π12Z + U2

where
π01 = α0 + α1β0 π11 = α1β1
π02 = β0 π12 = β1
U1 = ε1 + α1ε2 U2 = ε2

and
E [U1|Z = z ] = 0 E [U2|Z = z ] = 0
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Instrumental Variables 2SLS

Indirect Least Squares Estimation
solving the equations:

π̂01 = α̂0 + α̂1β̂0 π̂11 = α̂1β̂1
π̂02 = β̂0 π̂12 = β̂1

given values of the π̂’s for values of the α̂’s and β̂’s, as follows.

α̂0 = π̂01 − π̂02 (π̂11/π̂12) α̂1 = π̂11/π̂12
β̂0 = π̂02 β̂1 = π̂12

I Estimators obtained in this way, by solving the equations relating
structural form parameters to reduced form parameters with OLS
estimates replacing the reduced form parameters, are known as
Indirect Least Squares estimators. They were first proposed by Jan
Tinbergen in 1930.
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Instrumental Variables 2SLS

Over Identification
I Suppose that there are two covariates, Z1 and Z2 whose impact on

the structural equations we are prepared to restrict so that both affect
schooling choice but neither affect the wage given the amount of
schooling achieved:

W = α0 + α1S + ε1

S = β0 + β1Z1 + β2Z2 + ε2

I the reduced form equations are as follows
W = π01 + π11Z1 + π21Z2 + U1

S = π02 + π12Z1 + π22Z2 + U2

where
π01 = α0 + α1β0 π11 = α1β1 π21 = α1β2
π02 = β0 π12 = β1 π22 = β2

and
U1 = ε1 + α1ε2 U2 = ε2.
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Instrumental Variables 2SLS

Over Identification
I The values of the reduced form equations’ coefficients are identified

under restrictions .
I Note, there are two ways in which the coefficient α1 can be identified,

as follows
α1 = αZ1

1 =
π11
π12

α1 = αZ2
1 =

π21
π22

I In this situation we say that the value of the parameter α1 is over
identified.

I We will usually find that α̂Z1
1 6= α̂Z2

1 even though these are both
estimates of the value of the same structural form parameter.

I If the discrepancy was found to be very large then we might doubt
whether the restrictions of the model are correct. This suggests that
tests of over identifying restrictions can detect misspecification of the
econometric model.

I If the discrepancy is not large then there is scope for combining the
estimates to produce a single estimate that is more efficient than
either taken alone.
Juan Dolado (EUI) Econometrics Block II November 4, 2014 19 / 260



Instrumental Variables 2SLS

Instrumental Variables
I Consider the linear model for an outcome Y given k covariates X

Y = Xβ + ε

I Suppose that the restriction E [ε|X = x ] = 0 cannot be maintained
but that there exist m variables Z for which the restriction
E [ε|Z = z ] = 0 can be maintained. It implies:

E [Y − Xβ|Z = z ] = 0

and thus that
E [Z ′ (Y − Xβ) |Z = z ] = 0

which implies that, unconditionally

E [Z ′ (Y − Xβ)] = 0.

and thus
E [Z ′Y ] = E [Z ′X ]β.
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Instrumental Variables 2SLS

Instrumental Variables

I First suppose m = k, and that E [Z ′X ] has rank k. Then β can be
expressed in terms of moments of Y , X and Z as follows

β = E [Z ′X ]−1E [Z ′Y ].

and β is (just) identifiable. This leads directly to an analogue type
estimator:

β̂ = (Z ′X )−1(Z ′Y )

In the context of the just identified returns to schooling model this is
the Indirect Least Squares estimator.
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Instrumental Variables 2SLS

Special Case: Wald Estimator

I A special (and simple case) consists of a binary instrument.
Z ∈ {0, 1}. In this case, the IV estimator simplifies to:

β̂Wald =
E (Y |Z = 1)− E (Y |Z = 0)

E (X |Z = 1)− E (X |Z = 0)

I This estimator is just a function of conditional means that are easy to
compute with simple statistical tools. For instance if Y are earnings,
X is college attendance and Z an indicator of living close to a college,
the numerator is just the difference in earning of those close or far
away to a college, and the denominator is the difference in college
attendance for those close of far away from the college.
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Instrumental Variables 2SLS

Wald Estimator

I Note that Z̄ = N1/N.
I Proof:

Z ′Y =
1
N
∑

i
(Zi − Z̄ )(Yi − Ȳ )

=
−Z̄
N
∑
I0

(Yi − Ȳ ) +
1− Z̄
N

∑
I1

(Yi − Ȳ )

=
−N1
N

N0
N Ȳ0 +

N1N0
N2 Ȳ +

N0
N

N1
N Ȳ1 −

N0N1
N2 Ȳ

=
N0N1
N2 (Ȳ1 − Ȳ0)

Similarly, Z ′X = N0N1
N2 (X̄1 − X̄0)
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Instrumental Variables 2SLS

Example: Return to Schooling

I What is the effect of additional years of schooling on wages?
I One can regress wages on schooling, but schooling may be

endogenous.
I Angrist and Krueger (1991) "Does Compulsory School Attendance

Affect Schooling and Earnings?" QJE, introduce an IV method, based
on particular features of the US school system:

I Children entering school have to be 6 by January 1rst.
I Children have to remain in school until their sixteenth birthday.
I Children born earlier in the year enter school later.
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Instrumental Variables 2SLS

Example: Return to Schooling

Juan Dolado (EUI) Econometrics Block II November 4, 2014 25 / 260



Instrumental Variables 2SLS

Example: Return to Schooling
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Instrumental Variables 2SLS

Example: Return to Schooling
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Instrumental Variables 2SLS

Example: Return to Schooling: Wald Estimator
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Instrumental Variables GMM

Generalised Method of Moments estimation
I Suppose that m > k. We will not find a solution since we have m > k

equations in k unknowns.
I Define a family of estimators, β̂W as

β̂W = argmin
β

(
Z ′Y − Z ′Xβ

)′W (
Z ′Y − Z ′Xβ

)
where W is a m ×m full rank, positive definite symmetric matrix.

I This M-estimator is an example of what is known as the Generalised
Method of Moments (GMM) estimator.

I Different choices of W lead to different estimators unless m = k.
I The choice among these is commonly made by considering their

accuracy. We consider the limiting distribution of the GMM estimator
for alternative choices of W and choose W to minimise the variance
of the limiting distribution of n1/2(β̂W − β0).

I In standard cases this means choosing W to be proportional to a
consistent estimator of the inverse of the variance of the limiting
distribution of n1/2 (Z ′Y − Z ′Xβ).
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Instrumental Variables GMM

Generalised Instrumental Variables Estimation
I Write β̂W explicitly in terms of sample moments:

β̂W = argmin
β

(Z ′nyn − Z ′nXnβ

n1/2

)′
W
(Z ′nyn − Z ′nXnβ

n1/2

)
I Consider what the (asymptotically) efficient choice of W is by

examining the variance of n−1/2(Z ′nyn − Z ′nXnβ).
I We have, since yn = Xnβ + εn,

n−1/2(Z ′nyn)− n−1/2(Z ′nXn)β = n−1/2(Z ′nεn)

and if we suppose that Var(εn|Zn) = σ2In,

Var
(
n−1/2(Z ′nεn)|Zn

)
= σ2(n−1Z ′nZn).

This suggests choosing W = (n−1Z ′nZn)−1 leading to the following
minimisation problem:

β̂n = argmin
β

(
Z ′nyn − Z ′nXnβ

)′
(Z ′nZn)−1

(
Z ′nyn − Z ′nXnβ

)
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Instrumental Variables GMM

Generalised Instrumental Variables Estimation

I The first order conditions for this problem, satisfied by β̂n are:

2β̂′n(X ′nZn)(Z ′nZn)−1(Z ′nXn)− 2(X ′nZn)(Z ′nZn)−1(Z ′nyn) = 0

leading to the following estimator.

β̂ =
(
X ′Z (Z ′Z )−1Z ′X

)−1
X ′Z (Z ′Z )−1Z ′y

This is known as the generalised instrumental variable estimator
(GIVE). Also know as 2SLS.
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Instrumental Variables GMM

Variance of 2SLS Estimator

I By noting PZ = Z (Z ′Z )−1Z ′, we can rewrite the estimator as:

β̂2SLS = (X ′PZX )−1X ′PZY

I The 2SLS estimator can be shown to be asymptotically normal
distributed with estimated asymptotic variance

V (β̂2SLS) = N(X ′PZX )−1[X ′Z (Z ′Z )−1Σ̂(Z ′Z )−1Z ′X ](X ′PZX )−1

with Σ̂ = N−1
∑

i
ε̂2i ziz ′i

I Under homoskedasticity,

V (β̂2SLS) = σ2(X ′PZX )−1
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Instrumental Variables GMM

GIVE and Two Stage OLS
I Suppose there is a model for X ,

X = ZΦ + V

where E [V |Z ] = 0. The OLS estimator of Φ is

Φ̂n =
(
Z ′nZn

)−1 Z ′nXn

and the “predicted value” of X for a given Z is

X̂n = Zn
(
Z ′nZn

)−1 Z ′nXn.

Note that
X̂ ′nX̂n = X ′nZn(Z ′nZn)−1Z ′nXn

and
X̂ ′nyn = X ′nZn(Z ′nZn)−1Z ′nyn.

So the Generalised Instrumental Variables Estimator can be written as

β̂n =
(
X̂ ′nX̂n

)−1
X̂ ′nyn.

that is, as the OLS estimator of the coefficients of a linear relationship
between yn and the predicted values of Xn got from OLS estimation of a linear
relationship between Xn and the instrumental variables Zn.
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Instrumental Variables GMM

Example: Return to Schooling: TSLS
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Instrumental Variables GMM

Example: Return to Schooling: OLS and TSLS
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Instrumental Variables GMM

Example: Does Trade cause Growth?

I Jeffrey A. Frankel and David Romer (1999) "Does Trade cause
Growth?", AER.

I Regressing growth rates on trade may lead to biased estimates. Issues
with omitted variables.

I Idea: instrument trade with geographical information: distance to
trade partners, whether country is landlocked, whether they share a
border.

I They construct a prediction of trade, based on these variables.
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Instrumental Variables GMM

Example: Does Trade cause Growth?
First stage equation:

ln(τij/GDPi ) = αXij + vi
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Instrumental Variables GMM

Example: Does Trade cause Growth?
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Instrumental Variables GMM

Example: Does Trade cause Growth?
I The equation of interest is:

lnYi = β0 + βTTi + XiβX + ui

where Yi is income per capita in country i and Ti is the trade share.
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Instrumental Variables GMM

Examples: Measurement Errors
I Suppose we are measuring the impact of income, X , on consumption,

Y . The true model is:
Yi = β0 + β1Xi + ui

β0 = 0, β1 = 1
I Suppose we have two measures of income, both with measurement

errors.
I X̌1i = Xi + v1i , s.d .(v1i ) = 0.2 ∗ Ȳ
I X̌2i = Xi + v2i , s.d .(v2i ) = 0.4 ∗ Ȳ

If we use X̌2 to instrument X̌1, we get:

β̂1 =

N∑
i=1

(X̌2i − ¯̌X2)(Yi − Ȳ )

N∑
i=1

(X̌2i − ¯̌X2)(X̌1i − ¯̌X1)
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Instrumental Variables GMM

Examples: Measurement Errors

I Results:
Method Estimate of β1
OLS regressing Y on X̌1 0.88
OLS regressing Y on X̌2 0.68
IV, using X̌2 as instrument 0.99
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Instrumental Variables LATE

IV with Potentially Heterogeneous Outcomes

I Up to now, we have assumed that the effect of X on Y is common to
all individuals.

I We are now considering the case with heterogenous outcomes:

Yi = α + βiXi + ui

I Suppose that we have an instrument Zi . What is the IV methodology
uncovering?

I To fix ideas, we could be interested in the effect of college (Xi = 1)
on earnings (Yi ), where Zi is an indicator variable equal to 1 if the
individual is eligible for a voucher to pay for part of the tuition fees.
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Instrumental Variables LATE

The Setup

I Suppose we are interested in an outcome Yi , as a function of a
variable Xi . Suppose to make things simple that Xi takes only two
values, 0 or 1 (a dummy variable, termed also the treatment). This
variable is potentially endogenous.

I Suppose that we have an instrument Zi , which also takes two values,
0 or 1. Define X0i = Xi |Zi = 0, we can write:

Xi = X0i + (X1i − X0i )Zi

which implies:
Xi = π0 + π1iZi + ξi

with π1i = (X1i − X0i ) and π0 = E (X0i ).
I Denote by Yi (x , z) the outcome of individual i when Xi = x and

Zi = z .
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Instrumental Variables LATE

Assumption 1: Independence

I The instrument Zi is independent of the potential outcomes and of
the explanatory variable Xi . We write it:

{Yi (X1i , 1),Yi (X0i , 0),X1i ,X0i} ⊥ Zi

I Note that this assumption is enough to interpret causally the reduced
form, the regression of Yi on Zi .

I In our example, the voucher should be given randomly, and not
specifically to those who would go to college any way, nor to those
with higher productivity in the labor market.
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Instrumental Variables LATE

Assumption 2: Exclusion restriction

I Yi is a function of only Xi . In other words, Zi does not affect Yi
directly, but only through its effect on Xi

I If this is verified, we can write more simply: Yi = Yi (Xi ) as the value
of Zi is irrelevant once we know Xi .

Yi = Yi (0,Zi ) + [Yi (1,Zi )− Yi (0,Zi )]Xi

= Yi0 + [Yi (1)− Yi (0)]Xi

= α + βiXi + ui

I In our example, earnings depend only on going to college or not. The
fact that one received a voucher has to be irrelevant. Hence the
instrument cannot be a prize based on merit, which could be
observable by the employer and give some further signal about
quality, over and above college education.
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Instrumental Variables LATE

Assumption 3: First stage

I We assume that E (X1i − X0i ) 6= 0, which means that the instrument
(Zi) actually influence the explanatory variable Xi .

I In our example, the voucher has to induce students to go to college.
Otherwise, there is no variation in the first stage and the IV would
break down.

Juan Dolado (EUI) Econometrics Block II November 4, 2014 46 / 260



Instrumental Variables LATE

Assumption 4: Monotonicity

I X1i − X0i ≥ 0 or X1i − X0i ≤ 0, ∀i . This means that the instrument
affects every one in the same way.

I In our example, it means that the voucher would only induce more
people to go to college. What we are ruling out is that someone who
would have gone to college without a voucher, would decide not to if
he/she was given a voucher. This population is sometimes called the
defiers.

I This is an assumption that is not needed in the homogenous case.
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Instrumental Variables LATE

LATE Theorem

I Suppose the following properties hold true:
I independence: {Yi (X1i , 1),Yi (X0i , 0),X1i ,X0i} ⊥ Zi ,
I exclusion: Yi (x , 0) = Yi (x , 1)∀d ,
I the existence of a first stage: E (X1i − X0i ) 6= 0,
I monotonicity: X1i − X0i ≥ 0 or X1i − X0i ≤ 0, ∀i ,

I LATE theorem:

LATE =
E (Yi |Zi = 1)− E (Yi |Zi = 0)

E (Xi |Zi = 1)− E (Xi |Zi = 0)

= E (Yi1 − Yi0|X1i > X0i )

= E (βi |π1i > 0)

I What IV identifies is not necessarily E (βi ).
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Instrumental Variables LATE

Proof

I From the independence assumption:
E [Yi |Zi = 1] = E [Yi (0) + [Yi (1)− Yi (0)]X1i ] and
E [Yi |Zi = 0] = E [Yi (0) + (Yi (1)− Yi (0))X0i ] so that the numerator is:

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (1)− Yi (0))(Xi (1)− Xi (0)]

I The monotonicity assumption states that (Xi (1)− Xi (0)) is either one or
zero.

E [Yi |Zi = 1]− E [Yi |Zi = 0] = E [Yi (1)− Yi (0)|X1i > X0i ]P(Xi (1) > Xi (0))

I A similar arguments leads to:

E (Xi |Zi = 1)− E (Xi |Zi = 0) = E [Xi (1)− Xi (0)] = P(Xi (1) > Xi (0))
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Instrumental Variables LATE

Interpretation of LATE

I Note that the IV estimates depends on the IV we choose. Different IV
will give us different results. This is because the population for which
X1i > X0i depends on the instrument at hand. Take for instance the
example of a school voucher. If the voucher is equal to e100, many
students would be indifferent, and only the ones who are most
successful at learning will enrol in college. In this case, the LATE
estimate will be large. As the voucher is increased, say to e10,000,
many more students with lower ability will enrol, so that the LATE
estimate will be lower.

I The IV uncover the causal effect for the population under study. This
is called internal validity. However, this estimate may have little to
say about the effect of schooling in general (E (βi )) or for a different
experiment (external validity).
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Regression Discontinuity

Section 3

Regression Discontinuity
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Regression Discontinuity

Regression Discontinuity (RD)

I The basic idea is to exploit a local discontinuity in the explanatory
variable. It requires the existence of a discontinuity at X = x .

I RD estimates the local average treatment effect (LATE) of the
treatment at a given point.

I Under suitable assumptions, RD is like a randomized experiment at
that cutpoint.

I Requires minimal assumptions to get a causal estimate, but it requires
to have a sharp discontinuity in the data, at a point which is
economically interesting.
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Regression Discontinuity

Formal Description

I Denote by Yi the outcome variable, and by Xi the explanatory one,
which can take only two values {0, 1}. We call Y0i and Y1i the
outcome for individual i under the two possible regimes.

I Note that in the data we only observe one of these outcomes, so that
we cannot compute E (Y1i − Y0i ) the average treatment effect.

I Suppose that there exists a continuous variable Zi such as:

Xi = 1{Zi ≥ c}

I We assume that E (Y1i |Z ) and E (Y0i |Z ) are continuous in Z at the
cutoff point c.
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Regression Discontinuity

Graphical example
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Regression Discontinuity

Defining the estimator

I We define the causal effect of X on Y as:

τRD = E [Y1i − Y0i |Zi = c]

I This cannot be computed with data, but we can compute something
close to it:

τ̂RD = lim
ε→0+

E [Yi |Zi = c + ε]− lim
ε→0−

E [Yi |Zi = c + ε]

= lim
ε→0+

E [Y1i |Zi = c + ε]− lim
ε→0−

E [Y0i |Zi = c + ε]

I Some extrapolation is required because by design there are no
individuals observed at the exact threshold. In other words, there is
no overlap of individuals with similar Z s.
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Regression Discontinuity

Practical considerations
I In practice, the extrapolation may impact on the results. With few

data points on each side of the discontinuity, the estimation will rely
on points too far off. The model may include a trend, which will
confound the results:

Yi = α0 + α1Zi + βXi + ui

In this case, we need to perform two separate regressions, for Xi
below and above the cutoff, of Yi on Zi . This can be generalized to a
case where the effect of Zi is non linear but (sufficiently) smooth.
However, if the non-linearity is at the discontinuity, one may get
spurious effects.

I To evaluate the plausibility of uncovering a causal estimate, one have
to show that other explanatory variables do not jump around the
discontinuity. We need to ensure that they are smooth.
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Regression Discontinuity

Graphical example 2

Note: The DGP is: yi = α0 + α1Zi + βXi + ui
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Regression Discontinuity

Graphical example 3

Note: The DGP is in fact: yi = Φ(α(zi − γ)) + βXi + ui with β = 0
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Regression Discontinuity

Example

I Card, Chetty and Weber (2007) QJE “CASH-ON-HAND AND
COMPETING MODELS OF INTERTEMPORAL BEHAVIOR: NEW EVIDENCE
FROM THE LABOR MARKET”

I Investigate the effect of severance payment on subsequent
unemployment duration. In a permanent income model, the payment
should have almost no effect on behavior.

I Individuals in work for more than 3 years are entitled to about e2,300
when laid-off.
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Regression Discontinuity

Duration of unemployment

Card, Chetty and Weber (2007)
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Regression Discontinuity

Prior Number of Layoffs

Card, Chetty and Weber (2007)
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Regression Discontinuity

Prior Number of Jobs

Card, Chetty and Weber (2007)
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Regression Discontinuity

Prior Annual Wage

Card, Chetty and Weber (2007)
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Quantile Regressions

Motivation

I Most of econometrics work is to assess the average effect.
I Sometimes, we are interested in a more general characterization of a

policy. For example, what is the effect of a training program for
unemployed individuals on the duration of unemployment.

I The mean effect may be small.
I The program may lengthen short duration spells and shorten very long

spells.
I To investigate whether heterogenous effects exist, we need to extend

the regression framework to investigate the effect at various points of
the distribution.
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Quantile Regressions

Definition

I Let Y be a real valued random variable:
I We can characterize it by its distribution function (or cdf):

F (y) = Prob(Y ≤ y)

I or by its τ th quantile of Y : for any 0 < τ < 1

Q(τ) = inf{y : F (y) ≥ τ}
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Quantile Regressions

Definition

I For instance, Q(1/2) is the median.
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Quantile Regressions

Quantiles and the Check Function
I Define the check function:

ρτ (u) = u.(τ − Iu<0)

I The quantiles are the solution to a simple optimization problem

Eρτ (Y − ŷ) = (τ − 1)

∫ ŷ

−∞
(y − ŷ)dF (y) + τ

∫ ∞
ŷ

(y − ŷ)dF (y)

I Minimizing on ŷ we get the FOC:

0 = (1− τ)

∫ ŷ

−∞
dF (y)− τ

∫ ∞
ŷ

dF (y) = F (ŷ)− τ
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Quantile Regressions

Empirical Estimator

I Suppose we have N data {Yi}. The empirical objective function
which defines the quantile is

ξ̂τ = arg min
ξ∈IR

n∑
i=1

ρτ (yi − ξ)

I This function is piecewise linear and non-differentiable.
I The optimum may be flat: quantile not necessarily point-identified (in

case you have ties).
I When there is point-identification, the solution is one of the

observation.
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Quantile Regressions

Shape of the Objective Function

I Data Y = {−5,−2, 1, 2}.
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Quantile Regressions

Quantile Regression

I Suppose that we now have observable characteristics X .
I Instead of finding a unique value ξτ for each group of individual with

similar X , we may want to explore how this value varies with different
explanatory variables.

ξτ = Xβτ
I The objective function is then

R(βτ ) =
N∑

i=1
ρτ (Yi − Xiβτ )

I It is differentiable except at the points where Yi = Xiβτ .
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Quantile Regressions

Link with Standard Models: Homoskedasticity

I Consider the model with homoskedasticity:

Yi = Xiβ + ui ui ∼ N (0, σ2)

I We have that
P(u < σΦ−1(τ)|X ) = τ

P(Yi < Xβ + σΦ−1(τ)|X ) = τ

so
Qτ (Y |X ) = Xβ + σΦ−1(τ)

In this model, the effect of X is the same for all quantiles, only the
intercept differs with τ .
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Quantile Regressions

Link with Standard Models: Heteroskedasticity

I Consider the model with heteroskedasticity:

Yi = Xiβ + ui ui ∼ N (0, σ2(X )) σ2(X ) = (Xλ)2

I We have that
P(u < XλΦ−1(τ)|X ) = τ

P(Yi < Xβ + XλΦ−1(τ)|X ) = τ

so
Qτ (Y |X ) = Xβ + XλΦ−1(τ) = X (β + λΦ−1(τ))

In this model, the effect of X differs across quantiles.
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Quantile Regressions

Properties of Quantiles
I Quantiles are equivariant to monotone transformations. That is,

Qh(Y )|X (τ |X ) = h
(
QY |X (τ |X )

)
for any monotone function h(). For example, the conditional median
of log earnings is the log of the conditional median of earnings. This
follows from the fact that:

Prob(T < t|X ) = Prob(h(T ) < h(t)|X )

Note that this is not true for means: E (h(T )|X ) 6= h(E (T |X )).
I Quantiles are robust to outliers on Y .
I Median regression estimators can be more efficient than mean

regression estimators when the error term is non-normal.
I Quantile regression allows one to detect heteroskedasticity.
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Quantile Regressions Properties of Quantile Regression Estimators

Asymptotic Distribution
I For a given quantile τ :

Yi = Xiβτ + ui ,τ Quantτ (ui ,τ |Xi ) = 0

I Define the quantile residual as: ûi = Yi − Xi β̂τ . Under weak
conditions,

√
N(β̂τ − βτ ) is asymptotically normal with variance

A−1BA−1.
A = E [fu(0|Xi )X ′i Xi ]

and
B = τ(1− τ)E (X ′i Xi )

I A consistent estimator of A is:

Â = (2NhN)−1
N∑

i=1
I (|ûi ,τ | ≤ hN)X ′i Xi

where {hN > 0} is a nonrandom sequence shrinking to zero as
N →∞. For instance hN = aN−1/3, a > 0.
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Quantile Regressions Properties of Quantile Regression Estimators

Asymptotic Distribution

I If ui and Xi are independent,

Avar(
√
N(β̂τ − βτ ) =

τ(1− τ)

[fu(0)]2
E (X ′i Xi )

−1

and Avar(β̂τ ) is estimated as:

̂Avar(β̂τ ) =
τ(1− τ)

[fu(0)]2

(
N−1

N∑
i=1

X ′i Xi

)−1

with

f̂u(0) = (2NhN)−1
N∑

i=1
I[|ûi ,τ | ≤ hN ]
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Quantile Regressions Example: Return to Education

Example: Return to Education

I Data from the Swedish Inland Revenue, merged with Education
Register.

I Data on 573,247 men. We record their mean earnings in 4 years and
the number of years of education.

I How does schooling affect earnings? Its mean? Its distribution?
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Quantile Regressions Example: Return to Education

Return to Education

Summary of logink
Years of schooling Mean Std. Dev. Freq.
8 5.0393588 .94620853 115182
11 5.182954 .79510023 219535
12 5.3377052 .84006766 66120
14 5.4758962 .74572105 83056
15.5 5.7930574 .69850008 67731
19 5.9640555 .57545454 5513
Total 5.2972029 .84945648 557137
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Quantile Regressions Example: Return to Education

Return to Education
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Quantile Regressions Example: Return to Education

Return to Education
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Quantile Regressions Example: Return to Education

Return to Education
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Quantile Regressions Example: Return to Education

Return to Education
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Quantile Regressions Example: Return to Education

Return to Education

OLS 10th Median 90th
Years of Educ .093 (.0004) .14 (.001) .064 (.00023) .089 (.00041)
Constant 4.21 (.005) 2.94 (.014) 4.73 (.0028) 4.89 (.0048)

I Education has a complex effect on earnings:
I Increase mean earnings.
I Increases the earnings at the bottom of the distribution. Individuals are

less likely to have really low wages.
I Increases the earnings at the top of the distribution as well.

I Ambiguous effect a priori on the dispersion (inequality) in wages.
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Quantile Regressions Example: Return to Education

Return to Experience in the US

I Buchinsky (1994) Econometrica "Changes in the U.S. Wage Structure
1963-1987: Application of Quantile Regression"

I Uses the March Current Population Survey (March CPS) for 1964
through 1988. Contains between 10,000 and 34,000 observations each
year. Sample consists of black and white males between 18 and 70.

I Model:
Log Incomei ,t = Xi ,tβt,τ + ui ,t,τ

where Xi ,t contains a constant, years of schooling, experience,
experience squared, race.
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Quantile Regressions Example: Return to Education

Return to Education in the US
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Quantile Regressions Example: Return to Education

Return to Education in the US

I General increase in the return to schooling over 1963-1987.
I However, similar increase at all quantiles.
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Quantile Regressions Quantile Treatment Effects

Quantile Treatment Effects

I Analogous to the Treatment Effect literature in models with
heterogenous effects.

I Define the potential outcome of being treated as Y (1) and the of not
being treated as Y (0).

I The quantile treatment effect is defined as:

∆τ = q1,τ − q0,τ

with
qj,τ : Prob(Y (j) ≤ q) = τ, j = 0, 1

I Quantile regression with the treatment dummy:

QYi (τ |Ti ) = α(τ) + δ(τ)Ti
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Quantile Regressions Quantile Treatment Effects

Quantile Treatment Effect: Location Shift

I The effect of the treatment is just to shift the entire distribution to
the right, uniformly.

δ(τ) = δ, ∀τ
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Quantile Regressions Quantile Treatment Effects

Quantile Treatment Effect: Scale Shift

I The effect of the treatment is to increase the variance, without a
change in mean.

δ(τ) < 0 ∀τ < 0.5
δ(τ) > 0 ∀τ > 0.5
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Quantile Regressions Quantile Treatment Effects

Example: Effect of Parental Death on Children

I Adda et al (2011) investigate the effect of parental death on
children’s long-term outcomes.

I Extensive administrative data on parental death, income, cognitive
and non cognitive outcomes.

I They look at mean effect by gender and by parental death. One issue
may also be that parental death affects not only the mean but the
whole distribution of outcomes. They also present results on log
earnings:

log Earningsi = α0,τ + βτDeathi + γτXi + ui ,τ

I Deathi = 1 if the child lost one of his/her parent before turning 18.
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Quantile Regressions Quantile Treatment Effects

Example: Effect on Log Earnings
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Estimation in non-linear regression models

Section 5

Estimation in non-linear regression models
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Estimation in non-linear regression models

Estimation in non-linear regression models
I An obvious extension to the linear regression model studied so far is

the non-linear regression model:
E [Y |X = x ] = g(x , θ)

equivalently, in regression function plus error form:
Y = g(x , θ) + ε

E [ε|X = x ] = 0.
Consider M-estimation and in particular the non-linear least squares
estimator obtained as follows.

θ̂ = argmin
θ∗

n−1
n∑

i=1
(Yi − g(xi ; θ

∗))2

I For now we just consider how a minimising value θ̂ can be found.
Many of the statistical software packages have a routine to conduct
non-linear optimisation and some have a non-linear least squares
routine. Many of these routines employ a variant of Newton’s method.
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Estimation in non-linear regression models

Numerical optimisation: Newton’s method and variants

I Write the minimisation problem as:

θ̂ = argmin
θ∗

Q(θ∗).

Newton’s method involves taking a sequence of steps, θ0, θ1, . . . ,
θm, . . . θM from a starting value, θ0 to an approximate minimising
value θM which we will use as our estimator θ̂.

I The starting value is provided by the user. One of the tricks is to use
a good starting value near to the final solution. This sometimes
requires some thought.
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Estimation in non-linear regression models

Numerical optimisation: Newton’s method and variants
I Suppose we are at θm. Newton’s method considers a quadratic

approximation to Q(θ) which is constructed to be an accurate
approximation in a neighbourhood of θm, and moves to the value
θm+1 which minimises this quadratic approximation.

I At θm+1 a new quadratic approximation, accurate in a neighbourhood
of θm+1 is constructed and the next value in the sequence, θm+2, is
chosen as the value of θ minimising this new approximation.

I Steps are taken until a convergence criterion is satisfied. Usually this
involves a number of elements. For example one might continue until
the following conditions is satisfied:

Qθ(θm)′Qθ(θm) ≤ δ1, |Q(θm)− Q(θm−1)| < δ2.

Convergence criteria vary form package to package. Some care is
required in choosing these criteria. Clearly δ1 and δ2 above should be
chosen bearing in mind the orders of magnitude of the objective
function and its derivative.
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Estimation in non-linear regression models

Numerical optimisation: Newton’s method and variants
I The quadratic approximation used at each stage is a quadratic Taylor series

approximation. At θ = θm,

Q(θ) ' Q(θm)+(θ − θm)′Qθ(θm)+
1
2 (θ − θm)′Qθθ′(θm) (θ − θm) = Qa(θ, θm).

The derivative of Qa(θ, θm) with respect to θ is

Qa
θ (θ, θm) = Qθ(θm) + Qθθ′(θm) (θ − θm)

and θm+1 is chosen as the value of θ that solves Qa
θ (θ, θm) = 0, namely

θm+1 = θm − Qθθ′(θm)−1Qθ(θm).
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Estimation in non-linear regression models

Numerical optimisation: Newton’s method and variants
There are a number of points to consider here.
1. Obviously the procedure can only work when the objective function is twice

differentiable with respect to θ.
2. The procedure will stop whenever Qθ(θm) = 0, which can occur at a maximum

and saddlepoint as well as at a minimum. The Hessian, Qθθ′(θm), should be
positive definite at a minimum of the function.

3. When a minimum is found there is no guarantee that it is a global minimum. In
problems where this possibility arises it is normal to run the optimisation from a
variety of start points to guard against using an estimator that corresponds to a
local minimum.

4. If, at a point in the sequence, Qθθ′(θm) is not positive definite then the algorithm
may move away from the minimum and there may be no convergence. Many
minimisation (maximisation) problems we deal with involve globally convex
(concave) objective functions and for these there is no problem. For other cases,
Newton’s method is usually modified, e.g. by taking steps

θm+1 = θm − A(θm)−1Qθ(θm)

where A(θm) is constructed to be positive definite and in cases in which Qθθ′(θm)
is in fact positive definite, to be a good approximation to Qθθ′(θm).
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Estimation in non-linear regression models

Numerical optimisation: Newton’s method and variants
5. The algorithm may “overstep” the minimum to the extent that it

takes an “uphill” step, i.e. so that Q(θm+1) > Q(θm). This is guarded
against in many implementations of Newton’s method by taking steps

θm+1 = θm − α(θm)A(θm)−1Qθ(θm)

where α(θm) is a scalar step scaling factor, chosen to ensure that
Q(θm+1) < Q(θm).

6. In practice it may be difficult to calculate exact expressions for the
derivatives that appear in Newton’s method. In some cases symbolic
computational methods can help. In others we can use a numerical
approximation, e.g.

Qθi (θm) ' Qθ(θm + δiei )− Qθ(θm)

δi

where ei is a vector with a one in position i and zeros elsewhere, and
δi is a small perturbing value, possibly varying across the elements of
θ.
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Estimation in non-linear regression models

Numerical Optimisation: Example
I Function y = sin(x/10) ∗ x2.
I This function has many (an infinite) number of local minimas.
I Start off the nonlinear optimisation at various points.
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Maximum Likelihood Methods

Section 6

Maximum Likelihood Methods
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Maximum Likelihood Methods

Maximum Likelihood Methods
I Some of the models used in econometrics specify the complete

probability distribution of the outcomes of interest rather than just a
regression function.

I Sometimes this is because of special features of the outcomes under
study - for example because they are discrete or censored, or because
there is serial dependence of a complex form.

I When the complete probability distribution of outcomes given
covariates is specified we can develop an expression for the probability
of observation of the responses we see as a function of the unknown
parameters embedded in the specification.

I We can then ask what values of these parameters maximise this
probability for the data we have. The resulting statistics, functions of
the observed data, are called maximum likelihood estimators. They
possess important optimality properties and have the advantage that
they can be produced in a rule directed fashion.
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Maximum Likelihood Methods

Estimating a Probability
I Suppose Y1, . . .Yn are binary independently and identically distributed

random variables with P[Yi = 1] = p, P[Yi = 0] = 1− p for all i .
I We might use such a model for data recording the occurrence or

otherwise of an event for n individuals, for example being in work or not,
buying a good or service or not, etc.

I Let y1, . . . , yn indicate the data values obtained and note that in this
model

P[Y1 = y1 ∩ · · · ∩ Yn = yn, p] =
n∏

i=1
pyi (1− p)(1−yi )

= p
∑n

i=1 yi (1− p)
∑n

i=1(1−yi )

= £(p; y).

With any set of data £(p; y) can be calculated for any value of p between
0 and 1. The result is the probability of observing the data to hand for
each chosen value of p.

I One strategy for estimating p is to use that value that maximises this
probability. The resulting estimator is called the maximum likelihood
estimator (MLE) and the maximand, £(p; y), is called the likelihood
function.
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Maximum Likelihood Methods

Log Likelihood Function
I The maximum of the log likelihood function, L(p; y) = log£(p, y), is

at the same value of p as is the maximum of the likelihood function
(because the log function is monotonic).

I It is often easier to maximise the log likelihood function (LLF). For
the problem considered here the LLF is

L(p; y) =

( n∑
i=1

yi

)
log p +

n∑
i=1

(1− yi ) log(1− p).

Let
p̂ = argmax

p
L(p; y) = argmax

p
£(p; y).

On differentiating we have the following.

q(p; y) =
1
p

n∑
i=1

yi −
1

1− p

n∑
i=1

(1− yi ) score

Q(p; y) = − 1
p2

n∑
i=1

yi −
1

(1− p)2

n∑
i=1

(1− yi ) hessian

Note that Q(p; y) is always negative for admissable p so the
optimisation problem has a unique solution corresponding to a
maximum. The solution to q(p̂; y) = 0 is

p̂ =
1
n

n∑
i=1

yi

just the mean of the observed values of the binary indicators,
equivalently the proportion of 1’s observed in the data.
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Maximum Likelihood Methods

Likelihood Functions and Estimation in General
I Let Yi , i = 1, . . . , n be continuously distributed random variables with joint

probability density function f (y1, . . . , yn, θ).
I The probability that Y falls in infinitesimal intervals of width dy1, . . . dyn

centred on values y1, . . . , yn is
A = f (y1, . . . , yn, θ)dy1dy2 . . . dyn

Here only the joint density function depends upon θ and the value of θ that
maximises f (y1, . . . , yn, θ) also maximises A.

I In this case the likelihood function is defined to be the joint density function
of the Yi ’s.

I When the Yi ’s are discrete random variables the likelihood function is the
joint probability mass function of the Yi ’s, and in cases in which there are
discrete and continuous elements the likelihood function is a combination of
probability density elements and probability mass elements.

I In all cases the likelihood function is a function of the observed data values
that is equal to, or proportional to, the probability of observing these
particular values.
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Maximum Likelihood Methods

Likelihood Functions and Estimation in General
I When Yi , i = 1, . . . , n are independently distributed the joint density (mass)

function is the product of the marginal density (mass) functions of each Yi ,
the likelihood function is

£(y ; θ) =
n∏

i=1
fi (yi ; θ),

There is a subscript i on f to allow for the possibility that each Yi has a
distinct probability distribution.

I This situation arises when modelling conditional distributions of Y given
some covariates x . In particular, fi (yi ; θ) = fi (yi |xi ; θ), and often
fi (yi |xi ; θ) = f (yi |xi ; θ).

I In time series and panel data problems there is often dependence among the
Yi ’s. For any list of random variables Y = {Y1, . . . ,Yn} define the i − 1
element list Yi− = {Y1, . . . ,Yi−1}. The joint density (mass) function of Y
can be written as

f (y) =
n∏

i=2
fyi |yi−(yi |yi−)fy1(y1),
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Maximum Likelihood Methods

Invariance
I Note that (parameter free) monotonic transformations of the Yi ’s (for

example, a change of units of measurement, or use of logs rather than the
original y data) usually leads to a change in the value of the maximised
likelihood function when we work with continuous distributions.

I If we transform from y to z where y = h(z) and the joint density function of
y is fy (y ; θ) then the joint density function of z is

fz (z ; θ) =

∣∣∣∣∂h(z)

∂z

∣∣∣∣ fy (h(z); θ).

I For any given set of values, y∗, the value of θ that maximises the likelihood
function fy (y∗, θ) also maximises the likelihood function fz (z∗; θ) where
y∗ = h(z∗), so the maximum likelihood estimator is invariant with respect
to such changes in the way the data are presented.

I However the maximised likelihood functions will differ by a factor equal to∣∣∣∂h(z)
∂z

∣∣∣
z=z∗

.
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Maximum Likelihood Methods

Maximum Likelihood: Properties

I Maximum likelihood estimators possess another important invariance
property. Suppose two researchers choose different ways in which to
parameterise the same model. One uses θ, and the other uses
λ = h(θ) where this function is one-to-one. Then faced with the same
data and producing estimators θ̂ and λ̂, it will always be the case that
λ̂ = h(θ̂).

I There are a number of important consequences of this:
I For instance, if we are interested in the ratio of two parameters, the

MLE of the ratio will be the ratio of the ML estimators.
I Sometimes a re-parameterisation can improve the numerical properties

of the likelihood function. Newton’s method and its variants may in
practice work better if parameters are rescaled.
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Maximum Likelihood Methods

Maximum Likelihood: Improving Numerical Properties

I An example of this often arises when, in index models, elements of x involve
squares, cubes, etc., of some covariate, say x1. Then maximisation of the
likelihood function may be easier if instead of x21 , x31 , etc., you use x21 /10,
x31 /100, etc., with consequent rescaling of the coefficients on these
covariates. You can always recover the MLEs you would have obtained
without the rescaling by rescaling the estimates.
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Maximum Likelihood Methods

Maximum Likelihood: Improving Numerical Properties

I There are some cases in which a re-parameterisation can produce a globally
concave likelihood function where in the original parameterisation there was
not global concavity.

I An example of this arises in the “Tobit” model.
I This is a model in which each Yi is N(x ′i β, σ2) with negative

realisations replaced by zeros. The model is sometimes used to model
expenditures and hours worked, which are necessarily non-negative.

I In this model the likelihood as parameterised here is not globally
concave, but re-parameterising to λ = β/σ, and γ = 1/σ, produces a
globally concave likelihood function.

I The invariance property tells us that having maximised the “easy”
likelihood function and obtained estimates λ̂ and γ̂, we can recover the
maximum likelihood estimates we might have had difficulty finding in
the original parameterisation by calculating β̂ = λ̂/γ̂ and σ̂ = 1/γ̂.
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Maximum Likelihood Methods

Properties Of Maximum Likelihood Estimators
I First we just sketch the main results:

I Let L(θ;Y ) be the log likelihood function now regarded as a random variable, a
function of a set of (possibly vector) random variables Y = {Y1, . . . ,Yn}.

I Let q(θ;Y ) be the gradient of this function, itself a vector of random variables
(scalar if θ is scalar) and let Q(θ;Y ) be the matrix of second derivatives of this
function (also a scalar if θ is a scalar).

I Let
θ̂ = argmax

θ
L(θ;Y ).

In order to make inferences about θ using θ̂ we need to determine the
distribution of θ̂. We consider developing a large sample approximation. The
limiting distribution for a quite wide class of maximum likelihood problems is as
follows:

n1/2(θ̂ − θ)
d→ N(0,V0)

where
V0 = − plim

n→∞
(n−1Q(θ0;Y ))−1

and θ0 is the unknown parameter value. To get an approximate distribution
that can be used in practice we use (n−1Q(θ̂;Y ))−1 or some other consistent
estimator of V0 in place of V0.

Juan Dolado (EUI) Econometrics Block II November 4, 2014 109 / 260



Maximum Likelihood Methods

Variance of ML Estimator
I An alternative way of “estimating ” V0, is:

V̂ o
0 =

{
n−1q(θ̂;Y )q(θ̂;Y )′

}−1
which compared with

Ṽ o
0 =

{
−n−1Q(θ̂;Y )

}−1
has the advantage that only first derivatives of the log likelihood
function need to be calculated. Sometimes V̂ o

0 is referred to as the
“outer product of gradient” (OPG) estimator.

I Maximum likelihood estimators possess optimality property, namely
that, among the class of consistent and asymptotically normally
distributed estimators, the variance matrix of their limiting
distribution is the smallest that can be achieved in the sense that
other estimators in the class have limiting distributions with variance
matrices exceeding the MLE’s by a positive semidefinite matrix.
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Discrete Choice Models

Section 7

Discrete Choice Models
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Discrete Choice Models Probit & Logit

Estimating a Conditional Probability
I Suppose Y1, . . .Yn are binary independently and identically distributed

random variables with

P[Yi = 1|X = xi ] = p(xi , θ)

P[Yi = 0|X = xi ] = 1− p(xi , θ).

This is an obvious extension of the model in the previous section.
I The likelihood function for this problem is

P[Y1 = y1 ∩ · · · ∩ Yn = yn|x ] =
n∏

i=1
p(xi , θ)yi (1− p(xi , θ))(1−yi )

= £(θ; y).

where y denotes the complete set of values of yi and dependence on x is
suppressed in the notation. The log likelihood function is

L(θ; y) =
n∑

i=1
yi log p(xi , θ) +

n∑
i=1

(1− yi ) log(1− p(xi , θ))

and the maximum likelihood estimator of θ is

θ̂ = argmax
θ

L(θ; y).

So far this is an obvious generalisation of the simple problem met in the
last section.
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Discrete Choice Models Probit & Logit

Estimating a Conditional Probability
I To implement the model we choose a form for the function p(x , θ), which

must of course lie between zero and one.
I One common choice is

p(x , θ) =
exp(x ′θ)

1 + exp(x ′θ)

which produces what is commonly called a logit model.
I Another common choice is

p(x , θ) = Φ(x ′θ) =

∫ x ′θ

−∞
φ(w)dw

φ(w) = (2π)−1/2 exp(−w2/2)

in which Φ is the standard normal distribution function. This produces
what is known as a probit model.

I Both models are widely used. Note that in both cases a single index
model is specified, the probability functions are monotonic increasing,
probabilities arbitrarily close to zero or one are obtained when x ′θ is
sufficiently large or small, and there is a symmetry in both of the models
in the sense that p(−x , θ) = 1− p(x , θ).

I Any or all of these properties might be inappropriate in a particular
application but there is rarely discussion of this in the applied
econometrics literature.
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Discrete Choice Models Probit & Logit

More on Logit and Probit
I Both models can also be written as a linear model involving a latent

variable.
I We define a latent variable Y ∗i , which is unobserved, but determined

by the following model:
Y ∗i = Xiθ + εi

We observe the variable Yi which is linked to Y ∗i as:
Yi = 0 if Y ∗i < 0

Yi = 1 if Y ∗i ≥ 0
I The probability of observing Yi = 1 is:

pi = P(Yi = 1) = P(Y ∗i ≥ 0)

= P(Xiθ + εi ≥ 0)

= P(εi ≥ −Xiθ)

= 1− Fε(−Xiθ)

where Fε is the cumulative distribution function of the random
variable ε.

I If εi is distributed normally, the model is the probit model.
I If εi follows an extreme value distribution, the model is the logit

model.
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Discrete Choice Models Probit & Logit

Shape of Logit and Probit Models

Juan Dolado (EUI) Econometrics Block II November 4, 2014 115 / 260



Discrete Choice Models Probit & Logit

Odds-Ratio

I Define the ratio pi/(1− pi ) as the odds-ratio. This is the ratio of the
probability of outcome 1 over the probability of outcome 0. If this
ratio is equal to 1, then both outcomes have equal probability
(pi = 0.5). If this ratio is equal to 2, say, then outcome 1 is twice as
likely than outcome 0 (pi = 2/3).

I In the logit model, the log odds-ratio is linear in the parameters:

ln pi
1− pi

= Xiθ

I In the logit model, θ is the marginal effect of X on the log odds-ratio.
A unit increase in X leads to an increase of θ % in the odds-ratio.
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Discrete Choice Models Probit & Logit

Marginal Effects
I Logit model:

∂pi
∂X =

θ exp(Xiθ)(1 + exp(Xiθ))− θ exp(Xiθ)2

(1 + exp(Xiθ))2

=
θ exp(Xiθ)

(1 + exp(Xiθ))2

= θpi (1− pi )

A one unit increase in X leads to an increase in the probability of
choosing option 1 of θpi (1− pi ).

I Probit model:
∂pi
∂Xi

= θφ(Xiθ)

A one unit increase in X leads to an increase in the probability of
choosing option 1 of θφ(Xiθ).
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Discrete Choice Models Probit & Logit

Maximum Likelihood in Single Index Models
I We can cover both cases by considering general single index models,

so for the moment rewrite p(x , θ) as g(w) where w = x ′θ.
I The log-likelihood is then:

L(θ, y) =
n∑

i=1
yi log(g(wi )) +

n∑
i=1

(1− yi ) log(1− g(wi ))

I The first derivative of the log likelihood function is:

q(θ; y) =
n∑

i=1

gw (x ′i θ)xi
g(x ′i θ)

yi −
gw (x ′i θ)xi
1− g(x ′i θ)

(1− yi )

=
n∑

i=1

(
yi − g(x ′i θ)

) gw (x ′i θ)

g(x ′i θ) (1− g(x ′i θ))
xi

Here gw (w) is the derivative of g(w) with respect to w .
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Discrete Choice Models Probit & Logit

Maximum Likelihood in Single Index Models

I The expression for the second derivative is rather messy. Here we just
note that its expected value given x is quite simple, namely

E [Q(θ; y)|x ] = −
n∑

i=1

gw (x ′i θ)2

g(x ′i θ) (1− g(x ′i θ))
xix ′i ,

the negative of which is the Information Matrix, I(θ) for general
single index binary data models.
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Discrete Choice Models Probit & Logit

Asymptotic Properties of the Logit Model
I For the logit model there is major simplification

g(w) =
exp(w)

1 + exp(w)

gw (w) =
exp(w)

(1 + exp(w))2

⇒ gw (w)

g(w) (1− g(w))
= 1.

Therefore in the logit model the MLE satisfies
n∑

i=1

(
yi −

exp(x ′i θ̂)

1 + exp(x ′i θ̂)

)
xi = 0,

the Information Matrix is

I(θ) =
n∑

i=1

exp(x ′i θ)

(1 + exp(x ′i θ))2
xix ′i ,
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Discrete Choice Models Probit & Logit

Asymptotic Properties of the Logit Model
I the MLE has the limiting distribution

n1/2(θ̂n − θ0)
d→ N(0,V0)

V0 =

(
plim
n→∞

n−1
n∑

i=1

exp(x ′i θ)

(1 + exp(x ′i θ))2
xix ′i

)−1
,

and we can conduct approximate inference using the following
approximation

n1/2(θ̂n − θ0) ' N(0,V0)

using the estimator

V̂0 =

n−1 n∑
i=1

exp(x ′i θ̂)(
1 + exp(x ′i θ̂)

)2 xix ′i


−1

when producing approximate hypothesis tests and confidence
intervals.
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Discrete Choice Models Probit & Logit

Asymptotic Properties of the Probit Model
I In the probit model

g(w) = Φ(w)

gw (w) = φ(w)

⇒ gw (w)

g(w) (1− g(w))
=

φ(w)

Φ(w)(1− Φ(w))
.

Therefore in the probit model the MLE satisfies

n∑
i=1

(
yi − Φ(x ′i θ̂)

) φ(x ′i θ̂)

Φ(x ′i θ̂)(1− Φ(x ′i θ̂))
xi = 0,

the Information Matrix is

I(θ) =
n∑

i=1

φ(x ′i θ)2

Φ(x ′i θ)(1− Φ(x ′i θ))
xix ′i ,
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Discrete Choice Models Probit & Logit

Asymptotic Properties of the Probit Model
I the MLE has the limiting distribution

n1/2(θ̂n − θ0)
d→ N(0,V0)

V0 =

(
plim
n→∞

n−1
n∑

i=1

φ(x ′i θ)2

Φ(x ′i θ)(1− Φ(x ′i θ))
xix ′i

)−1
,

and we can conduct approximate inference using the following
approximation

n1/2(θ̂n − θ0) ' N(0,V0)

using the estimator

V̂0 =

(
n−1

n∑
i=1

φ(x ′i θ̂)2

Φ(x ′i θ̂)(1− Φ(x ′i θ̂))
xix ′i

)−1

when producing approximate tests and confidence intervals.
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Discrete Choice Models Probit & Logit

Example: Logit and Probit

I We have data from households in Kuala Lumpur (Malaysia)
describing household characteristics and their concern about the
environment. The question is
"Are you concerned about the environment? Yes / No".
We also observe their age, sex (coded as 1 men, 0 women), income
and quality of the neighborhood measured as air quality. The latter is
coded with a dummy variable smell, equal to 1 if there is a bad smell
in the neighborhood. The model is:

Concerni = β0 + β1agei + β2sexi + β3 log incomei + β4smelli + ui
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Discrete Choice Models Probit & Logit

Example: Logit and Probit
I We estimate this model with three specifications, linear probability model

(LPM), logit and probit:
Probability of being concerned by Environment

Variable LPM Logit Probit
Est. t-stat Est. t-stat Est. t-stat

age .0074536 3.9 .0321385 3.77 .0198273 3.84
sex .0149649 0.3 .06458 0.31 .0395197 0.31
log income .1120876 3.7 .480128 3.63 .2994516 3.69
smell .1302265 2.5 .5564473 2.48 .3492112 2.52
constant -.683376 -2.6 -5.072543 -4.37 -3.157095 -4.46

Some Marginal Effects
Age .0074536 .0077372 .0082191
log income .1120876 .110528 .1185926
smell .1302265 .1338664 .1429596
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Discrete Choice Models Probit & Logit

Goodness of Fit

I As in linear models, we are generally not interested in the fit of the
model, but rather to test whether some variables are significant or not.

I However, researchers have designed a number of ways to assess the fit
of a discrete choice model:

I Percent correctly predicted: For each observation, we compute the
predicted probability that Yi = 1, given Xi . If that probability is higher
than 1/2 we say that the outcome for individual i is correctly predicted
and vice versa. However, there is no reason to focus on Yi = 1 as an
outcome, and we can look at Yi = 0 as well. Or take an average of
these two measures of goodness of fit.

I pseudo R-squared: There are several ways to compute such a measure
I R = 1− LUR/Lo , where LUR is the log-likelihood of the model and Lo is

the log-likelihood in a model with only a constant.
I 1− SSRUR/SSRo , where SSRUR is the sum of squared residuals

(ûi = Yi − g(Xiθ) and SSRo is the total sum of squares of Yi .
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Discrete Choice Models Probit & Logit

Neglected Heterogeneity

I We consider the probit case which is the simplest to analyze in this
context.

I Suppose we are interested in the following model:

P(Yi = 1) = Φ(Xiθ + γci )

where ci is a scalar.
I We are interested in the partial effect of Xi , holding ci fixed. We

assume that E (ci ) = 0 without loss of generality if Xi contains a
constant.

I We assume that ci is independent of Xi and that ci ∼ N(0, τ2).
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Discrete Choice Models Probit & Logit

Neglected Heterogeneity

I We can write our model in latent variable form:

Y ∗i = Xiθ + γci + ei , ei ∼ N(0, 1)

I Hence γci + ei is normally distributed with mean 0 and variance
σ2 = 1 + γ2τ2 > 1.

I If we neglect ci in our regression, the probit estimation gives:

P(Yi = 1|Xi ) = P(γci + ei > −Xiθ|Xi ) = Φ(Xiθ/σ) = Φ(Xi θ̃)

I In this case the estimation gives us θ̃ < θ as σ > 1. Hence our
estimates are biased towards zero.

I However, the sign of the coefficient is correct, and so is the ratio of
two elements of θ. We may not be interested in the exact magnitude
of the effect of Xi on Yi .
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Discrete Choice Models Probit & Logit

Neglected Heterogeneity and Marginal Effects
I We would like to estimate the marginal effect :

∂P(Yi = 1|Xi , ci )

∂Xij
= θjφ(Xiθ + γci )

but this is impossible as we do not observe ci .
I We can evaluate the marginal effect at ci = 0 which is θjφ(Xiθ).

However, what we identify with our data is: θ̃φ(Xi θ̃). The direction
of the bias is ambiguous because θ̃ < θ, but φ(Xi θ̃) > φ(Xiθ)

I However, we may be interested in the average partial effect:

Ec [θjφ(Xiθ + γci )] =
θj
σ
φ(Xiθ/σ) = θ̃jφ(Xi θ̃)

Hence, the probit, with neglected heterogeneity, consistently
estimates the average partial effect, even though the marginal effect
conditional on a given ci is biased.
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Discrete Choice Models Probit & Logit

Endogenous Explanatory Variables

I Consider the (latent) model:

Y ∗1 = Z1δ1 + α1Y2 + u1 var(u1) = 1
Y2 = Z1δ21 + Z2δ22 + v2 = Zδ2 + v2
Y1 = I(Y ∗1 > 0)

where u1 and v2 have zero mean are are drawn from a bivariate
normal distribution, independent of Z

I In this model, Y2 is endogenous if u1 and v2 are correlated. (We
restrict our analysis to the case where Y2 is continuous.)

I The object of interest is the coefficient α1.
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Discrete Choice Models Probit & Logit

Endogenous Explanatory Variables

I One way to proceed is to estimate the first equation using a LPM and
2SLS, with Z as an instrument. This is fairly straightforward, and
should give a consistent estimate of the average effect.

I We can also deal with the endogeneity directly in a probit framework.
This requires quite strong restrictions on the model.
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Discrete Choice Models Probit & Logit

Endogenous Explanatory Variables
I Write u1 as a function of v2 and a shock independent of Z and v2:

u1 = θ1v2 + e1 θ1 = η1/τ
2
2 , η1 = cov(v2, u1), τ22 = var(v2)

Var(e1) = Var(u1)− η21/τ22 = 1− ρ21
I Write the model as:

Y ∗1 = Z1δ1 + α1Y2 + θ1v2 + e1

P(Y1 = 1|Z ,Y2, v2) = Φ

Z1δ1 + α1Y2 + θ1v2√
1− ρ21


= Φ(Z1δ̃1 + α̃1Y2 + θ̃1v2)

I As ρ21 < 1, the tilded coefficients are larger than the untilded ones,
unless the correlation between v2 and u1 is zero (no endogeneity).
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Discrete Choice Models Probit & Logit

Endogenous Explanatory Variables

I The estimation proceeds in two steps:
I First run an OLS regression of Y2 on Z and get an estimate of the

residual v̂2.
I Run the probit Y1 on Z1, Y2 and v̂2, to get consistent estimators of δ̃1,
α̃1 and θ̃1.

I Under the null of no endogeneity (H0 : θ1 = 0), we can use the usual
probit t statistic for a test of endogeneity.
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Discrete Choice Models Probit & Logit

Endogenous Explanatory Variables
I How do we compute average partial effects?
I It can be shown that:

Ev2 [P(Y1 = 1|Z ,Y2, v2)] = Ev2 [Φ(Z1δ̃1 + α̃1Y2 + θ̃1v2)]

= Φ(Z1
˜̃δ1 + ˜̃α1Y2)

with ˜̃α1 = α̃1/
√
θ̃21 τ̂

2
2 + 1, so that:

Ev2

[
∂P(Y1 = 1|Z ,Y2, v2)

∂Y2

]
= ˜̃α1φ(Z1

˜̃δ1 + ˜̃α1Y2)

I Another way is to compute:

1
N

N∑
i=1

Φ(Zi1δ̃1 + α̃1Yi2 + θ̃1v̂i2)

using the residuals of the first stage and averaging across the whole
sample.

I Note that standards errors are complicated to get, because of the two
step nature of the method.
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Discrete Choice Models Probit & Logit

Endogenous Explanatory Variables: Example

I Data drawn from the Swedish Survey of Living Conditions, years
1981, 1988, 1995.

I We are interested in the effect of education on smoking behavior.
I Smoker is a dummy variable equal to 1 if the individual is or is has

been a regular smoker. We also control for age and sex, and we are
interested in the effect of years of education.

Smoker∗i = δ10 + δ11agei + δ12sexi + α1educi + u1

educi = δ21agei + δ22sexi + δ23educFatheri + δ21educMotheri + v2
where educFather and educMother are the education level of the
father and mother, taken as instrument for the child’s education.
How valid are these instrument a priori?
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Discrete Choice Models Probit & Logit

Example: ignoring endogeneity
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Discrete Choice Models Probit & Logit

Example: first stage
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Discrete Choice Models Probit & Logit

Example: second stage
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Discrete Choice Models Multinomial Logit

Multinomial Logit

I The logit model was dealing with two qualitative outcomes. This can
be generalized to multiple outcomes:

I choice of transportation: car, bus, train...
I choice of dwelling: house, apartment, social housing.

I The multinomial logit: Denote the outcomes as j = 1, . . . , J and pj
the probability of outcome j .

pj =
exp(Xθj)∑J

k=1 exp(Xθk)

where θj is a vector of parameter associated with outcome j .
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Discrete Choice Models Multinomial Logit

Identification
I If we multiply all the coefficients by a factor λ this does not change

the probabilities pj , as the factor cancel out. This means that there is
under identification. We have to normalize the coefficients of one
outcome, say, J to zero. All the results are interpreted as deviations
from the baseline choice.

I We write the probability of choosing outcome j = 1, . . . , J − 1 as:

pj =
exp(Xθj)

1 +
∑J−1

k=1 exp(Xθk)

I We can express the logs odds-ratio as:

ln pj
pJ

= Xθj

I The odds-ratio of choice j versus J is only expressed as a function of
the parameters of choice j , but not of those other choices:
Independence of Irrelevant Alternatives (IIA).
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Discrete Choice Models Multinomial Logit

Independence of Irrelevant Alternatives

An anecdote which illustrates a violation of this property has been
attributed to Sidney Morgenbesser:

After finishing dinner, Sidney Morgenbesser decides to order dessert.

The waitress tells him he has two choices: apple pie and blueberry

pie. Sidney orders the apple pie.

After a few minutes the waitress returns and says that they also have

cherry pie at which point Morgenbesser says "In that case I’ll have

the blueberry pie."
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Discrete Choice Models Multinomial Logit

Independence of Irrelevant Alternatives
I Consider travelling choices, by car or with a red bus. Assume for

simplicity that the choice probabilities are equal:

P(car) = P(red bus) = 0.5 =⇒ P(car)

P(red bus) = 1

I Suppose we introduce a blue bus, (almost) identical to the red bus. The
probability that individuals will choose the blue bus is therefore the same
as for the red bus and the odd ratio is:

P(blue bus) = P(red bus) =⇒ P(blue bus)
P(red bus) = 1

I However, the IIA implies that odds ratios are the same whether of not
another alternative exists. The only probabilities for which the three odds
ratios are equal to one are:

P(car) = P(blue bus) = P(red bus) = 1/3

However, the prediction we ought to obtain is:

P(red bus) = P(blue bus) = 1/4 P(car) = 0.5

Juan Dolado (EUI) Econometrics Block II November 4, 2014 142 / 260



Discrete Choice Models Multinomial Logit

Marginal Effects: Multinomial Logit
I θj can be interpreted as the marginal effect of X on the log odds-ratio

of choice j to the baseline choice.
I The marginal effect of X on the probability of choosing outcome j

can be expressed as:

∂pj
∂X = pj [θ

j −
J∑

k=1
pkθ

k ]

Hence, the marginal effect on choice j involves not only the
coefficients relative to j but also the coefficients relative to the other
choices.

I Note that we can have θj < 0 and ∂pj/∂X > 0 or vice versa.
Due to the non linearity of the model, the sign of the coefficients
does not indicate the direction nor the magnitude of the effect of a
variable on the probability of choosing a given outcome. One has to
compute the marginal effects.
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Discrete Choice Models Multinomial Logit

Example
I We analyze here the choice of dwelling: house, apartment or low cost

flat, the latter being the baseline choice. We include as explanatory
variables the age, sex and log income of the head of household:

Variable Estimate Std. Err. Marginal Effect
Choice of House

age .0118092 .0103547 -0.002
sex -.3057774 .2493981 -0.007
log income 1.382504 .1794587 0.18
constant -10.17516 1.498192

Choice of Apartment
age .0682479 .0151806 0.005
sex -.89881 .399947 -0.05
log income 1.618621 .2857743 0.05
constant -15.90391 2.483205
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Discrete Choice Models Multinomial Logit

Ordered Models

I In the multinomial logit, the choices were not ordered. For instance,
we cannot rank cars, busses or train in a meaningful way. In some
instances, we have a natural ordering of the outcomes even if we
cannot express them as a continuous variable:

I Yes / Somehow / No.
I Low / Medium / High

I We can analyze these answers with ordered models.
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Discrete Choice Models Multinomial Logit

Ordered Probit
I We code the answers by arbitrary assigning values:

Yi = 0 if No, Yi = 1 if Somehow, Yi = 2 if Yes

I We define a latent variable Y ∗i which is linked to the explanatory variables:

Y ∗i = X ′i θ + εi

Yi = 0 if Y ∗i < 0
Yi = 1 if Y ∗i ∈ [0, µ[
Yi = 2 if Y ∗i ≥ µ

µ is a threshold and an auxiliary parameter which is estimated along with
θ.

I We assume that εi is distributed normally.
I The probability of each outcome is derived from the normal cdf:

P(Yi = 0) = Φ(−X ′i θ)
P(Yi = 1) = Φ(µ− X ′i θ)− Φ(−X ′i θ)
P(Yi = 2) = 1− Φ(µ− X ′i θ)
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Discrete Choice Models Multinomial Logit

Ordered Probit

I Marginal Effects:

∂P(Yi = 0)
∂Xi

= −θφ(−X ′i θ)

∂P(Yi = 1)
∂Xi

= θ (φ(X ′i θ)− φ(µ− X ′i θ))

∂P(Yi = 2)
∂Xi

= θφ(µ− X ′i θ)

I Note that if θ > 0, ∂P(Yi = 0)/∂Xi < 0 and ∂P(Yi = 2)/∂Xi > 0:
I If Xi has a positive effect on the latent variable, then by increasing Xi ,

fewer individuals will stay in category 0.
I Similarly, more individuals will be in category 2.
I In the intermediate category, the fraction of individual will either

increase or decrease, depending on the relative size of the inflow from
category 0 and the outflow to category 2.
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Discrete Choice Models Multinomial Logit

Ordered Probit: Example
I We want to investigate the determinants of health.
I Individuals are asked to report their health status in three categories: poor, fair or good.
I We estimate an ordered probit and calculate the marginal effects at the mean of the

sample.

Variable Coeff sd. err. Marginal Effects Sample
Poor Fair Good Mean

Age 18-30 -1.09** .031 -.051** -.196** .248** .25
Age 30-50 -.523** .031 -.031** -.109** .141** .32
Age 50-70 -.217** .026 -.013** -.046** .060** .24
Male -.130** .018 -.008** -.028** .037** .48
Income low third .428** .027 .038** .098** -.136** .33
Income medium third .264** .022 .020** .059** -.080** .33
Education low .40** .028 .031** .091** -.122** .43
Education Medium .257** .026 .018** .057** -.076** .37
Year of interview -.028 .018 -.001 -.006 .008 1.9
Household size -.098** .008 -.006** -.021** .028** 2.5
Alcohol consumed .043** .041 .002** .009** -.012** .04
Current smoker .160** .018 .011** .035** -.046** .49
cut1 .3992** .058
cut2 1.477** .059
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Discrete Choice Models Multinomial Logit

Ordered Probit: Example

Age group Proportion
Poor Health Fair Health Good Health

Age 18-30 .01 .08 .90
Age 30-50 .03 .13 .83
Age 50-70 .07 .28 .64
Age 70 + .15 .37 .46

Juan Dolado (EUI) Econometrics Block II November 4, 2014 149 / 260



Discrete Choice Models Multinomial Logit

Ordered Probit: Example
I Marginal Effects differ by individual characteristics.
I Below, we compare the marginal effects from an ordered probit and a multinomial

logit.

Marginal Effects for Good Health
Variable Ordered X Ordered Multinomial

Probit at mean Probit at X Logit at X
Age 18-30 .248** 1 .375** .403**
Age 30-50 .141** 0 .093** .077**
Age 50-70 .060** 0 .046** .035**
Male .037** 1 .033** .031**
Income low third -.136** 1 -.080** -.066**
Income medium third -.080** 0 -.071** -.067**
Education low -.122** 1 -.077** -.067**
Education Medium -.076** 0 -.069** -.064**
Year of interview .008 1 .006 .003
Household size .028** 2 .023** .020**
Alcohol consumed -.012** 0 -.010** -.011**
Current smoker -.046** 0 -.041** -.038**
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Discrete Choice Models Models without IIA

Models without IIA

Here we discuss 3 ways of avoiding the IIA property. All can be interpreted
as relaxing the independence between the εij :

I nested logit model: the researcher groups together sets of choices.
This allows for non-zero correlation between unobserved components
of choices within a nest and maintains zero correlation across nests.

I unrestricted multinomial probit model: with no restrictions on the
covariance between unobserved components, beyond normalizations.

I mixed or random coefficients logit: where the marginal utilities
associated with choice characteristics vary between individuals,
generating positive correlation between the unobserved components of
choices that are similar in observed choice characteristics.
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Discrete Choice Models Nested Logit Models

Nested Logit Models

I Partition the set of choices {0, 1, ..., J} into S sets B1, ...,BS .
I The idea is that we still maintain the IIA within each branch, but we

allow the variance to differ across branches.
I Note that we can generalize this approach by having many more

layers.
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Discrete Choice Models Nested Logit Models

Link with Utility Maximization
I Link with the random utility model: Consumer i who opts for choice j

gets the following utility:

Uij = αj + Xijβj + Ziγj + εij

I αj is a particular attribute of choice j , constant across all agents.
I Xij are variables that vary by choice and individual, for instance the

distance of i to the choice j , or specific costs and so on.
I Zi are variables that describe the individual, such as income, sex, or

education.
I The error term εi1, . . . , εiJ follow the Generalized Extreme-value

(GEV) distribution. This is a generalization of the extreme value
distribution that allows for alternatives within branches to be
correlated.
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Discrete Choice Models Nested Logit Models

More on GEV Distribution

I For your information, the GEV distribution takes the form:

FT ,R(ε) = exp

−∑
k∈T

∑
l∈Rk

exp(−εkl/ρk

ρt
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Discrete Choice Models Nested Logit Models

Nested Logit Models
I Let the conditional probability of choice j given that your choice is in

the set Bb (branch b) , be equal to

Pr(Yi = j |Xi ,Yi ∈ Bb) =
exp(X ′bjβj/ρb)∑

l∈Bb
exp(X ′blβj/ρb)

I So within a branch, the formula looks like the multinomial logit,
except that we are scaling the parameters with the coefficient ρb.

I The probability to choose branch b is:

P(branch = b) =

 ∑
m∈Rb

exp(ηbm/ρb)

ρb

∑
k∈T

 ∑
m∈Rk

exp(ηkm/ρk)

ρk

with ηbm = Xbmβm + Zbγb.
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Discrete Choice Models Nested Logit Models

Nested Logit Models

I Noting that ∑
m∈Rb

exp(ηbm/ρb)

ρb

=

 ∑
m∈Rb

exp(
Zbγb + Xbmβm

ρb
)

ρb

= exp(Zbγb)

 ∑
m∈Rb

exp(Xbmβm/ρb)

ρb

= exp(Zbγb + ρbIb)

I We have defined the inclusive value Ib:

Ib = ln

 ∑
m∈Rb

exp(Xbmβm/ρb)


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Discrete Choice Models Nested Logit Models

Nested Logit Models

I The probability of choosing branch b is then expressed in a simpler
way as the function of the inclusive values:

P(branch = b) =
exp(Zbγb + ρbIb)∑

k∈T
exp(Zkγk + ρk Ik)
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Discrete Choice Models Nested Logit Models

Marginal Effects

I As usual in non-linear models, the coefficients are not directly
interpretable.

I The marginal effects are:

∂ lnP(choice = m, branch = b)

∂X (k)in choice Mand branchB = βk
[
Ib=B(Im=M − PM|B)

+ρB[Ib=B − PB]PM|B)
]
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Discrete Choice Models Nested Logit Models

Estimation of the Nested Logit Model

I Maximization of the likelihood function is difficult (see below).
I Another method is to proceed in two steps. This is called the Limited

Information Maximum Likelihood, and is less efficient than the Full
Information Maximum Likelihood. However, it is rather intuitive:

I Note that within a branch, we have a simple conditional logit model
with coefficients βj/ρb. We can directly estimate β̂j/ρb by using only
information for that branch.

I In a second step, we can compute the inclusive values and look at the
probability of a particular set Bb to estimate ρb. This is also a
multinomial logit:

P(branch = b) =
exp(Zbγb + ρbIb)∑

k∈T
exp(Zkγk + ρk Ik)
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Discrete Choice Models Nested Logit Models

Maximum Likelihood of the Nested Logit

I To illustrate, we consider only two layers.

log l =
N∑

i=1

∑
b∈T

∑
m∈Bb

yibm log[P(Bi = b)P(Ci = m|Bi = b)]

=
N∑

i=1

∑
b∈T

∑
m∈Bb

yibm [Zibγb + ρbIib

− log(
∑
l∈T

exp(Zilγl + ρl Iil )) +

Xibmβm/ρb − log(
∑
l∈Bb

exp(Xiblβm/ρb)) ]
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Discrete Choice Models Nested Logit Models

Nested Logit Model

I We can extend the model to many layers of nests.
I The results may be sensitive to the specification of the nest structure.
I The procedure is ad-hoc as it is up to the researcher to first choose

the nests and which products are close substitutes.
I If we want to predict market shares for a new product, we have to

decide in which nest it belongs.
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Discrete Choice Models Nested Logit Models

Example: Restaurant Choice

I The data comes from the Stata website (webuse restaurant).
I Data on 300 families with their choice of restaurant, with information

on family size, income, distance to restaurants, price of menu and
rating of restaurant.

I Not all restaurants are alike. It is possible that families do not
substitute at random between them.

I We can classify them in several groups:
I Fast food restaurants.
I Family restaurants.
I Fancy restaurants.
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Multinomial Probit with Unrestricted Covariance Matrix

I A second possibility is to unrestrict the covariance matrix of the error
terms. It is easier to do this in a multinomial probit casr.

I Consider

Ui =


Ui0
Ui1
...

UiJ

 =


X ′i0β + εi0
X ′i1β + εi1

...
X ′iJβ + εiJ

 εi =


εi0
εi1
...
εiJ

 |Xi ∼ N(0,Ω)

where Ω is a (J + 1)x(J + 1) covariance matrix.
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Discrete Choice Models Multinomial Probit

Multinomial Probit with Unrestricted Covariance Matrix

I The maximization of the log likelihood function requires the
evaluation of a J + 1 order integral, which is infeasible if J ≥ 3, 4.

I This requires usually simulated methods.
I The advantage of the model is that we do not have to specify how

close a choice is to the other. However, it requires a lot of data to
precisely estimate the covariance matrix which can involve a huge
number of parameters.

I To predict the effect of a new good, the researcher has to specify all
the correlations with the other goods.
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Discrete Choice Models Random Effects Models

Random Effects Models

I A third possibility is to allow for unobserved heterogeneity in the slope
coefficients. We typically think that individuals who have a taste for a
particular attribute may have a similar taste for a close substitute.

I We can model this by allowing the marginal utilities to vary at the
individual level:

Uij = X ′ijβi + εij = X ′ij β̄ + νij νij = εij + Xij(βi − β̄)

I In this formulation the νij are not independent across choices.
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Discrete Choice Models Random Effects Models

Random Effects Models

I One possibility to implement this is to assume the existence of a finite
number of types of individuals: βi ∈ {b0, b1, . . . , bK}, with

Pr(βi = bk |Zi ) = pk

I We can then construct the likelihood and integrate out the
unobserved types using these weights. The maximization of the
log-likelihood is done over the coefficients of the model and the
{pk , bk}.
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Discrete Choice Models Random Effects Models

Example

I Develops and estimates a model of the US Automobile Industry.
I Equilibrium oligopoly model with product differentiation.
I Used to evaluate the effect of trade-policies.
I Analysis is done in two steps:

I Demand side: estimation of demand for automobiles using micro-data.
I Supply side: Static model of firms that takes micro-demand as given.
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Discrete Choice Models Random Effects Models

The Model
I Consumer j maximizes an indirect utility of the form:

Uh
j = V̄ h

j + εh
j for vehicle h

I V̄ h
j is a deterministic component that is a function of the vehicle

attributes (power, engine size) and consumer’s characteristics.
I εh

j : captures unmeasured variables, taste shocks...
I Each car is characterized by four elements:

I n: newness.
I c: market segment.
I o: origin.
I m: make.

I The utility is expressed as:

Uh
b,n,c,o,m = V̄ h

b,n,c,o,m + εh
b,n,c,o,m
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Discrete Choice Models Random Effects Models

The Model

I The deterministic part is a linear function of consumer and vehicle
characteristics

Uh
b,n,c,o,m = α′Bh

b + β′Nh
b,n + γ′Ch

b,n,c

+δ′Oh
b,n,c,o + ζMh

b,n,c,o + εh
b,n,c,o,m

I Bh
b varies only with the decision to purchase, Nb,n captures the utility

of new cars, C is segment, O origin and M make.
I ε follows an extreme value distribution, and the choices are nested.
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Decision Tree
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Discrete Choice Models Random Effects Models

Choice Probabilities
I The joint probability of choosing a new vehicle type (b, n, c, o,m) is

Ph
b,n,c,o,m = Ph

b .Ph
n|b.P

h
c|n,b.P

h
o|c,n,b.P

h
m|o,c,n,b

I At each node s of the tree, the marginal probability of purchasing a
car has the form:

Ph
is |js−1 =

exp(Xh
is θs/λjs−1 + Ihisλis/λjs−1)∑

k∈Cjs−1

exp(Xh
ksθs/λjs−1 + Ihksλks/λjs−1)

with

Ihis = log

 ∑
p∈Cis

exp(Xh
ps+1θs+1/λis )


I Ihis is the inclusive value, i.e. the expected aggregate utility of subset

is and λis/λjs−1 reflect the dissimilarity of alternatives belonging to a
particular subset.

I Model estimated by sequential maximum likelihood in five stages.
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Discrete Choice Models Random Effects Models

Price Effects

I Prices enter the specification of the bottom nest. They only have an
effect in other choices through the inclusive values.

ζ ′Mh
b,n,c,o,m = ζ ′1M1h

b,n,c,o,m + ζ2(INC)(INCh − PRICEb,n,c,o,m)

I Price (and income) effects are allowed to vary with income, so that
rich can be less price sensitive.
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Discrete Choice Models Random Effects Models

Producers’ Problem

I The producer’s problem is to maximize expected profits with respect
to price.

I Uncertainty comes from the demand side, as there is randomness in
choices.

I Producers play a Nash game.
I Foreign producers may be facing quota restrictions, imposed by the

US.
I Crucial part of the model is how consumers react to prices and

substitute to other types of car. Important to relax the IIA
assumption.
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Discrete Choice Models Random Effects Models

Data Set
I The data comes from the Consumer Expenditure Survey (CES).
I Each quarter, about 4500 households are interviewed.
I Representative of the US population.
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Discrete Choice Models Random Effects Models

Data Set
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Data Set
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Discrete Choice Models Random Effects Models

Data Set
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Discrete Choice Models Random Effects Models

Results
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Results
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Discrete Choice Models Random Effects Models

Results
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Censored Regression Models

Section 8

Censored Regression Models
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Censored Regression Models Tobit Model

Examples

I This chapter deals with the estimation of models in which
observations are censored or for which there is a corner solution.

I We also look at cases where data is missing, creating a sample bias.
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Censored Regression Models Tobit Model

Example 1: Top Coding

I In many surveys recording information on income and wealth,
information on those variables are not fully reported for the
super-rich, to protect their identity. The variable is top-coded, i.e. all
income above a given value is replaced by that value.

I Nonetheless, we may want to relate (true) income (Y ∗) to a number
of characteristics (X ).

E (Y ∗|X ) = Xβ
I What we observe instead is Y = min(Y ∗, Ȳ ). Hence, we have to

estimate the following model:

Y = min(Ȳ ,Xβ + u)

−(Y − Ȳ ) = max(0,−Ȳ − Xβ − u)
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Censored Regression Models Tobit Model

Example 2: Corner Solution

I Suppose an agent is maximising utility over two goods, own
consumption c and charitable contributions q:

max
c,q

u(c, q) = max
c,q

c + ai log(1 + q)

c + pq = m
I The solution to this problem is:{

qi = 0 if ai/pi ≤ 1
qi = ai/pi − 1 if ai/pi > 1 or 1 + qi = max(1, ai/pi )

log(1 + qi ) = max(0,Ziγ − log pi + ui ) if ai = exp(Ziγ + ui )
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Censored Regression Models Tobit Model

Tobit Model

I First proposed by Tobin (1958), 1

I We define a latent (unobserved) variable Y ∗ such as:

Y ∗ = Xβ + ε ε ∼ N(0, σ2)

I We only observe a variable Y which is related to Y ∗ such as:

Y = Y ∗ if Y ∗ > a
Y = a if Y ∗ ≤ a

1Tobin, J. (1958), ŤEstimation of Relationships for Limited Dependent VariablesŤ,
Econometrica 26, 24-36.
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Censored Regression Models Tobit Model

Example
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Censored Regression Models Tobit Model

Truncation Bias
I The conditional mean of Y given X takes the form:

E [Y |Y ∗ > a,X ] = Xβ + σ
φ(α)

1− Φ(α)

with α = a−Xβ
σ .

I The ratio φ(α)/(1 − Φ(α)) is called
the inverse Mills ratio.

I Intuitively, the second term is there because the conditional
expectation of the error term is not equal to zero, but positive.
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Censored Regression Models Tobit Model

Truncation Bias: Proof

I Proof: Note that the conditional c.d.f of Y ∗|Y ∗ > a is:

H(y |Y ∗ > a,X) = P(Y ∗ ≤ y |Y ∗ > a) =
P(a < Y ∗ ≤ y)

P(Y ∗ > a)

=
P(a − Xβ < ε ≤ y − Xβ)

P(ε > a − Xβ)

=
Φ( y−Xβ

σ
)− Φ( a−Xβ

σ
)

1− Φ( a−Xβ
σ

)

so that the conditional distribution is:

h(y |Y ∗ > a,X) =
∂H(y |Y ∗ > a,X)

∂y =
φ( y−Xβ

σ
)

σ(1− Φ( a−Xβ
σ

))
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Censored Regression Models Tobit Model

Proof Continued

E [Y |Y ∗ > a,X ] =

∫ +∞

a
yh(y |Y ∗ > a,X )dy

=
1

σ(1− Φ(α))

∫ +∞

a
yφ(

y − Xβ
σ

)dy

=
1

1− Φ(α)

∫ +∞

(a−Xβ)/σ
(Xβ + σz)φ(z)dz

= Xβ − 1
1− Φ(α)

σ

∫ +∞

(a−Xβ)/σ
φ′(z)dz

= Xβ + σ
φ(α)

1− Φ(α)

= Xβ + σλ(α)
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Censored Regression Models Tobit Model

Inconsistency of OLS

I OLS using the entire sample or the the subsample for which Y ∗ > a
yields inconsistent estimators of β.

I OLS on the subsample with Y > a:

E [Y |X ,Y > a] = Xβ + E (u|u > a − Xβ) = Xβ + σλ(α)

the OLS parameters estimate of β will be biased and inconsistent as
we omit the term σλ(α).

I OLS on the whole data:

E (Y |X ) = P(Y > a|X )E (Y |X ,Y > a) + aP(Y < a|X )

= (1− Φ(α))(Xβ + σλ(α)) + aΦ(α)

Not much hope here as well...
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Censored Regression Models Tobit Model

Likelihood for Tobit Model

I The conditional c.d.f of Y given X is:

G(y |X , β, σ) = P(Y ≤ y |X ]

= P(Y ≤ y |X ,Y > a)P(Y > a|X)

+P(Y ≤ y |X ,Y = a)P(Y = a|X)

= I(y > a)H(y |Y > a,X)(1− Φ(
a − Xβ
σ

))

+I(y = a)Φ(
a − Xβ
σ

)

where I(.) is the indicator function: I(true) = 1, I(false) = 0.
I The corresponding conditional density is:

g(y |X , β, σ) = I(y > a)h(y |Y > a,X)(1− Φ(
a − Xβ
σ

)) + I(y = a)Φ(
a − Xβ
σ

)

= I(y > a)
φ( Y−Xβ

σ
)

σ
+ I(y = a)Φ(

a − Xβ
σ

)
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Censored Regression Models Tobit Model

Likelihood for Tobit Model
I The log-likelihood function of the Tobit model is:

l(β, σ) =

n∑
i=1

log(g(Yi |Xi , β, σ))

=

n∑
i=1

I(yi > a)(log(φ(
Yi − Xiβ

σ
))− log(σ))

+

n∑
i=1

I(yi = a) log(Φ(
a − Xβ
σ

))

=

n∑
i=1

I(yi > a)
(
−1
2 (Yi − Xiβ)2/σ2 − 2 log(σ)− log(

√
2π)
)

+

n∑
i=1

I(yi = a) log(Φ(
a − Xiβ

σ
))

I This can be maximised with respect to β, σ or γ = 1/σ and λ = β/σ.
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Censored Regression Models Tobit Model

Tobit Model: Marginal Effects
I How do we interpret the coefficient β?

βj =
∂E (Y ∗|X )

∂Xj

This is the marginal effect of X on the (latent) variable Y ∗. This has
a direct interpretation in the case of censored data.

I For corner solutions, what we care about is:

∂E (Y |X ,Y > a)

∂Xj
=

∂

∂Xj
(Xβ + σλ(α)) = βj + σ

∂α

∂Xj

∂λ(α)

∂α

= βj
[
1− λ(α)2 + αλ(α)

]
I Another marginal effect is:

∂E [Y |X ]

∂X = β(1− Φ(α))
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Censored Regression Models Tobit Model

Example: Willingness To Pay for better
I The WTP is censored at zero. We can compare the two regressions:

OLS: WTPi = β0 + β1lny + β2agei + β3smelli + ui

Tobit: WTP∗i = β0 + β1lny + β2agei + β3smelli + ui
WTPi = WTP∗i if WTP∗i > 0
WTPi = 0 if WTP∗i < 0

OLS Tobit
Variable Estimate t-stat Estimate t-stat Marginal effect
lny 2.515 2.74 2.701 2.5 2.64
age -.1155 -2.00 -.20651 -3.0 -0.19
sex .4084 0.28 .14084 0.0 .137
smell -1.427 -0.90 -1.8006 -0.9 -1.76
constant -4.006 -0.50 -3.6817 -0.4
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Censored Regression Models Tobit Model

Endogenous Explanatory Variables
I Suppose that we allow one of the explanatory variables to be

endogenous:

y1 = max(0, z1δ1 + α1y2 + u1)
y2 = Zδ2 + v2 = z1δ21 + z2δ22 + v2

I If u1 and v2 are correlated, then y2 is endogenous. We assume that
(u1, v2) are zero-mean normally distributed.

I We can write u1 = θ1v2 + e1, where θ1 = corr(u1, v2), so that:

y1 = max(0, z1δ1 + α1y2 + θ1v2 + e1)

If we observed v2, we could include it in the regression to get a
consistent estimator of δ1 and α1.

I Two step procedure 1) Regress y2 on Z and get v̂2, 2) Include v̂2 in
the tobit equation.
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Censored Regression Models Sample Selection

Sample Selection

I In many cases, in (micro) econometrics, we have to face the problem
of sample selection. Our estimators will be consistent estimators for
the population under consideration. However, we often want to say
something about a much more general population.

I Sample selection can take many forms.
I Sample selected on the basis of an explanatory variable. For instance

we may want to investigate the effect of age and experience on wages,
but only have individuals between 20 and 30.

I Sample selected based on the endogenous variable: We only observe
wages of those who work, which limits our ability to study the return to
education for instance.
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Censored Regression Models Sample Selection

Notations

I The population is represented by a random vector (x ,Y , z), where z
is a vector of instruments.

Y = xβ + u, E (u|z) = 0

I Rather than using a random sample, we use only data satisfying
s = 1, where s is an indicator of selection.
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Censored Regression Models Sample Selection

When Can Sample Selection be Ignored?

I Suppose that
E (u|z , s) = 0

I This can happen when s is a deterministic function of z , the selection
is a fixed rule involving only the exogenous variables z , or if selection
is independent of (z , u).

I When x is exogenous and the selection is based solely on the
explanatory variable, then OLS is consistent in the selected sample.

I When x is endogenous, and the selection is based solely on exogenous
variables, 2SLS is consistent in the selected sample.

I However, if the selection operates through the endogenous variable,
then E (u|z , s) 6= 0 and neither OLS or 2SLS are consistent.
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Censored Regression Models Sample Selection

Selection on the Basis of the Response Variable
I We assume that yi is continuous and that the selection takes the

following form:
si = I[a1 < Yi < a2]

I where a1 and a2 are known constants. The cdf of Yi conditional on
(xi , si = 1) is:

P(Yi ≤ y |x , si = 1) =
P(Yi ≤ y , si = 1|x)

P(si = 1|x)

and P(si = 1|x) = P(a1 < Yi < a2|x) = F (a2|x)− F (a1|x)

P(Yi ≤ y , si = 1|x) = P(a1 < Yi ≤ y |xi ) = F (y |xi )− F (a1|xi )

I Taking the derivative with respect to y , we get the pdf:

f (y |xi , si = 1) =
f (y |xi )

F (a2|xi )− F (a1|xi )

which can be used in a Maximum Likelihood framework.
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Censored Regression Models Probit Selection Equation

Probit Selection Equation

I So far, the selection took a deterministic form. We now turn to a
stochastic form of sample selection, where participation is determined
by a probit equation.

I Example: Labor supply.

max
h

u(wih + ai , h)

We observe individual i working if the wage is above the reservation
wage, wR

i .
wi = exp(x1iβ1 + ui1)
wR

i = exp(x2iβ2 + γ2ai + ui2)

but the wage is only observed if

logwi − logwR
i = xi1β1 − xi2β2 − γ2ai + ui1 − ui2 = xiδ2 + vi2 > 0
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Censored Regression Models Probit Selection Equation

I The model can be written more compactly as

y1 = x1β1 + u1
y2 = I[xδ2 + v2 > 0]

I We assume that we always observe (x , y2). y1 is only observed when
y2 = 1.

I We assume that (u1, v2) is independent of x with zero mean,
v2 ∼ N(0, 1) and E (u1|v2) = γ1v2.

I There are more cases than the labor supply example. For instance, we
may wish to model the fact that some individuals drop out of a
program that we are evaluating.

I We can hope to estimate E (y1|x , y2 = 1) and P(y2 = 1|x).
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Censored Regression Models Probit Selection Equation

I The conditional mean of y1 can be expressed as:

E (y1|x , y2) = x1β1 + E (u1|x , y2)

= x1β1 + γ1E (v2|x , y2)

= x1β1 + γ1E (v2|v2 > −xδ2)

= x1β1 + γ1λ(xδ2) with λ(.) = φ(.)/Φ(.)

I Hence, we can regress y1 (the ones we observe) on x1 and the inverse
Mills ratio and get consistent estimates of β1 and γ1.

I We can get a consistent estimator for δ2 (and λ(xδ2)) from the probit
equation in a first step. This procedure is sometimes called Heckit.

I Note that the model is identified even if x = x1, due to the
nonlinearity of λ(). However, this all due to the parametric
assumptions (normality). A more convincing identification scheme
would be to have exclusion restrictions.
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Censored Regression Models Probit Selection Equation

Maximum Likelihood Estimation

I The model can be estimated in two-steps, a probit first and then
OLS. This is more robust, but there is an issue about standard errors.

I If we assume that (u1, v2) is bivariate normal with mean zero,
Var(u1) = σ21 and cov(u1, v2) = σ12, Var(v2)=1, then we can estimate
the model in one step, through (partial) maximum likelihood.

I One can generalize the estimation method in order not to make any
distributional assumptions (Ahn and Powell (1993)).
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Section 9

Likelihood Based Hypothesis Testing
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Likelihood Based Hypothesis Testing
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Likelihood Based Hypothesis Testing

Likelihood Based Hypothesis Testing

I We now consider test of hypotheses in econometric models in which
the complete probability distribution of outcomes given conditioning
variables is specified.

I There are three natural ways to develop tests of hypotheses when a
likelihood function is available.
1. Is the unrestricted ML estimator significantly far from the hypothesised

value? This leads to what is known as the Wald test.
2. If the ML estimator is restricted to satisfy the hypothesis, is the value

of the maximised likelihood function significantly smaller than the value
obtained when the restrictions of the hypothesis are not imposed? This
leads to what is known as the likelihood ratio test.

3. If the ML estimator is restricted to satisfy the hypothesis, are the
Lagrange multipliers associated with the restrictions of the hypothesis
significantly far from zero? This leads to what is known as the
Lagrange multiplier or score test.
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Likelihood Based Hypothesis Testing

I In the normal linear regression model all three approaches, after minor
adjustments, lead to the same statistic which has an F (j)

(n−k)
distribution when the null hypothesis is true and there are j
restrictions.

I Outside that special case, in general the three methods lead to
different statistics, but in large samples the differences tend to be
small.

I All three statistics have, under certain weak conditions, χ2(j) limiting
distributions when the null hypothesis is true and there are j
restrictions.

I The exact distributional result in the normal linear regression model
fits into this large sample theory on noting that
plimn→∞

(
jF (j)

(n−k)

)
= χ2(j).
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Likelihood Based Hypothesis Testing

Test of Hypothesis

I We now consider tests of a hypothesis H0 : θ2 = 0 where the full
parameter vector is partitioned into θ′ = [θ′1

...θ′2] and θ2 contains j
elements. Recall that the MLE has the approximate distribution

n1/2(θ̂ − θ)
d→ N(0,V0)

where
V0 = − plim

n→∞
(n−1Q(θ0;Y ))−1 = I(θ0)−1

and I(θ0) is the asymptotic information matrix per observation.
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Likelihood Based Hypothesis Testing

Wald Test
I This test is obtained by making a direct comparison of θ̂2 with the

hypothesised value of θ2, zero.
I Using the approximate distributional result given above leads to the

following test statistic.

SW = nθ̂′2V̂−122 θ̂
′
2

where V̂22 is a consistent estimator of the lower right hand j × j
block of V0.

I Under the null hypothesis SW
d→ χ2(j) and we reject the null

hypothesis for large values of SW .
I Using one of the formulas for the inverse of a partitioned matrix the

Wald statistic can also be written as
SW = nθ̂′2

(
Î(θ̂)22 − Î(θ̂)′21 Î(θ̂)−111 Î(θ̂)12

)
θ̂′2

where the elements Î(θ̂)ij are consistent estimators of the appropriate
blocks of the asymptotic Information Matrix per observation
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The Score - or Lagrange Multiplier - test

I Sometimes we are in a situation where a model has been estimated
with θ2 = 0, and we would like to see whether the model should be
extended by adding additional parameters and perhaps associated
conditioning variables or functions of ones already present.

I It is convenient to have a method of conducting a test of the
hypothesis that the additional parameters are zero ( in which case we
might decide not to extend the model) without having to estimate
the additional parameters. The score test provides such a method.
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Likelihood Based Hypothesis Testing

The Score - or Lagrange Multiplier - test
I The score test considers the gradient of the log likelihood function

evaluated at the point
θ̂R = [θ̂R′

1 , 0]′

and examines the departure from zero of that part of the gradient of
the log likelihood function that is associated with θ2.

I Here θ̂R
1 is the MLE of θ1 when θ2 is restricted to be zero. If the

unknown value of θ2 is in fact zero then this part of the gradient
should be close to zero. The score test statistic is

SS = n−1q(θ̂R ;Y )′ Î(θ̂R)−1q(θ̂R ;Y )

and SS
d→ χ2(j) under the null hypothesis. There are a variety of ways

of estimating Î(θ0) and hence its inverse.
I Note that the complete score (gradient) vector appears in this

formula. Of course the part of that associated with θ1 is zero because
we are evaluating at the restricted MLE. That means the score
statistic can also be written, using the formula for the inverse of a
partitioned matrix, as the algebraically identical

SS = n−1lθ2(θ̂R ;Y )′
(
Î(θ̂R)22 − Î(θ̂R)′21 Î(θ̂R)−111 Î(θ̂

R)12
)−1

lθ2(θ̂R ;Y ).

I When the information matrix is block diagonal, which means that the
MLEs of θ1 and θ2 are asymptotically uncorrelated, the second term
in the inverse above vanishes.
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Likelihood Based Hypothesis Testing

Likelihood ratio tests

I The final method for constructing hypothesis tests that we will
consider involves comparing the value of the maximised likelihood
function at the restricted MLE ( θ̂R) and the unrestricted MLE (now
written as θ̂U).

I This likelihood ratio test statistic takes the form

SL = 2
(
L(θ̂U ;Y )− L(θ̂R ;Y )

)
and it can be shown that under H0, SL

d→ χ2(j).
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Likelihood Based Hypothesis Testing

Specification Testing
I Maximum likelihood estimation requires a complete specification of

the probability distribution of the random variables whose realisations
we observe.

I In practice we do not know this distribution though we may be able
to make a good guess. If our guess is badly wrong then we may
produce poor quality estimates, for example badly biased estimates,
and the inferences we draw using the properties of the likelihood
function may be incorrect.

I In regression models the same sorts of problems occur. If there is
heteroskedasticity or serial correlation then, though we may produce
reasonable point estimates of regression coefficients if we ignore these
features of the data generating process, our inferences will usually be
incorrect if these features are not allowed for, because we will use
incorrect formulae for standard errors and so forth.

I It is important then to seek for evidence of departure from a model
specification, that is to conduct specification tests.

I In a likelihood context the score test provides an easy way of
generating specification tests.

I The score specification test does not tell us exactly how the model
should be extended.
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Likelihood Based Hypothesis Testing

Detecting Heteroskedasticity
I We consider one example here, namely detecting heteroskedasticity in

a normal linear regression model.
I In the model considered, Y1, . . . ,Yn are independently distributed

with Yi given xi being N(x ′i β, σ2h(z ′iα)) where h(0) = 1 and
h′(0) = 1, both achievable by suitable scaling of h(·).

I Let θU = [β, σ2, α] and let θR = [β, σ2, 0]. A score test of H0 : α = 0
will provide a specification test to detect heteroskedasticity.

I The log likelihood function when α = 0, in which case there is
homoskedasticity, is as follows.

L(θR ; y |x) = −n
2 log 2π − n

2 log σ2 − 1
2σ2

n∑
i=1

(
yi − x ′i β

)2
whose gradients with respect to β and σ2 are

qβ(θR ; y |x) = − 1
σ2

n∑
i=1

(
yi − x ′i β

)
xi

qσ2(θR ; y |x) = − n
2σ2 +

1
2σ4

n∑
i=1

(
yi − x ′i β

)2
which lead to the restricted MLEs under homoskedasticity, as follows.

β̂ =
(
X ′X

)−1 X ′y
σ̂2 =

1
n

n∑
i=1

(
yi − x ′i β̂

)2
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Likelihood Based Hypothesis Testing

Detecting Heteroskedasticity
I The log likelihood function for the unrestricted model is

L(θU ; y |x) = −n
2 log 2π−n

2 log σ2−1
2

n∑
i=1

log h(z ′iα)− 1
2σ2

n∑
i=1

(yi − x ′i β)2

h(z ′iα)

whose gradient with respect to α is

qα(θU ; y |x) = −1
2

n∑
i=1

h′(z ′iα)

h(z ′iα)
zi +

1
2σ2

n∑
i=1

(yi − x ′i β)2 h′(z ′iα)

h(z ′iα)2
zi

which evaluated at the restricted MLE (for which α = 0) is

qα(θ̂R ; y |x) = −1
2

n∑
i=1

zi +
1

2σ̂2
n∑

i=1

(
yi − x ′i β̂

)2
zi

=
1

2σ̂2
n∑

i=1

(
ε̂2i − σ̂2

)
zi .

I The specification test examines the correlation between the squared
OLS residuals and zi . The score test will lead to rejection when this
correlation is large.

I Details of calculation of this test are given in the intermediate
textbooks and the test (Breusch-Pagan-Godfrey) is built into many of
the econometric software packages.

I Note that the form of the function h(·) does not figure in the score
test. This would not be the case had we developed either a Wald test
or a Likelihood Ratio test.
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Information Matrix Tests
I We have seen that the results on the limiting distribution of the MLE

rest at one point on the Information Matrix Equality
E [q(θ0,Y )q(θ0,Y )′] = −E [Q(θ0,Y )]

where Y = (Y1, . . . ,Yn) are n random variables whose realisations
constitute our data.

I In the case relevant to much microeconometric work the log
likelihood function is a sum of independently distributed random
variables, e.g. in the continuous Y case:

L(θ,Y ) =
n∑

i=1
log f (Yi , θ),

where f (Yi , θ) is the probability density function of Yi . Here the
Information Matrix Equality derives from the result

E [
∂

∂θ
log f (Y , θ)

∂

∂θ′
log f (Y , θ) +

∂2

∂θ∂θ′
log f (Y , θ)] = 0.

I Given a value θ̂ of the MLE we can calculate a sample analogue of
the left hand side of this equation:

IM =
1
n

n∑
i=1

(
∂

∂θ
log f (Yi , θ)

∂

∂θ′
log f (Yi , θ) +

∂2

∂θ∂θ′
log f (Yi , θ)|θ=θ̂

)
I If the likelihood function is a correct specification for the data

generating process, then we expect the resulting statistic (which is a
matrix of values unless θi is scalar) to be close to (a matrix of zeros).

I A general purpose statistic for detecting incorrect specification of a
likelihood function is produced by considering a quadratic form in a
vectorised version of all or part of n1/2IM. This Information Matrix
Test statistic was introduced by Halbert White2 in 1982.

2See “Maximum Likelihood Estimation in Misspecified Models”, Halbert White
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Section 10

Panel Data
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Panel Data

Introduction

I Panel data consist of multiple observations over time of the same
individuals. e.g. wages over time for many workers.

I Usually, we have small T (time-dimension) and large N (cross-section
dimension), so it is not feasible to run separate regressions for each
individuals.

I So the focus is more on the heterogeneity across individuals than
complex modeling of the time-series dynamic.

I However, overlooking unobserved heterogeneity often leads to
conclude (wrongly) that state dependence is important. Both
phenomenons imply different types of policy.

Juan Dolado (EUI) Econometrics Block II November 4, 2014 218 / 260



Panel Data

Introduction

I The basic model is a regression model of the form:

yit = xitβ + ziα + εit

= xitβ + ci + εit

I There are K regressors in xit , not including a constant. The
heterogeneity, or individual effect is ziα = ci . Note that if zi is
observed, this is a classic estimation problem, OLS is consistent. The
problem arises if ci is unobserved.
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Panel Data Static Panel Data Models

Introduction

I The main objective is the consistent and efficient estimation of the
partial effects:

β =
∂E [yit |xit ]

∂xit
I We assume strict exogeneity for the independent variables:

E [εit |xi1, xi2, . . .] = 0
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Panel Data Static Panel Data Models

Model Structures

I Pooled regressions: If zi contains only a constant term, then OLS
provides consistent and efficient estimates of α and β.

I Random Effects: the unobserved individual heterogeneity is assumed
to be uncorrelated with xit . Simpler but more difficult as an
assumption.

I Fixed Effects: if zi is unobserved but correlated with xit , then OLS is
inconsistent.
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Panel Data Static Panel Data Models

Pooled Regression Model

yit = Xitβ + vit with vit = ci + uit

I Under certain assumptions the pooled OLS estimator can be used to
obtain a consistent estimator of β.

I We have to assume that:

E (X ′ituit) = 0

E (X ′itci ) = 0
I The unobserved heterogeneity introduces autocorrelation:

E [vitvis ] = σ2c if t 6= s

I OLS may be consistent, but inefficient. We need to use a robust
variance matrix estimator.
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Random Effects Methods

I The random effect method puts also ci into the error term. It
assumes:

E (uit |Xi , ci ) = 0, t = 1, . . .T

E (ci |Xi ) = E (ci ) = 0
I Here we assume that the unobserved effect ci is orthogonal to all

elements in Xi . This may be a very strong assumption. Note that it is
a stronger assumption than the one we made for the pooled OLS.
This is because the method explicitly deals with the autocorrelation
induced by the unobserved effect in a GLS framework.
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Random Effect Methods

I Write the model for all T time periods as:

yi = Xiβ + vi

I The variance matrix of vi (of dimension TxT ) is:

Ω = E (viv ′i ) =


σ2c + σ2u σ2c . . . σ2c

σ2c σ2c + σ2u . . .
...

... σ2c
σ2c σ2c + σ2u


I Ω depends only on two parameters.
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Random Effect Estimator

I The random effects estimator is:

β̂RE =

( N∑
i=1

X ′i Ω̂−1Xi

)−1( N∑
i=1

X ′i Ω̂−1yi

)

I As with FGLS, we need first an estimate of Ω̂. As OLS is consistent
with the assumptions made above, we can back out the estimates
from the residual of a pooled OLS regression. Denote ˆ̂vi such a
residual. An estimator for σ̂v is:

σ̂2v =
1

NT − K

N∑
i=1

T∑
t=1

ˆ̂v2it
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Random Effect Estimator
I However, we need an estimator for both σc and σu. Recall that
σ2c = E (vitvis) for t 6= s.

E (
T−1∑
t=1

T∑
s=t+1

vitvis) =
T−1∑
t=1

T∑
s=t+1

E (vitvis)

=
T−1∑
t=1

T∑
s=t+1

σ2c

= σ2c
T (T − 1)

2
I Hence, a consistent estimator is

σ̂2c =
1

(NT (T − 1)/2− K )

N∑
i=1

T−1∑
t=1

T∑
s=t+1

ˆ̂vit ˆ̂vis

I Note that we can also test for the presence of random effects. The
absence of random effects can be tested with H0 : σ2c = 0.
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Testing for Random Effects
I One way to test for random effects is to test for serial correlation in

the residual, with an AR(1) test. This test is valid as the residuals are
uncorrelated under the null of no random effects.

I We can test for random effects by testing more directly:

H0 : σ2c = 0 H1 : σ2c

the test statistic is:
N∑

i=1

T−1∑
t=1

T∑
s=t+1

v̂it v̂is N∑
i=1

T−1∑
t=1

T∑
s=t+1

v̂it v̂is

2


1/2 ∼ N(0, 1) under the null

This test is quite general, so it is not clear why we reject it when we
find significant serial correlation.
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Fixed Effect Methods
I We assume E (uit |Xi , ci ) = 0 t,= 1, 2, . . . ,T (strict exogeneity of
{Xit}.

I However, E (ci |Xit) can be whichever function of Xit .
I As ci is correlated with Xit , we have to get rid of it. There are several

ways to do so:
I fixed effect transformation (within transformation).
I first differences.

I The fixed effect transformation is obtained by averaging the model
over time periods

ȳi = X̄iβ + ci + ūi

I If we substract this equation from the original one, we get:

yit − ȳi = (Xit − X̄i )β + uit − ūi

ÿit = Ẍitβ + üit
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Fixed Effect Methods

ÿit = Ẍitβ + üit

I This auxiliary model can be estimated by pooled OLS, as
E (Ẍ ′it üit) = 0.

I The estimator is:

β̂FE =

( N∑
i=1

T∑
t=1

Ẍ ′itẌit

)−1( N∑
i=1

T∑
t=1

Ẍ ′it ÿit

)

I The fixed effect is consistent. It is also efficient if

E (uiu′i |Xi , ci ) = σ2uIT

i.e. constant variance across t and not serially correlated.
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Fixed Effect GLS

I If we do not want to assume that E (uiu′i |Xi , ci ) = σ2uIT , then we can
relax this assumption and posit instead that E (üi ü′i |Xi , ci ) = Ω
(which is equivalent to E (uiu′i |Xi , ci ) = Λ).

β̂FEGLS =

( N∑
i=1

T∑
t=1

Ẍ ′itΩ̂−1Ẍit

)−1( N∑
i=1

T∑
t=1

Ẍ ′itΩ̂−1ÿit

)
with

Ω̂ = N−1
N∑

i=1

ˆ̂ui ˆ̂u′i
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Between Estimator

I The between estimator is the OLS applied to the time-averaged
equation.

ȳi = X̄iβ + ci + ūi

β̂BE =

( N∑
i=1

T∑
t=1

X̄ ′i X̄i

)−1( N∑
i=1

T∑
t=1

X̄ ′i ȳi

)
I Note that this estimator is not necessarily consistent because

E (uit |Xi , ci ) = 0 does not guarantee that E (X̄ ′i ci ) = 0.
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Estimation with First Differences

I We can eliminate ci by lagging the model one period and subtracting
it

∆yit = ∆Xitβ + ∆uit

I With this procedure, we loose one wave of data.
I We have now to deal with an error term ∆uit which is autocorrelated

(moving average of order one).
I The first difference estimator is the pooled OLS estimator from the

regression of ∆yit on ∆Xit .
I The estimator is consistent as we have assumed E (∆X ′it∆uit) = 0.
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Fixed-Effect versus First-Differences

I If T = 2, the fixed effect and first differences estimators are identical.
I If T > 2, the choice between First Differences and Fixed Effects

depends on the assumptions about the error term uit .
I The fixed effect estimator is more efficient if the error term is serially

uncorrelated.
I The first difference estimator is more efficient if the error term follows

a random walk.
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Return to Experience

Adda et al. (2013) "Career Progression, Economic Downturns, and
Skills", NBER Working Paper No. 18832.

I They use administrative data from Germany (IAB) which record
wages and work experience for a very large random sample of workers.

I Focus on low skilled individuals (about 75% of a birth cohort) who
either leave school at age 16 or go through vocational training.

I Observe all wages earned in all jobs for up to 20 years.
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Example: Return to Experience
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Example: Return to Experience

I Use administrative data from Germany (IAB) which record wages and
work experience for a very large random sample of workers.

OLS GLS Random Between Within
Effect Effects

experience 0.033 0.03 0.054 0.030
(0.0009) (0.0002) (0.002) (0.0002)

Apprentice 0.055 0.051 0.018 -
(0.015) (0.013) (0.014)

constant 4.43 4.43 4.30 4.500
(0.015) (0.013) (0.016) (0.0014)

Number of obs 81442
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Random Effects and Fixed Effect Estimators

I The goal of the following derivation is to find a transformation under
which we get rid of the heteroskedasticity.

I Suppose we can find a matrix CT such that CT ΩCT = σ2uIT . Then
we can apply CT to our model:

CT yi = CTXiβ + CTνi νi = ci + ui

y̆i = X̆iβ + ν̆i

This new (transformed) model has a homoskedastic error term.

I We’ll see that CT = IT − λPT with PT =

 T−1 . . . T−1
... . . .

...
T−1 . . . T−1

 and

λ = 1−
√

1
1+T (σ2c/σ

2
u)
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I We now apply OLS to get the Random Effect estimator:

β̂RE =

( N∑
i=1

T∑
t=1

X̆ ′itX̆it

)−1( N∑
i=1

T∑
t=1

X̆ ′it y̆it

)

I Note that the transformed model can be written:

yit − λȳi = (Xit − λX̄i )β + νit − λν̄i

I The random effect estimator is obtained by quasi-time demeaning.
We remove a fraction of the time average from the left and right
hand side.

I If λ is close to one, random effects and fixed effect are similar. This
happens either when T is large or when σ2c >> σ2u.

I If λ is close to 0, then Random Effects is close to pooled OLS.
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Proof

I Define JT as a Tx1 vector of ones. We can express the covariance
matrix of ci + ui as:

Ω = σ2uIT + σ2cJT J ′T = σ2uIT + Tσ2cJT (J ′T JT )−1J ′T
(where we have used the fact that J ′T JT = T )

= σ2uIT + Tσ2cPT with PT = JT (J ′T JT )−1J ′T
= (σ2u + Tσ2c )(PT + ηQT ) with QT = IT − PT

where η =
σ2u

σ2u + Tσ2c

I Note that PTPT = PT and QTQT = QT (These matrices are
idempotent).
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I Define ST = PT + ηQT , then S−1T = PT + 1/ηQT as STS−1T = IT .
I It can also be shown that S−1/2T = PT + 1√

ηQT , as

S−1/2T S−1/2T = S−1 (check this).
I Further, we can write S−1/2T = (1− λ)−1(IT − λPT ), λ = 1−√η
I Therefore, we can get an expression for Ω−1/2:

Ω−1/2 = (σ2u + Tσ2c )−1/2(1− λ)−1(IT − λPT )

=
1
σu

(IT − λPT )

I and
λ = 1− σu√

σ2u + Tσ2c
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Dynamic Panel-Data Models

I We are interested in estimating the parameters of models of the form

yit = γyit−1 + Xitβ + ci + uit

for i = 1, . . . ,N and t = 1, . . . ,T using datasets with large N and
fixed T .

I By construction, yit−1 is correlated with the unobserved
individual-level effect ci .

I Removing ci by the within transform (removing the panel-level
means) produces an inconsistent estimator with T fixed.

I First difference both sides and look for instrumental-variables (IV)
and generalized method-of-moments (GMM) estimators .
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The Anderson and Hsiao Estimator

I First differencing the model equation yields:

∆yit = ∆yit−1γ + ∆Xitβ + ∆uit−1

I We have eliminated ci , but yit−1 in ∆yit−1 is a function of uit−1 in
∆uit−1.

cov(∆yit−1,∆uit) = −σ2u
I Anderson and Hsiao (1981) suggest a 2SLS estimator based on

further lags of ∆yit as instruments for ∆yit−1. For instance, if uit is
iid over i and t, then yit−2 would be a valid instrument for ∆yit−1.

Juan Dolado (EUI) Econometrics Block II November 4, 2014 242 / 260



Panel Data Dynamic Panel-Data Models

Arellano-Bond Estimator

I Arellano and Bond (1991) show how to construct estimators based on
moment equations constructed from further lagged levels of yit and
the first-differenced errors.

I There are in fact a huge number of instruments to be used. The
exact number depends on the assumption we are willing to make on
the exogeneity of Xit .

I Strict exogeneity: E (uit |Xis , ci ) = 0, s = 1, . . . ,T .
I Predetermined variables: E (uit |Xis , ci ) = 0, s = 1, . . . , t.
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Arellano-Bond Estimator

I Write ηit = ci + uit
I Suppose we only have two periods of data. We can write the

following moment conditions:

E
[(

Xi1
Xi2

)
(ηi1 − η̄i )

]
= 0 E

[(
Xi1
Xi2

)
(η21 − η̄i )

]
= 0

E
[(

Xi1
Xi2

)
η̄i

]
= 0

Juan Dolado (EUI) Econometrics Block II November 4, 2014 244 / 260



Panel Data Dynamic Panel-Data Models

I To use more compact notations, rewrite the model such as:

ỹit = X̃itθ + η̃it

where ỹit = ∆yit and so on, and θ = [γ, β′].
I Stacking these quantities gives the following matrices:

ỹi =


∆yi3
∆yi4
...

∆yiT

 X̃i =


∆yi2 ∆X ′i3
∆yi3 ∆X ′i4
...

∆yiT−1 ∆X ′iT


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Matrix of Instruments

Zi =


yi,1,X ′i,1, . . . ,X ′i,T 0 . . . 0

0 yi,1, yi,2,X ′i,1, . . . ,X ′i,T . . . 0
. . . . . . . . . . . .

0 0 . . .
yi,1, yi,2, . . . , yiT−2,

X ′i,1, . . . ,X ′i,T


I This matrix of instrument is valid under strict exogeneity of the

variable {Xit}.
I If {Xit} is predetermined, then we would not use all the X s, but only

those up to period t.
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Estimator

θ̂IV =

( n∑
i=1

X̃ ′i Zi

)( n∑
i=1

Z ′i Zi

)−1( n∑
i=1

Z ′i X̃i

)−1

.

( n∑
i=1

X̃ ′i Zi

)( n∑
i=1

Z ′i Zi

)−1( n∑
i=1

Z ′i ỹi

)
I This estimator is an instrumental variable estimator. We can

generalize this method to get an estimator which is more efficient, by
using GMM.
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GMM Estimator

I The optimal GMM estimator is obtained as:

θ̂GMM =

( n∑
i=1

X̃ ′i Zi

)( n∑
i=1

Z ′i ΣZi

)−1( n∑
i=1

Z ′i X̃i

)−1

.

( n∑
i=1

X̃ ′i Zi

)( n∑
i=1

Z ′i ΣZi

)−1( n∑
i=1

Z ′i ỹi

)

with Σ̂ = 1
N

N∑
i=1

Z ′i η̂i η̂
′
iZi

I To get an estimator of Σ̂ we need to compute the predicted residuals,
and we therefore need a first guess for θ̂. We can start with θ̂IV and
then go on and do GMM.
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Example: Dynamic of Wages

I We have a sample of young unskilled Germans.
I We observe their log wage at a quarterly frequency, together with the

amount of work experience they get.
I The sample contains 419 individuals, observed for two years, between

age 16 and 19.
I In total, we have 2106 observations.
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Wage Path
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Empirical Question:

I We are interested in exploring the determinants of wages in this very
homogenous sample.

I In particular, what is the role of work experience?
I How persistent are wages?
I To this end, we write down the model for log wages:

wit = γwit−1 + βexpit + ci + uit

I The return to experience is measured by β, and the persistence by γ.
I We allow for unobserved heterogeneity, which may be due to

differences in ability.
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Estimation Results

OLS RE FD FE AB 1 AB 2
Lagged wage 0.965 0.965 -0.04 0.765 0.767 0.695

(0.005) (0.005) (0.025) (0.015) (0.11) (0.07)
Experience 0.011 0.011 0.147 0.042 0.028 0.038

(0.005) (0.005) (0.014) (0.006) (0.016) (0.011)
RE: Random Effect, FD: First Difference, FE: Fixed effect, AB1,2: Arellano-
Bond, without or with predetermined experience.

I Note that the persistence γ decreases when we allow for unobserved
heterogeneity.
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Example: Return to Seniority

I Altonji and Shakotko (1987) "Do Wages Rise with Job Seniority?",
Review of Economic Studies.

I Wages of individuals who stay longer in a given firm appears to be
higher. Why?

I Is this due to firm specific human capital? Is this a statistical artefact?
I Matters to inform policy: for instance, a number of labor market

policies try to provides temporary jobs to unemployed. Their effect
depends on the return to human capital acquired in firms. Matters
also to understand job to job mobility.
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The Empirical Model

For individual i in job j in period t:

wijt = b0Xijt + b1Tijt + b2T 2
ijt + b3Oijt + εijt

εijt = εi + εij + ηijt

I wijt is the log real wage, Xijt is a vector of characteristics of the
person, the job and labor market experience.

I Tijt is the duration in job j , Oijt is a dummy for T > 1.
I The model includes an individual fixed effect as well as a job-person

fixed effect.
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Sources of Bias

I The tenure variables are likely to be correlated with the error term:
I High productivity individuals (εi) are probably less likely to experience

layoffs or quits. Health problems are likely to be positively correlated
with quits and negatively correlated with tenure, productivity and
wages.

I Tenure is likely to be correlated to the person-firm match effect εij .
Individuals who have a good match are less likely to move to another
job.

I Individuals who move to a new job usually do so because the new job
pays better.

I Removing the individual fixed effect does not solve the endogeneity
problem completely as there is still endogeneity associated with the
match effect εij .
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Econometric Methodology

I One way to estimate the model is to employ a within estimator:

wijt − w̄ijt = b0(Xijt − X̄ij) + b1(Tijt − T̄ij) + b2(T 2
ijt − T̄ 2

ij )

+b3(Oijt − Ōij) + εijt − ε̄ij

I However, with this specification, we cannot separately identify b0 and
b1 (why?).

I Hence, there is a need for an alternative estimation method.
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Econometric Methodology

I Construct an instrument for tenure: deviation from the mean of
tenure over an employment spell:

T̃ijt = Tijt − T̄ij

I T̃ijt sums to zero over the periods in job j . Hence it is orthogonal to
the individual and firm specific shocks εi and εij .

I It is also correlated with tenure by construction.
I However, there may still be some endogeneity. Experience may not be

independent of the individual fixed effect. Not taken care of in the
study.

I The fixed effects introduce serial correlation. Also try a GLS method
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Data

I 1968-1981 waves of the Panel Study of Income Dynamics.
I Focus on white males, head of households, between 18 and 60.
I not retired, not disabled, not self-employed, not employed by the

government.
I In total, about 15000 observations on 2163 individuals and 4334 job

matches.
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Results: OLS and IV
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Results: Fixed Effects
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