Basic Linear Algebra, Metric Spaces, Differential Calculus

and Nonlinear Programming’
Fall 2015

antonio villanacci

January 18, 2016

'T would like to thank the following friends for helpful comments and discussions: Laura Carosi, Michele
Gori, Marina Pireddu and all the students and teaching assistants of the courses I used these notes for in
the past several years.






Contents

I

1

Basic Linear Algebra 7
Systems of linear equations 9
1.1 Linear equations and solutions . . . . . . . . . ... ... . L oo 9
1.2 Systems of linear equations, equivalent systems and elementary operations . . . . . . 10
1.3 Systems in triangular and echelon form . . . . . .. ... .. ... ... ... 11
1.4 Reduction algorithm . . . . . . . . ... . 12
1.5 Matrices . . . . . ..o 14
1.6 Systems of linear equations and matrices . . . . . . . .. ... oL 18
1.7 EXercises . . . . ... e 19
The Euclidean Space R" 21
2.1 Sum and scalar multiplication . . . . . . . . .. ... 21
2.2 Scalar product . . . . . . .. e e e 22
2.3 Norms and Distances . . . . . . . . . . . . e e e 23
2.4 EXercises . . . .. .. e 25
Matrices 27
3.1 Matrix operations . . . . . . ... oL 28
3.2 Inverse matrices . . . . . . . . ..o e e e 33
3.3 Elementary matrices . . . . . . . ... 34
3.4 Elementary column operations . . . . . . .. ... .. Lo o 41
3.5 EXercises . . . ... e e 44
Vector spaces 45
4.1 Definition . . . . . . oL 45
4.2 Examples . . . . ..o 47
4.3 Vector subspaces . . . . . . . .. e e 48
4.4 Linear combinations . . . . . . . . . . .o e e 49
4.5 Row and column space of amatrix . . . . . . . . . . ... ... 50
4.6 Linear dependence and independence . . . . . . . .. ... ... 53
4.7 Basis and dimension . . . . . . . ... e e e e e 57
4.8 EXercises . . . . ..o e 63
Determinant and rank of a matrix 65
5.1 Definition and properties of the determinant of a matrix . . . . . . . ... ... ... 65
5.2 Rankof amatrix . . . . . . . . . ... 69
5.3 Inverse matrices (continued) . . . . . . ... L Lo 70
5.4 Span of a matrix, linearly independent rows and columns, rank . . . . ... ... .. 72
5.5 EXercises . . . . ... e e e 74
Linear functions 75
6.1 Definition . . . . . . . L 75
6.2 Kernel and Image of a linear function . . . . . . .. .. .. ... ... ... 76
6.3 Nonsingular functions and isomorphisms . . . . . .. ... ... L 0oL, 79
6.4 EXErcises . . . . . . . e 82



4 CONTENTS
7 Linear functions and matrices 83
7.1 From a linear function to the associated matrix . . . . . . . ... .. ... ... ... 83
7.2 From a matrix to the associated linear function . . . . . . . .. ... ... ... ... 85
7.3 M(m,n) and L (V,U) are isomorphic . . . . . . . . ... 86
7.4 Some related properties of a linear function and associated matrix . . . ... .. .. 88
7.5 Some facts on L(R™,R™) . . . . . . . 91
7.6 Examples of computation of [I]%. . . . .. ... L o 93
T7 EXErciSes . . . . . . . . 94
7.8 Appendices. . . . ... e 94
7.8.1 The dual and double dual space of a vector space . . . . .. ... ... .... 94

7.8.2 Vector spaces as Images or Kernels of well chosen linear functions . . . . .. 97

8 Solutions to systems of linear equations 101
8.1 Some preliminary basic facts . . . . . . .. ... o 101
8.2 A solution method: Rouche-Capelli’s and Cramer’s theorems . . . . . ... ... .. 102
8.3 Exercises . . . . . .. e 111

II Some topology in metric spaces 113
9 Metric spaces 115
9.1 Definitions and examples . . . . . . . . . .. L. 115
9.2 Openandclosed sets . . . . . . . . . . e 119
9.2.1 Sets which are open or closed in metric subspaces. . . . ... ... ... ... 123

9.3 SEqUENCES . . .« v v v i e e e e e e e e e e e 125
9.4 Sequential characterization of closed sets . . . . . . .. ... ... ... ........ 128
9.5 Compactness . . . . . . . o i e e e 128
9.5.1 Compactness and bounded, closed sets . . . . . . ... ... .. ........ 129

9.5.2 Sequential compactness . . . . . . . .. ... e 131

9.6 Completeness . . . . . . . . . . e e 137
9.6.1 Cauchy sequences . . . . . . . . . . . 137

9.6.2 Complete metric Spaces . . . . . . . . . .. e 138

9.6.3 Completeness and closedness . . . . . . . ... ... .. ... ... ... 139

9.7 Fixed point theorem: contractions . . . . . . . .. . .. .. ... .. ... ..., 140
9.8 Appendices. . . . . .. e 142
9.8.1 Some characterizations of open and closed sets . . . . . ... ... ... ... 142

9.8.2 Norms and metrics . . . . . . . . . . e 146

9.9 EXercises . . . . . . .. e 149

10 Functions 151
10.1 Limits of functions . . . . . . . . . .. 151
10.2 Continuous Functions . . . . . . . . . . . . e 152
10.3 Continuous functions on compact sets . . . . . . . . . . ... ... 156
10.4 EXEIrCISES . . v v v v o e e e e e e e e e e e e e e e e 158
11 Correspondence, maximum theorem and a fixed point theorem 159
11.1 Continuous Correspondences . . . . . . . . . v v v v i vt e e e 159
11.2 The Maximum Theorem . . . . . . . . . . . . . . . . . . .. 166
11.3 Fixed point theorems . . . . . . . . . .. ..o 169
11.4 Application of the maximum theorem to the consumer problem . . . . .. ... ... 170
III Differential calculus in Euclidean spaces 173
12 Partial derivatives and directional derivatives 175
12.1 Partial Derivatives . . . . . . . . . . . e 175
12.2 Directional Derivatives . . . . . . . . . . . . e 176



CONTENTS

13 Differentiability
13.1 Total Derivative and Differentiability . . . . . . . . . ... ... ... .. ... ...
13.2 Total Derivatives in terms of Partial Derivatives. . . . . . . . . .. .. . ... ....

14 Some Theorems
14.1 Thechainrule . . . .. .. . .
14.2 Mean value theorem . . . . . . . . . .. L
14.3 A sufficient condition for differentiability . . . . . . . .. .. .. 0oL
14.4 A sufficient condition for equality of mixed partial derivatives . . . . . . . . ... ..
14.5 Taylor’s theorem for real valued functions . . . . . . ... .. .. ... ... ... ..

15 Implicit function theorem
15.1 Some intuition . . . . . . L.
15.2 Functions with full rank square Jacobian . . . . . . . . . ... ... ... .......
15.3 The inverse function theorem . . . . . . . . . .. ... L o Lo
15.4 The implicit function theorem . . . . . . . . . .. ... L o L
15.5 Some geometrical remarks on the gradient . . . . . . . ... 0oL
15.6 Extremum problems with equality constraints. . . . . . ... .. ... ... ... ..
15.7 Exercises on part ITI . . . . . . . . . . . . e

IV Nonlinear programming

16 Concavity
16.1 Convex SetS . . . . . v o i e e e e e e e e
16.2 Different Kinds of Concave Functions . . . . . . . . . . . . ... .. ... .. .....
16.2.1 Concave Functions. . . . . . . . . . . . . . . . e
16.2.2 Strictly Concave Functions. . . . . . . . . . . . ... ... ... .. .. ... .
16.2.3 Quasi-Concave Functions. . . . . . . . . . .. .. ... .. ... .. .. ...
16.2.4 Strictly Quasi-concave Functions. . . . . . . . . .. ... L oL
16.2.5 Pseudo-concave Functions. . . . . . . . ... ... oL
16.3 Relationships among Different Kinds of Concavity . . . . . ... ... ... ... ..
16.3.1 Hessians and Concavity. . . . . . . . . . . . . ..

17 Maximization Problems
17.1 The case of inequality constraints: Kuhn-Tucker theorems . . . . . . ... ... ...
17.1.1 On uniqueness of the solution . . . . . . . . ... ... ... ... ... ...
17.2 The Case of Equality Constraints: Lagrange Theorem. . . . .. ... ... ... ..
17.3 The Case of Both Equality and Inequality Constraints. . . . . . . . . ... ... ...
17.4 Main Steps to Solve a (Nice) Maximization Problem . . . . ... ... ... ... ..
17.4.1 Some problems and some solutions . . . . . . . . ... ... ... ... .. ..
17.5 The Implicit Function Theorem and Comparative Statics Analysis . . . . ... . ..
17.5.1 Maximization problem without constraint . . . . . . . .. ... .. ... ...
17.5.2 Maximization problem with equality constraints . . . . ... ... ... ...
17.5.3 Maximization problem with Inequality Constraints . . . . . . . .. ... ...
17.6 The Envelope Theorem and the meaning of multipliers . . . . . . . .. ... ... ..
17.6.1 The Envelope Theorem . . . . . . . . . ... ... ... ... .. ......
17.6.2 On the meaning of the multipliers . . . . . ... ... ... ... .. .....

18 Applications to Economics
18.1 The Walrasian Consumer Problem . . . . . . . . .. ... ... .. ... .. .....
18.2 Production . . . . . . . . ..o
18.3 The demand for insurance . . . . . . . . . . . . . . . ...
18.4 Exerciseson part IV . . . . . . ..

183
183
185

187
188
190
193
193
193

195
195
197
200
202
204
204
206

207

209
209
209
211
213
215
219
221
222
225

227
227
231
232
234
236
242
243
244
244
245
246
246
247



6 CONTENTS

V  Problem Sets 255
19 Exercises 257
19.1 Linear Algebra . . . . . . . . . . . e 257
19.2 Some topology in metric spaces . . . . . . . ... ..o 262
19.2.1 Basic topology in metric spaces . . . . . . . . ... 262

19.2.2 Correspondences . . . . . . . ... e 265

19.3 Differential Calculus in Euclidean Spaces. . . . . . . .. ... ... ... ... .... 266
19.4 Nonlinear Programming . . . . . . . . . . . . . . . . e 269
20 Solutions 271
20.1 Linear Algebra . . . . . . . . . e 271
20.2 Some topology in metric Spaces . . . . . . ... ... e 280
20.2.1 Basic topology in metric spaces . . . . . . . . ..o 280

20.2.2 Correspondences . . . . . . . ..o e e e 286

20.3 Differential Calculus in Euclidean Spaces. . . . . . . . . . . . ... ... ... .... 288

20.4 Nonlinear Programming . . . . . . . . . . . . . . e 294



Part 1

Basic Linear Algebra






Chapter 1

Systems of linear equations

1.1 Linear equations and solutions

Definition 1 A! linear equation in the unknowns 1, s, ..., T, is an equation of the form
a1z + asxs + ...anT, = b, (1.1)

where b € R and Vj € {1,...,n}, a; € R . The real number a; is called the coefficient of x; and b is
called the constant of the equation. a; for j € {1,...,n} and b are also called parameters of system
(1.1).

Definition 2 A solution to the linear equation (1.1) is an ordered n-tuple (T1,...,Tp) := (Tj)?zl
such? that the following statement (obtained by substituting T; in the place of x; for any j ) is true:
a1T1 + 9T + ...a, T, = b,

The set of all such solutions is called the solution set or the general solution or, simply, the solution

of equation (1.1).

The following fact is well known.

Proposition 3 Let the linear equation
ar=>b (1.2)
in the unknown (variable) x € R and parameters a,b € R be given. Then,
1. if a#0, then v = £ is the unique solution to (1.2);
2. ifa=0 and b# 0, then (1.2) has no solutions;

3. if a=0 and b= 0, then any real number is a solution to (1.2).

Definition 4 A linear equation (1.1) is said to be degenerate if V5 € {1,...,n}, a; =0, i.e., it has
the form
0z7 + 0zg + ...0z,, =, (1.3)

Clearly,
1. if b # 0, then equation (1.3) has no solution,

n

2. if b= 0, any n-tuple (z;);_, is a solution to (1.3).

Definition 5 Let a nondegenerate equation of the form (1.1) be given. The leading unknown of the
linear equation (1.1) is the first unknown with a nonzero coefficient, i.e., x, is the leading unknown
if

Vie{l,..,p—1},a; =0 and a,#0.

For any j € {1,....,n}\{p}, x; is called a free variable - consistently with the following obvious
result.

'Tn this part, I often follow Lipschutz (1991).
24.=” means “equal by definition”.
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Proposition 6 Consider a nondegenerate linear equation a1xi + asxs + ...anT, = b with leading
unknown x,. Then the set of solutions to that equation is

b—> . a;x;
{<wk>2_1 7 € (P \ o) 2 € R and g, = Sl ) ) }
P

1.2 Systems of linear equations, equivalent systems and el-
ementary operations

Definition 7 A system of m linear equations in the n unknowns xi,xs,..., T, 1S a system of the
form
01171 + ... + 01T + ... + Q1pTn = by

;11 + ... + QjT5 + ... + AQinTy = b; (14)

A 1% + oo + Ay T+ oo+ Q@ = by

where Vi € {1,....,m} and Vj € {1,...,n}, a;;j € R and Vi € {1,...,m}, b, € R. We call L; the
i — th linear equation of system (1.4).

A solution to the above system is an ordered n-tuple (@)ll which is a solution of each equation
of the system. The set of all such solutions is called the solution set of the system.

Definition 8 Systems of linear equations are equivalent if their solutions set is the same.
The following fact is obvious.
Proposition 9 Assume that a system of linear equations contains the degenerate equation
L: 0x1 + 0xo + ...0xz,, = b.
1. If b= 0, then L may be deleted from the system without changing the solution set;
2. if b#£ 0, then the system has no solutions.

A way to solve a system of linear equations is to transform it in an equivalent system whose
solution set is “easy” to be found. In what follows we make precise the above sentence.

Definition 10 An elementary operation on a system of linear equations (1.4) is one of the following
operations:

E1] Interchange L; with L;, an operation denoted by L; < L; (which we can read “put L; in the
/ J
place of L; and Lj in the place of L;”);

[E2] Multiply L; by k € R\ {0}, denoted by kL; — L;, k # 0 (which we can read “put kL; in the
place of L;, with k #£07);

[E3] Replace L; by ( k times L; plus L; ), denoted by (L; + kL;) — L; (which we can read “put
L; + kLj in the place of L;”).

Sometimes we apply [F2] and [F3] in one step, i.e., we perform the following operation
[E] Replace L; by ( k' times L; and k € R\ {0} times L; ), denoted by (k'L; + kL;) — L;, k # 0.
Elementary operations are important because of the following obvious result.

Proposition 11 If 57 is a system of linear equations obtained from a system S of linear equations
using a finite number of elementary operations, then system S1 and Ss are equivalent.

In what follows, first we define two types of “simple” systems (triangular and echelon form
systems), and we see why those systems are in fact “easy” to solve. Then, we show how to transform
any system in one of those “simple” systems.
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1.3 Systems in triangular and echelon form

Definition 12 A linear system (1.4) is in triangular form if the number n of equations is equal to
the number n of unknowns and Vi € {1,...,n}, x; is the leading unknown of equation i, i.e., the
system has the following form:

a11x1  +apTz  +... +a1p-1Tn—1 FA1pTy = b
ageTz  +... +a2p-1Tp—1 Fa2pTy = b
(1.5)
Un—1n—1Tn—1 FTOp—1nTn = bn—1
ApnTn = by

where Vi € {1,...,n}, a;; #0.
Proposition 13 System (1.5) has a unique solution.

Proof. We can compute the solution of system (1.5) using the following procedure, known as
back-substitution.
First, since by assumption a,, # 0, we solve the last equation with respect to the last unknown,
i.e., we get
Ty = —.
ann
Second, we substitute that value of x,, in the next-to-the-last equation and solve it for the next-to-

the-last unknown, i.e.,
b
Ann

bn—l —Qp—1,n

Tpn—1 =
An—1,n—1

and so on. The process ends when we have determined the first unknown, .

Observe that the above procedure shows that the solution to a system in triangular form is
unique since, at each step of the algorithm, the value of each x; is uniquely determined, as a
consequence of Proposition 3, conclusion 1. m

Definition 14 A linear system (1.4) is said to be in echelon form if

1. no equation is degenerate, and

2. the leading unknown in each equation is to the right of the leading unknown of the preceding
equation.

In other words, the system is of the form

annwy 4. Fapy,Ti,  Fe. +aiszs =by
Q255 T jy +... +a27j3:c‘,-3 +... +az2sxs =bo

asz,j3Tja +... +azszs =bs (1~6)
Qr jpTj.  +arj.p1+...  Farszs =b,

with j1 :=1 < jo < ... < jp and a11,a2j,, ..., arj, 7 0. Observe that the above system has r
equations and s variables and that s > r. The leading unknown in equation i € {1,...,r} is xj,.

Remark 15 Systems with no degenerate equations are the “interesting” ones. If an equation is
degenerate and the right hand side term is zero, then you can erase it; if the right hand side term
is not zero, then the system has no solutions.

Definition 16 An unknown xy, in system (1.6) is called a free variable if xj is not the leading
unknown in any equation, i.e., ¥i € {1,...,r}, xp # xj,.

In system (1.6), there are r leading unknowns, r equations and s — r > 0 free variables.

Proposition 17 Let a system in echelon form with r equations and s variables be given. Then,
the following results hold true.
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1. If s = r, i.e., the number of unknowns is equal to the number of equations, then the system
has a unique solution;

2. if s > r, i.e., the number of unknowns is greater than the number of equations, then we can
arbitrarily assign values to the n —r > 0 free variables and obtain solutions of the system.

Proof. We prove the theorem by induction on the number r of equations of the system.

Step 1. r = 1.

In this case, we have a single, nondegenerate linear equation, to which Proposition 6 applies if
s > r =1, and Proposition 3 applies if s =1 = 1.

Step 2.

Assume that > 1 and the desired conclusion is true for a system with » — 1 equations. Consider
the given system in the form (1.6) and erase the first equation, so obtaining the following system:

25, %y Feee FQ253T5, .. = by
as iz T +...
»J3J3 (17>
Orj, Tj, 0 41 +a,sTs = by

in the unknowns z;,, ..., z,. First of all observe that the above system is in echelon form and has
r — 1 equation; therefore we can apply the induction argument distinguishing the two case s > r
and s =r.

If s > r, then we can assign arbitrary values to the free variables, whose number is (the “old”
number minus the erased ones)

s—r—(2—f1—1)=s—r—ja2+2
and obtain a solution of system (1.7). Consider the first equation of the original system
a1y +aie®s +.. +a15,-1Tj-1 +a1T5  +.. = b . (1.8)
We immediately see that the above found values together with arbitrary values for the additional
Jo —2

free variable of equation (1.8) yield a solution of that equation, as desired. Observe also that the
values given to the variables z1, ..., z;,_, from the first equation do satisfy the other equations simply
because their coeflicients are zero there.

If s = r, the system in echelon form, in fact, becomes a system in triangular form and then the
solution exists and it is unique. m

Remark 18 From the proof of the previous Proposition, if the echelon system (1.6) contains more
unknowns than equations, i.e., s > r, then the system has an infinite number of solutions since each
of the s —r > 1 free variables may be assigned an arbitrary real number.

1.4 Reduction algorithm
The following algorithm (sometimes called row reduction) reduces system (1.4) of m equation and
n unknowns to either echelon form, or triangular form, or shows that the system has no solution.
The algorithm then gives a proof of the following result.
Proposition 19 Any system of linear equations has either

1. wnfinite solutions, or

2. a unique solution, or

8. no solutions.
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Reduction algorithm.
Consider a system of the form (1.4) such that

Vied{l,..,n}, 3Fie{l,..,m} such that a;; #0, (1.9)

i.e., a system in which each variable has a nonzero coefficient in at least one equation. If that is
not the case, the remaining variables can renamed in order to have (1.9) satisfied.

Step 1. Interchange equations so that the first unknown, x;, appears with a nonzero coefficient in
the first equation; i.e., rearrange the equations in the system in order to have ay; # 0.

Step 2. Use a1 as a “pivot” to eliminate x; from all equations but the first equation. That is, for
each 7 > 1, apply the elementary operation

[Es]: — (ail) Ly+L;— L;
a1

or
[E} . 7&1'1L1 + alle’ — Li~

Step 3. Examine each new equation L :

1. If L has the form
0xy 4+ 02 + .... + 0z, =0,

or if L is a multiple of another equation, then delete L from the system.?

2. If L has the form
0x1 4+ 0x9 + .... + 0z, = b,

with b # 0, then exit the algorithm. The system has no solutions.

Step 4. Repeat Steps 1, 2 and 3 with the subsystem formed by all the equations, excluding the
first equation.

Step 5. Continue the above process until the system is in echelon form or a degenerate equation
is obtained in Step 3.2.

Summarizing, our method for solving system (1.4) consists of two steps:

Step A. Use the above reduction algorithm to reduce system (1.4) to an equivalent simpler
system (in triangular form, system (1.5) or echelon form (1.6)).

Step B. If the system is in triangular form, use back-substitution to find the solution; if the
system is in echelon form, bring the free variables on the right hand side of each equation, give
them arbitrary values (say, the name of the free variable with an upper bar), and then use back-
substitution.

Example 20
r1  + 219 + (—3).%‘3 = -1
3r1 + (—1) To + 2x3 = 7
br, + 3To + (—4) T3 = 2
Step A.

Step 1. Nothing to do.

3The justification of Step 3 is Propositon 9 and the fact that if L = kL’ for some other equation L’ in the system,
then the operation —kL’ + L — L replace L by 0z1 +0x2 + .... + 0z, = 0, which again may be deleted by Propositon
9.
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Step 2. Apply the operations
*3[;1 + LQ — L2

and
=501 + L3 — L,

to get
x + 229 + (=3)z3

(=T ze + 1lzg
(=T zo + 1lzg

Step 3. Examine each new equations Lo and Ls:

1. Ly and L3 do not have the form

10

0xq1 + 022 + .... + 0x,, = 0;

L5 is not a multiple Ls;
2. Lo and L3 do not have the form

0zy + 0x + .... + Ox,, = b,

Step 4.
Step 1.1 Nothing to do.

Step 2.1 Apply the operation
—Lo+ L3 — Ls

to get
1 + 2.%'2 + (—3).%‘3
(—7) To + 11z3
Ox1 + Oxo + Ox3

Step 3.1 L3 has the form

0z + 0xo + .... + Ox,, = b,

= 10

I
|
Y

1. with b = —3 # 0, then exit the algorithm. The system has no solutions.

1.5 DMatrices

Definition 21 Given m,n € N\ {0}, a matriz (of real numbers)

numbers with m rows and n columns as displayed below.

ail ai12 ce Q15 e Q1p
asy ago cee Q25 e Q2p
a;1 ;2 cee Qg e Qip
aml Am2 -« Amj ... (amnp

of order m x n is a table of real

Foranyi € {1,....m} and any j € {1, ...,n} the real numbers a;; are called entries of the matrix;
the first subscript i denotes the row the entries belongs to, the second subscript j denotes the column
the entries belongs to. We will usually denote matrices with capital letters and we will write Apxn
to denote a matrix of order m x n. Sometimes it is useful to denote a matriz by its “typical”
element and we write[a;;] iellmy s OF simply [a;;] if no ambiguity arises about the number of rows

FE n}
and columns. Fori € {1,...,m},

[aﬂ @2 ... Q5 ... am]
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is called the i — th row of A and it denoted by R' (A). For j € {1,...,n},

is called the j — th column of A and it denoted by C7 (A).
We denote the set of m x n matrices by My, n,, and we write, in an equivalent manner, Apxn
or A e My p.

Definition 22 The matrix
ai
Amxl =
am

is called column vector and the matriz
A1><n = [ a1, ... Qn ]
is called row vector. We usually denote row or column vectors by small Latin letters.

Definition 23 The first nonzero entry in a row R of a matriz Ay, xn 1S called the leading nonzero
entry of R. If R has no leading nonzero entries, i.e., if every entry in R is zero, then R is called a
zero row. If all the rows of A are zero, i.e., each entry of A is zero, then A is called a zero matrix,
denoted by 0y, %p or simply 0, if no confusion arises.

In the previous sections, we defined triangular and echelon systems of linear equations. Below,
we define triangular, echelon matrices and a special kind of echelon matrices. In Section (1.6), we
will see that there is a simple relationship between systems and matrices.

Definition 24 A matriz A, x» is square if m =n. A square matriz A belonging to My, n, is called
square matriz of order m.

Definition 25 Given A = [a;j] € My, 1, the main diagonal of A is made up by the entries a;;
with i € {1,..,m}.

Definition 26 A square matriv A = [a;;] € Muym is an upper triangular matriz or simply a
triangular matriz if all entries below the main diagonal are equal to zero, i.e., Vi,j € {1,..,m}, if
1> j, then a;; = 0.

Definition 27 A € M,,,,, is called diagonal matrixz of order m if any element outside the principal
diagonal is equal to zero, i.e., Vi,j € {1,...,m} such that i # j, a;; = 0.

Definition 28 A matriz A € M,y is called an echelon (form) matriz, or it is said to be in echelon
form, if the following two conditions hold:

1. All zero rows, if any, are on the bottom of the matrix.

2. The leading nonzero entry of each row is to the right of the leading nonzero entry in the
preceding row.

Definition 29 If a matrix A is in echelon form, then its leading nonzero entries are called pivot
entries, or simply, pivots

Remark 30 If a matriv A € M,, ,, is in echelon form and r is the number of its pivot entries,
then r < min{m,n}. In fact, r < m, because the matriz may have zero rows and r < n, because the
leading nonzero entries of the first row maybe not in the first column, and the other leading nonzero
entries may be “strictly to the right” of previous leading nonzero entry.
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Definition 31 A matriz A € My, ,, is called in row canonical form if
1. 1t is in echelon form,
2. each pivot is 1, and
8. each pivot is the only nonzero entry in its column.

Example 32 1. All the matrices below are echelon matrices; only the fourth one is in row canonical
form.

0700 1 2 2 320 1 24 L9 3 01300 4
0001 -3 3 0011 -3 30

, ., oo 1], |oo0oo01o0 -3
0000 0 7 0000 0 71 0 0 0 0000 1 2
0000 0 O 0000 0 00

2. Any zero matriz is in row canonical form.

Remark 33 Let a matrix A, xn in row canonical form be given. As a consequence of the definition,
we have what follows.

1. If some rows from A are erased, the resulting matriz is still in row canonical form.

2. If some columns of zeros are added, the resulting matriz is still in row canonical form.

Definition 34 Denote by R’ the i — th row of a matriz A. An elementary row operation is one of
the following operations on the rows of A:

[E1] (Row interchange) Interchange R' with R, an operation denoted by R' +» R’ (which we can
read “put R' in the place of R/ and R’ in the place of R'”);;

[Es] (Row scaling) Multiply R* by k € R\ {0}, denoted by kR* — R', k # 0 (which we can read
“put kR in the place of R, with k # 07);

[E3] (Row addition) Replace R' by ( 'k times R’ plus R* ), denoted by (R' + kR’) — R' (which we
can read “put R* + kR? in the place of R'”).

Sometimes we apply [F2] and [F3] in one step, i.e., we perform the following operation
[E] Replace R by (k' times RY and k € R\ {0} times R’ ), denoted by (k'R7 4+ kR") — R', k # 0.

Definition 35 A matriz A € M,, ,, is said to be row equivalent to a matric B € M, ,, if B can
be obtained from A by a finite number of elementary row operations.

It is hard not to recognize the similarity of the above operations and those used in solving
systems of linear equations.

We use the expression “row reduce” as having the meaning of “transform a given matrix into
another matrix using row operations”. The following algorithm “row reduces” a matrix A into a
matrix in echelon form.

Row reduction algorithm to echelon form.

Consider a matrix A = [a;;] € My, n.

Step 1. Find the first column with a nonzero entry. Suppose it is column j;.

Step 2. Interchange the rows so that a nonzero entry appears in the first row of column ji, i.e., so
that Qa154, 35 0.

Step 3. Use a1, asa “pivot” to obtain zeros below a1, , i.e., for each ¢ > 1, apply the row operation

Bs] : — (G—J) R'+R — R

15,

or . )
[E} : —ailel + a1 R* — R'.
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Step 4. Repeat Steps 1, 2 and 3 with the submatrix formed by all the rows, excluding the first
row.

Step 5. Continue the above process until the matrix is in echelon form.
Example 36 Let’s apply the above algorithm to the following matrix

1 2 -3 -1

Step 1. Find the first column with a nonzero entry: that is C*, and therefore j; = 1.

Step 2. Interchange the rows so that a nonzero entry appears in the first row of column ji, i.e., so
that aij, 7& 0: a1j, = ai1 = 1 35 0.

Step 3. Use a1 as a “pivot” to obtain zeros below a1;. Apply the row operations
—3R'+ R* > R®
and
—5R' + R* — R?,

to get
1 2 -3 -1
0 -7 11 10
0o -7 11 7

Step 4. Apply the operation
~-R*+R* > R?

to get
1 2 -3 -1
0 -7 11 10
0 0 0 -3

which is is in echelon form.

Row reduction algorithm from echelon form to row canonical form.
Consider a matrix A = [a;;] € M, in echelon form, say with pivots

a1j17a2j27 ...7(lrjr.

Step 1. Multiply the last nonzero row R" by a%,so that the leading nonzero entry of that row
TIr
becomes 1.

Step 2. Use a,;, as a “pivot” to obtain zeros above the pivot, i.e., for each i € {r —1,r —2,...,1},
apply the row operation _ _
[E3] : —ai,jTRT + R'— R

Step 3. Repeat Steps 1 and 2 for rows R" ', R"~2, ..., R?.
Step 4. Multiply R' by ——.

a1jy

Example 37 Consider the matriz
1 2 -3 -1
0 -7 11 10
0o 0 0 -3

in echelon form, with leading nonzero entries

aiy = 1,a22 = —7,a34 = —3.
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Step 1. Multiply the last nonzero row R? by %3,s0 that the leading nonzero entry becomes 1:

1 2 -3 -1
0 -7 11 10
0 0 0 1

Step 2. Usea,j, = a4 asa “pivot” to obtain zeros above the pivot, i.e., foreachi € {r —1,r — 2,...,1} =
{2,1}, apply the row operation

[E3]: —a;;, R+ R"— R',

which in our case are

—ag4R*+ R> - R* ie, —10R®+R?®— R?
—a;4R*+R' - R' e, R*+R'— R.
Then, we get
1 2 -3 0
0 -7 11 0
0 0 0 1
Step 3. Multiply R? by }7, and get
12 -3 0
01 -2 0
00 0 1

Use ag3 as a “pivot” to obtain zeros above the pivot, applying the operation:

—2R*+ R' — R,
to get

1o 1 0

01 & 0

00 0 1

which is in row reduced form.
Proposition 38 Any matriz A € My, ,, is row equivalent to a matriz in row canonical form.

Proof. The two above algorithms show that any matrix is row equivalent to at least one matrix
in row canonical form. m

Remark 39 In fact, in Proposition 155, we will show that: Any matriz A € M, , is row equivalent
to a unique matriz in row canonical form.

1.6 Systems of linear equations and matrices

Definition 40 Given system (1.4), i.e., a system of m linear equation in the n unknowns x1, T2, ..., Tp,

01171 + ... + 01T + ... + 01Ty = by
ai1T1 + ... + Q3 T5 + oo+ ATy = b;

A1 %5 + oo + A Tj + oo+ Qn T = by,

the matrix
a1 aij ain by
ai aij ain  b;
Qm1 Amj Gmn bm

is called the augmented matriz M of system (1.4).
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Each row of M corresponds to an equation of the system, and each column of M corresponds
to the coefficients of an unknown, except the last column which corresponds to the constant of the
system.

In an obvious way, given an arbitrary matrix M, we can find a unique system whose associated
matrix is M; moreover, given a system of linear equations, there is only one matrix M associated
with it. We can therefore identify system of linear equations with (augmented) matrices.

The coefficient matrix of the system is

a1 ce Qa5 e Qip
A= ;1 cee Qg e Qim
am1 -~ QAmj ... Amn

One way to solve a system of linear equations is as follows:

1. Reduce its augmented matrix M to echelon form, which tells if the system has solution; if M
has a row of the form (0,0,...,0,b) with b # 0, then the system has no solution and you can stop.
If the system admits solutions go to the step below.

2. Reduce the matrix in echelon form obtained in the above step to its row canonical form.
Write the corresponding system. In each equation, bring the free variables on the right hand side,
obtaining a triangular system. Solve by back-substitution.

The simple justification of this process comes from the following facts:

1. Any elementary row operation of the augmented matrix M of the system is equivalent to
applying the corresponding operation on the system itself.

2. The system has a solution if and only if the echelon form of the augmented matrix M does
not have a row of the form (0,0, ...,0,b) with b # 0 - simply because that row corresponds to
a degenerate equation.

3. In the row canonical form of the augmented matrix M (excluding zero rows) the coefficient of
each nonfree variable is a leading nonzero entry which is equal to one and is the only nonzero
entry in its respective column; hence the free variable form of the solution is obtained by
simply transferring the free variable terms to the other side of each equation.

Example 41 Consider the system presented in Example 20:

r1  + 219 + (—3).%‘3 = -1
3r1 + (—1) To + 213 = 7
br, + 3To + (—4) T3 = 2

The associated augmented matriz is:

In example 36, we have see that the echelon form of the above matrix is

(1 2 -3 —1]
0 -7 11 10
0 0 0 -3 |

which has its last row of the form (0,0,...,0,b) with b = —3 # 0, and therefore the system has no
solution.
1.7 Exercises

Chapter 1 in Lipschutz:
1,2,3,4,6,7,8,10, 11,12,14,15,16.
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Chapter 2

The Euclidean Space R"

2.1 Sum and scalar multiplication

It is well known that the real line is a representation of the set R of real numbers. Similarly, a
ordered pair (z,y) of real numbers can be used to represent a point in the plane and a triple (z,y, z)
or (x1,22,x3) a point in the space. In general, if n € Ny := {1,2, ..., }, we can define (21, z3, ..., ;)
or (z;)i_; as a point in the n — space.
Definition 42 R" :=Rx... xR .
In other words, R™ is the Cartesian product of R multiplied n times by itself.
Definition 43 The elements of R™ are ordered n-tuple of real numbers and are denoted by
x=(21,T2,...,Tpn) o7 T = (z;)14.
x; s called i — th component of x € R™.
Definition 44 z = (z;)"; € R and y = (y;){~, are equal if
Vi e {l,..,n}, x; =y;.
In that case we write x = y.

Let us introduce two operations on R™ and analyze some properties they satisfy.

Definition 45 Given z € R™,y € R", we call addition or sum of x and y the element denoted by
x +y € R™ obtained as follows
r+y = (i +yi)iq-

Definition 46 An element X\ € R is called scalar.

Definition 47 Given x € R™ and A € R, we call scalar multiplication of x by X\ the element
Az € R™ obtained as follows
Az = Az .

Geometrical interpretation of the two operations in the case n = 2.

21
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From the well known properties of the sum and product of real numbers it is possible to verify
that the following properties of the above operations do hold true.

Properties of addition.

Al. (Associative) Vz,y e R, (x+y)+z=z+ (y+2);

A2. (existence of null element) there exists an element e in R™ such that for any z € R”,
T 4+ e = x; in fact such element is unique and it is denoted by 0;

A3. (existence of inverse element) Vo € R™ Jy € R™ such that 4+ y = 0; in fact, that element
is unique and denoted by —uz;

A4. (Commutative) Va,y € R”, c+y =y + .

Properties of multiplication.

M1. (distributive) Va e R, z € R", y e R" a(z+y) = azx + ay;

M2. (distributive) Va € R, f € R, z € R", (a+ f)z = ax + fx

M3. VaeR, BeR, zeR", (af)z=a(fx);

M4. Vx € R", 1z = .

2.2 Scalar product

Definition 48 Given x = (z;)1,y = (yi)i~, € R™, we call dot, scalar or inner product of  and
y, denoted by xy or x -y, the scalar

n

i=1

Remark 49 The scalar product of elements of R™ satisfies the following properties.
1. Ve,yeR" z-y=y-x;
2. Vo, R, Vx,y,2 € R" (axz+Py)-z=ax 2)+ Ly 2);
3. VreR” «x-x>0;
4. VxeR", z.2=0 < z=0.

Definition 50 The set R™ with above described three operations (addition, scalar multiplication
and dot product) is usually called Euclidean space of dimension n.

Definition 51 Given x = (z;)?, € R™, we denote the (Euclidean) norm or length of x by

Geometrical Interpretation of scalar products in R2.
Given z = (z1,72) € R?\ {0}, from elementary trigonometry we know that

x = (||z] cos a, ||z]| sin @) (2.1)

where « is the measure of the angle between the positive part of the horizontal axes and x itself.
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Using the above observation we can verify that given @ = (z1,22) and y = (y1,y2) in R?\ {0},

zy = ||z - [yl - cosy

where v is an' angle between z and y.
scan and insert picture (Marcellini-Sbordone page 179)
From the picture and (2.1), we have

x = (||z] cos aq, ||| sin a)

and
y = (|lyl| cos az, [|y|| sin arz) .

Then?

2y = ||| ||y|| (cos a1 cos ag + sin aq sin as) = ||z|| ||y|| cos (a2 — 1) .

Taken x and y not belonging to the same line, define §* := (angle between z and y with minimum
measure). From the above equality, it follows that

=% & z-y=0
0<% & z-y>0
0*>% & z-y<O.

Definition 52 z,y € R™\ {0} are orthogonal if zy = 0.

2.3 Norms and Distances

Proposition 53 (Properties of the norm). Let o € R and z,y € R™.
1. |z|| >0, and ||z|]| =0z =0,
2. Jlox] = ol - ],
3. |lz+yll < llzll + llyll (Triangle inequality),
4. |zyl < |lz|| - llyl| (Cauchy-Schwarz inequality ).

Proof. 1. By definition ||z| = /> i, (z;)* > 0. Moreover, |z = 0 < [lz]|* = 0
S (@) =0e2=0.
2 2
2. flaz|| = /3000 @2 ()" =lal /30 (@4)” = |af - [|z]].

4. (3 is proved using 4)
We want to show that |zy| < ||z| - |yl or lzy]* < ||lz||* - lyl?, ie.,

(&) = (5) (2

Defined X :=3"" 22, Y :=>" y? and Z := > | z;y;, we have to prove that
7? < XY. (2.2)
Observe that

Va € R,
0 < Vie{l,.,n},ax;+y; =0

IRecall that Va € R, cosz = cos (—z) = cos (27 — x).

2R ¢
ecall that
cos (z1 + x2) = cosx1 cosza F sin g sin za.
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Moreover,

n

n n n
Z(azi +yz~)2 = aQZ:r? +2a2xiyi Jrny =a’X+2aZ+Y >0 (2.3)
i=1 i=1 i=1

=1

If X >0, we can take a = —%, and from (2.3), we get

72 A
< Z x _9Z_
0< X2X 2X +Y
or
72 < XY,
as desired.

If X =0, then x =0 and Z = 0, and (2.2) is true simply because 0 < 0.
3. Tt suffices to show that ||z 4+ y||* < (|l=] + |lyl)*.

o+ yl* = 3 @i+ w0 = > (@) + 201y + (0)7) =
=1 i=1

(4 above)
2 2 2 2 2 2 2
= [lel” + 22y + [lylI” < [l]” + 2[ay[ + lylI” < (=™ + 2=l - [yl + |y I = (=] +[lyl)"

Remark 54 ||[z]| —[jy[|| < [l —yl|.
Recall that VYa,b € R
-b<a<b&|a| <

From Proposition 53.3,identifying x with x—y and y with y, we get ||[x —y +y|| < ||z — yl|+ ]yl

i.e.,
Izl = llyll < [z =yl

From Proposition 53.3, identifying x with y—x and y with x, we get ||y — x + z|| < ||y — z||+]|z|,

i.e.,
Iyl = llzll < lly — =l = ll= -y
and
—llz =yl < =l =yl

n

Definition 55 For any n € N\ {0} and for anyi € {1,...,n}, €, = (e§-7n)j:1 € R™ with
| 0 if i#j
€nj =
1 if i=j

In other words, € is an elem(_ant of R™ whose components are all zero, but the i —th component
which is equal to 1. The vector e}, is called the i — th canonical vector in R™.

Remark 56 Vz € R”,
o] < Z |zil,
i=1

as verified below.

]l =

S el C S e | 2 S ol = Sl
=1 i=1 i=1 =1

where (1) follows from the triangle inequality, i.e., Proposition 53.3, and (2) from Proposition
53.2.

Definition 57 Given x,y € R™,we denote the (Euclidean) distance between x and y by

d(z,y) = [lz =yl
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Proposition 58 (Properties of the distance). Let x,y,z € R™.
1. d(z,y) >0, and d(z,y) =0 x =y,
2. d(z,y) =d(y,x),
3. d(z,z) <d(z,y)+d(y,z) (Triangle inequality).

Proof. 1. It follows from property 1 of the norm.

2. It follows from the definition of the distance as a norm.

3. Identifying = with z — y and y with y — z in property 3 of the norm, we get
(= y)+ (y—2)I < llz =yl + |ly — z[], i.e., the desired result. m

2.4 Exercises

From Lipschutz (1991), starting from page 53: 2.1 — 2.4, 2.12 — 2.19, 2.26, 2.27.
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Chapter 3

Matrices

We presented the concept of matrix in Definition 21. In this chapter, we study further properties
of matrices.

Definition 59 The transpose of a matrizc A € My, n, denoted by AT belongs to M, m and it is the
matriz obtained by writing the rows of A, in order, as columns:

T

a1 cee A1y o Q1np aiil e Q41 e Qm1

T
A = ;1 ce Qg e Qip = aij cee Qg v Qmy
Am1 -~ Amj - OGmn ain .- Qip .. Amn

In other words, row 1 of the matrix A becomes column 1 of AT, row 2 of A becomes column 2 of
AT and so on, up to row m which becomes column m of AT. Same results is obtained proceeding
as follows: column lof A becomes row 1 of AT, column 2 of A becomes row 2 of AT, and so on, up
to column n which becomes row n of A”. More formally, given A = [aijlieqt,....m} EMpmp , then

je{l,...,n}

AT = [a‘ji]je{l,...,n} S Mn,m~
i€{l,...,m}

Definition 60 A matrit A €M,,,, is said to be symmetric if A = AT | i.e., Vi,j € {1,...,n},
Qi = Qjj-

Remark 61 We can write a matriz Ay xn = [aij] as

R'(A)
A=| Ri(4) | =[C"(4),...C7 (4),...C"(4)]

R™ (A)
where

R (A) = [ai1, -.s aij, -.0in] := [R (A), ..., RY (A),..R™(A)] e R" forie{l,..,m} and

a; C7t(4)
CI(A) = | ai = | CI(A) eR” for j € {1,..,n}.
Qm;j cim (A)

In other words, R’ (A) denotes row i of the matrix A and C7 (A) denotes column j
of matrix A.

27
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3.1 Matrix operations
Definition 62 Two matrices Ay, xyn = |aij] and Bpxn = [bi;| are equal if for i € {1,...,m},
jed{l,..,n}

Vi € {1,...,m},j S {1,...,71}, Qij :blj

Definition 63 Given the matrices Ay, xr = [ai;] and By, xp = [bij], the sum of A and B, denoted
by A+ B is the matriz Cp,xpn = [cij] such that

vie{l,...m},5€{l,...n}, Cij = ij + by

Definition 64 Given the matrices Amxn := [a;j] and the scalar o, the product of the matriz A by
the scalar o, denoted by - A or oA, is the matrix obtained by multiplying each entry A by « :

aA = [aaij]

Remark 65 It is easy to verify that the set of matrices My, ,, with the above defined sum and
scalar multiplication satisfies all the properties listed for elements of R™ in Section 2.1.

Definition 66 Given A = [a;;] € Mpmpn, B = [bjr] € My, the product A - B is a matriz
C = [cik] € My such that

Vie{l,..m},Vk € {1,...p}, cix:=» aibyx =R (A)-C*(B)
j=1

i.e., since o
A=| Ri(4) |,B=[C"(B),..C"(B)....C" (B)] (3.1)
R™ (A)
RU(A)-C'(B) .. R'(A)-CK(B) .. R'(A)-C»(B)
AB=| Ri(4)-C'(B) .. Ri(A)-CK(B) .. Ri(A)-C?(B) (32)
R™(A)-CY(B) .. R™(A)-C*(B) .. R™(A)-C*(B)

Remark 67 If A € My, B € M, 1, the above definition coincides with the definition of scalar
product between elements of R™. In what follows, we often identify an element of R™ with a row or
a column vectors ( - see Definition 22) consistently with we what write. In other words Amxn® =y
means that x and y are column vector with n entries, and WA, x, = z means that w and z are row
vectors with m entries.

Definition 68 If two matrices are such that a given operation between them is well defined, we say
that they are conformable with respect to that operation.

Remark 69 If A, B €M,, ,, they are conformable with respect to matric addition. If A €My,
and B €M, ,,, they are conformable with respect to multiplying A on the left of B. We often say the
two matrices are conformable and let the context define precisely the sense in which conformability
is to be understood.
Remark 70 (For future use) Vk € {1,...,p},
R'(A) R'(A)-C*(B)
A-C*(B)=| R'(A) |-C*(B)=| R'(A)-C*(B) (3.3)

R™ (A) R™ (A) - C* (B)
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Then, just comparing (3.2) and (3.3), we get
AB=[A-C*(B) .. A-C*(B) .. A-C?(B) |, (3.4)

i.e.,

C*(AB)=A-C*(B).
Similarly, Vi € {1,...,m},

Ri(A)-B=Ri(A)-[ C'(B) .. C*(B) .. C?(B)

[ R(A)-C'(B) .. R(A)-Ck(B) .. R(A) C (JB)_}. (3.5)
Then, just comparing (3.2) and (3.5), we get
R'(A) B
AB=| RI(A)B |, (3.6)
R™ (A) B

i.e.,

R'(AB) = R'(A) - B.

Definition 71 A submatriz of a matrix A € My, ,, is a matriz obtained from A erasing some rows
and columns.

Definition 72 A matriz A € M, ,, is partitioned in blocks if it is written as submatrices using a
system of horizontal and vertical lines.

Example 73 The matriz

DD = O =
N N
w oo W

O = O =
Ur O ot

can be partitioned in block submatrices in several ways. For example as follows

1 2| 3 4 5
6 7 | 8 9 0
i ;
1 2 | 3 4 5
6 7 | 8 9 0

whose blocks are
1 2 3 4 5 1 2 3 4 5
6 71’8 9 0|6 7|18 9 0]
The reason of the partition into blocks is that the result of operations on block matrices can

obtained by carrying out the computation with blocks, just as if they were actual scalar entries of
the matrices, as described below.

Remark 74 We wverify below that for matriz multiplication, we do not commit an error if, upon
conformably partitioning two matrices, we proceed to regard the partitioned blocks as real numbers
and apply the usual rules.

1. Take a = (a;)t; € R™,b:= (b;)72, € R"2,¢c:= (¢;)] € R™,d:= (d;)"?, € R"2,

j=1 j=1
C ni no
Lo 10 Do | - Saet Yhdizaerbd G
i=1 j=1

(n1+n2)><1
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Take A €My, py, B €My 1y, C €My, D €M, 4, with

R (4) R (B)
A= B =

3 )

R™ (A) R™ (B)

= [C(C)....0" (C)].

Then,
R'(A) R'(B )
[4 B]m“”ﬁ"ﬁ{g}(nﬁnm_ 'R'm((fj) 'zlém(;)} [gllégg ZCPE?)]‘
RU(A)-C'(C)+ R'(B)-C*(D) .. R'(A)-+R'(B)-C"(D)
B Lém(A)-cl (C)+R™(B)-C'(D)  R™(A)-CP(C)+ R™(B)-C*(D) |
RU(4)-C'(C) .. R'(4)-CP(C) R'(B)-C'(D) .. R'(B)-C?(D)
TRy o) rra)-cr ) g (B)-C'(D)  R™(B).C"(D) } B

= AC + BD.

Definition 75 Let the matrices A; € M (n;,n;) fori € {1,..., K}, then the matriz
F A ;
Az

K K
A= A, eM (Z;%Z;m)

Ax

1s called block diagonal matrix.
Very often having information on the matrices A; gives information on A.
Remark 76 It is easy, but cumbersome, to verify the following properties.

1. (associative) VA € M,, ,,, VB € My, VC € M,,, A(BC) = (AB)C,
2. (distributive) YA € My, p, VB € My, VC € M,,,, (A+ B)C = AC + BC.
3. Vz,y € R"” and Vo, 5 € R,

A(azx + By) = A(ax) + B (By) = cAz + Ay

It is false that:

1. (commutative) VA € My, ,, VB € M,,,,, AB = BA;

2. VAe My, VB,C € My, (A#0,AB = AC) = (B =C);
3. VAe My, VB € My, (A#0,AB =0) = (B =0).
Let’s show why the above statements are false.

1.
1 21
A:{1 1 3} b=
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er=[1, 1][5 2]=[5 3]

1 0 1 2 1 2
o= 5] [ L T]-[1 ¢
Observe that since the commutative property does not hold true, we have to distinguish between

“left factor out” and “right factor out” and also between “left multiplication or pre-multiplication”
and “right multiplication or post-multiplication”:

AB+ AC = A(B+C)
EF+GF = (E+G)F
AB+CA+A(B+C)
AB+CA#(B+C)A

2.
Given
=loa] oS esli)
we have
AB:[E ;}{4—:5 é]{ﬂ 198}
Acz[g HH 2}2[174 198]
3.

Observe that 3. = 2. and therefore —2. = —3. Otherwise, you can simply observe that 3. follows
from 2., choosing A in 3. equal to A in 2., and B in 3. equal to B — C' in 2.:

3 1 4 1 1 2 3 1 3 -1 00
sw-o=[33 ([ e[ 2]) =18 2[5 3 ]-[0 0]
Since the associative property of the product between matrices does hold true we can give the
following definition.

Definition 77 Given A € My, m,

AF=A-4A

1 2.-“ ) ktimes'
Observe that if A € M, ., and k, ! € N\ {0}, then
Ak _Al — Ak+l.

Remark 78 Properties of transpose matrices.

1. VAe Myn (ATHT

2. VA,Be My (A+ B) AT + BT
3. YaeR,VAe M,,, (aA)T = AT

4. VA€ My, VB E My, (AB)T = BT AT

Matrices and linear systems.



32 CHAPTER 3. MATRICES

In Section 1.6, we have seen that a system of m linear equation in the n unknowns 1, zo, ..., , and
parameters a;;, for i € {1,...,m}, j € {1,...,n}, (b;)i=, € R is displayed below:

01171 + ... + 01T + ... + Q1pTn = by
ai1T1 + ... + QX5 + oo+ ATy = b; (38)
A 1T + oo + AT+ oo F Qn Ty, = by

Moreover, the matrix

a1 cee Q1 e Q1p b1
;1 ce Qg e Qyp bz
Am1 - Qmj - Gmn  bm

is called the augmented matrix M of system (1.4). The coefficient matrix A of the system is

ail e Ay e Q1p
A= a;1 cee Qg N )
aml - Qmj ... Gmn

Using the notations we described in the present section, we can rewrite linear equations and
systems of linear equations in a convenient and short manner, as described below.
The linear equation in the unknowns z1, ..., z, and parameters a1, ..., a;,...,an, b € R

a1r1+...+a;x; +...+apx, =b
can be rewritten as
n
E Q; T; = b
i=1
or

a-x=>b
I
where a = [ay,...,a,] and x =
In
The linear system (3.8) can be rewritten as

n
a1 = b
=1

n
2 amjt; = b
j=1

or

Rl (A)$ = bl
R™(A)x = by,
or
Az =10

where A = [a;;].

Definition 79 The trace of A € My, written tr A, is the sum of the diagonal entries, i.e.,

m
tr A= Zaii.
i=1
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Definition 80 The identity matriz I, is a diagonal matriz of order m with each element on the
principal diagonal equal to 1. If no confusion arises, we simply write I in the place of I,,.

Remark 81 1. ¥Yn € N\ {0}, (I,))" = Lx;
2. VA € My, ImA = AT, = A.

Proposition 82 Let A, B € M (m,m) and k € R. Then
1. tr (A+B)=tr A+tr B;
2. tr kKA=Fk-tr A;
3. tr AB =tr BA.

Proof. Exercise. m

3.2 Inverse matrices
Definition 83 Given a matrix Anxn, , @ matric B,x, s called an inverse of A if
AB=BA=1,.
We then say that A is invertible, or that A admits an inverse.
Proposition 84 If A admits an inverse, then the inverse is unique.
Proof. Let the inverse matrices B and C' of A be given. Then
AB=BA=1, (3.9)
and
AC=CA=1, (3.10)
Left multiplying the first two terms in the equality (3.9) by C, we get
(CA)B =C(BA)

and from (3.10) and (3.9) we get B = C, as desired. m
Thanks to the above Proposition, we can present the following definition.

Definition 85 If the inverse of A does exist, then it is denoted by A1,
Example 86 Assume that for i € {1,...,n}, \; # 0.The diagonal matriz

A1

is invertible and its inverse is

Remark 87 If a row or a column of A is zero, then A is not invertible, as verified below.
Without loss of generality, assume the first row of A is equal to zero. Assume that B is the
inverse of A. But then, since I = AB, we wold have 1 = R' (A) - C*(B) =0, a contradiction.

Proposition 88 If A € M, ., and B € My, »,, are invertible matrices, then AB is invertible and

(AB) ' =B '4!
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Proof.
(AB)BT'A™'=A(BB™ ') A" = AIAT = AAT = 1.
B'A'(AB)=B"'(A'A)B=B"'IB=B'B=1.
]

Remark 89 The existence of the inverse matrix gives an obvious way of solving systems of linear
equations with the same number of equations and unknowns.
Given the system
Apsnt = b,

if A1 exists, then
x=A"1h.

Proposition 90 (Some other properties of the inverse matriz)
Let the invertible matrix A be given.

1. A7Y in invertible and (A_l)_1 = A;
2. AT is invertible and (AT)_1 = (A_I)T;

Proof. 1. We want to verify that the inverse of A=!is A4, i.e.,

A'A=Tand AA™t =1,

which is obvious.

2. Observe that -

AT (AN = (A ) =1 =1,

and
(AT AT =44 =1

3.3 Elementary matrices

Below, we recall the definition of elementary row operations on a matrix A €M,,x, presented in
Definition 34.

Definition 91 An elementary row operation on a matriz A € My, xn s one of the following opera-
tions on the rows of A:

[£1] (Row interchange) Interchange R' with R?, denoted by R' « R/;

[€a] (Row scaling) Multiply R by k € R\ {0}, denoted by kR — R, k # 0;

(€3] (Row addition) Replace R* by ( k times R7 plus R' ), denoted by (R' + kR7) — R'.
Sometimes we apply [£2] and [£3] in one step, i.e., we perform the following operation

[€'] Replace R’ by ( k' times R/ and k € R\ {0} times R’ ), denoted by (k'R7 4+ kR") — R', k # 0.

Definition 92 Let € be the set of functions £ : My, , = My, ,, which associate with any matriz
A e M, , a matriz € (A) obtained from A via an elementary row operation presented in Definition
91. Fori € {1,2,3}, let €, C €& be the set of elementary row operation functions of type i presented
in Definition 91.

Definition 93 For any € € €, define
Ee=¢& (Im) S Mm,m-

Ee¢ is called the elementary matriz corresponding to the elementary row operation function &.
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With some abuse of terminology, we call any £ € & an elementary row operation (omitting the
word “function”), and we sometimes omit the subscript £.

Proposition 94 Fach elementary row operations £1,E and E5 has an inverse, and that inverse is
of the same type, i.e., fori € {1,2,3}, £ € ¢ & 1 € ¢,

Proof. 1. The inverse of R' « R/ is R/ < R'.

2. The inverse of kR' — R', k#01is k~'R' — R'.

3. The inverse of (R' + kR’) — R'is (~kR/ + R') - R'. m
Remark 95 Given the row, canonical' vectors et , fori € {1,...,m},

-1

The following Proposition shows that the result of applying an elementary row operation £ to
a matrix A can be obtained by premultiplying A by the corresponding elementary matrix Eg.

Proposition 96 For any A €M, , and for any £ € €,

EA)=E,y,) A:=E:A. (3.11)
Proof. Recall that ) )
R (4)
R (A)
A=
R7 (A)
[ R™(4) |
We have to prove that (3.11) does hold true VE € {&1,E2,E3}.
1. £ € ¢;.
First of all observe that
e R4 ]
e, R (A)
Ep)=| - and E(A) =
€ R (4)
| em ] | B (A) |
From (3.6),
[ el A [ RY(A) ]|
el - A RI(A)
EIn) A= = ,
el - A R (A)
L em- A | | R™(A) |
as desired.
2. £ €€,

1See Definition 55.
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Observe that

[ e ] [ R'(4)
k-et, k- R (A)
EIm) = and E(A) =
el R (A)
| em | R™(4) |
[ el A ] [ R'(A) ]
k-et - A k- R (A)
Eln) A= = ,
el - A R (A)
| em A l | R™ (A) l
as desired.
3. £ € &3,
Observe that
] R
et +k-el, R (A)+ k- R (A)
EIm) = and E(A) =
e, R (A)
i em ] i R™(A) ]
Y e RY(A) 7
el +k-el (efn%-k:-e{n)-A R (A)+ k- R (A)
E(In) A= A= = ,
egn ezn A Rj (A)
i em | i em. A | i R™ (A) |

as desired. m

Corollary 97 If A is row equivalent to B, then there exist k € N and elementary matrices F, ..., Ey,
such that
B=F,-FEy-..-E,-A

Proof. It follows from the definition of row equivalence and Proposition 96. m

Proposition 98 Fvery elementary matriz Eg is invertible and (Eg)f1 is an elementary matrix.
In fact, (Eg) ' = Eg-1.

Proof. Given an elementary matrix E, from Definition 93, 3€ € & such that

E=¢&(I) (3.12)
Define
E' =&71().
Then
g def. iy func. o1 (€ (D) (312) oy (B) Prop._(96)- o1 ). B def B pv o
and

96).

I def.:inVA £ (5,1 (I)) def,:E’ c (E,) Prop.:( £ (I) E (3:12) EE'.
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Corollary 99 If Eq, ..., By are elementary matrices, then
P:ElEgEk
s an invertible matrizx.

Proof. It follows from Proposition 88 and Proposition 98. In fact, (E,;1 . ...E;l . Efl) is the
inverse of P. m

Proposition 100 Let A €M, «, be given. Then, there exist a matrix B € My, x,, in row canonical
form, k € N and elementary matrices F1, ..., By such that

B=FE,-FEy-...-E- A
Proof. From Proposition 38, there exist k € N elementary operations £, ..., £* such that
(E'o&%0...08%) (4) =B.
From Proposition 96, Vj € {1, ...,k},
E(M)=E&(I)-M:=E;-M.
Then,

(E'o0&20..0EF)(A) = (E'o%0...0EF 1) (EF(A) = (Er 020 0 EF 1) (B - A) =
=(E'0&%0.. 08 ) o1 (Ey-A) = (E10&%0...0EF ) (By_y - By - A) =
= (E'0&20..8F3) 0 EF 2 (Byy By - A) = (€' 0&%0 .. 3) (By—z - Ejy—1 - By, - A) =
w=Fy - Ey-...-E}- A,

as desired. m

Remark 101 In fact, in Proposition 155, we will show that the matrix B of the above Corollary
1S UNIqUe.

Proposition 102 To be row equivalent is an equivalence relation.
Proof. Obvious. m
Proposition 103 Vn € N\ {0} , A, x» is in row canonical form and it is invertible < A = 1I.

Proof. [<]Obvious.

(=]
We proceed by induction on n.
Case 1. n=1.

The case n = 1 is obvious. To try to better understand the logic of the proof, take n = 2, i.e.,
suppose that
. [ ailp a2 ]
| a1 ax

is in row canonical form and invertible. Observe that A # 0.

1. a;1 = 1. Suppose a;; = 0. Then, from 1. in the definition of matrix in echelon form
- see Definition 28 - aj2 # 0 (otherwise, you would have a zero row not on the bottom of the
matrix). Then, from 2. in that definition, we must have as; = 0. But then the first column is zero,
contradicting the fact that A is invertible - see Remark 87. Since aj; # 0, then from 2. in the
Definition of row canonical form matrix - see Definition 31 - we get a;; = 1.

2. as1 = 0. It follows from the fact that a;; = 1 and 3. in Definition 31.

3. ags = 1. Suppose age = 0, but then the last row would be zero, contradicting the fact that A
is invertible and agq is the leading nonzero entry of the second row, i.e., age # 0. Then from 2. in
the Definition of row canonical form matrix, we get age = 1.
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4. a9 = 0. It follows from the fact that ass = 1 and 3. in Definition 31.
Case 2. Assume that statement is true for n — 1.
Suppose that

ail ai12 ce Q1 . Qip

as1 a9 w25 . Qon
A =

a1 a;2 e A4y oo Qim

anp1  QAp2 ... Qpj ... Qpn

is in row canonical form and invertible.

1. a;; = 1. Suppose a1 = 0. Then, from 1. in the definition of matrix in echelon form - see
Definition 28 -

(0,12, ...,aln) 7& 0

Then, from 2. in that definition, we must have

But then the first column is zero, contradicting the fact that A is invertible - see Remark 87. Since
a1 # 0, then from 2. in the Definition of row canonical form matrix - see Definition 31 - we get
a1 = 1.

2. Therefore, we can rewrite the matrix as follows

1 ai12 ce Q1 e Q1np
0 a2 cee Q25 e Q2p
1 a

A= = 3.13
0 a;2 cee Qg oo Qgp |: 0 A22 :| ( )
0 an2 ... anj ... Gnn

with obvious definitions of a and Ass. Since, by assumption, A is invertible, there exists B
which we can partition in the same we partitioned A, i.e.,

| bun b
p[hn ]

and such that B is invertible. Then,

B [ b b 1 a | bir bii + b8 _ |10 )
In_BA_|:C B22:|[0 A22:|_[C Ca+B22A22:|_|:0 In1:|7

then ¢ = 0 and AQQBQQ = In—l-
Moreover,

_ _ 1 a bi1 b _ b1 +ac b+ aBys _ 1 0
In_AB_[O Am][c 322}_[0 AgoBao }_[0 In—1:|' (8:14)

Therefore, Ass is invertible. From 3.13, Asscan be obtained from A erasing the first row and
then erasing a column of zero, from Remark 33, Ass is a row reduced form matrix. Then, we can
apply the assumption of the induction argument to conclude that Asy = I;,—1. Then, from 3.13,

a-lai]

Since, by assumption, A, «, is in row canonical form, from 3. in Definition 31, a = 0, and, as
desired A=1. m
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Proposition 104 Let A belong to My, m. Then the following statements are equivalent.

1. A is invertible;
2. A is row equivalent to I,,;

3. A is the product of elementary matrices.

Proof. 1. = 2.
From Proposition 100, there exist a matrix B €M,,xm, in row canonical form, k¥ € N and
elementary matrices Fj1, ..., Ej such that

B=E, -Fy-.. Ey- A

Since A is invertible and, from Corollary 99, F; - E5-...- Ey is invertible as well, from Proposition
88, B is invertible as well. Then, from Proposition 103, B = I.
2.= 3.
By assumption and from Corollary 97, there exist k¥ € N and elementary matrices Fn, ..., Ej
such that
A=Fy - FEy-...- Ey -1,

Since Vi € {1, ...,k}, F; is an elementary matrix, the desired result follows.
3.= 1.
By assumption, there exist k¥ € N and elementary matrices Fy, ..., Ej, such that

A=FE,-Ey- .- F.

Since, from Proposition 98, Vi € {1,...,k}, E; is invertible, A is invertible as well, from Propo-
sition 88. m

Proposition 105 Let A,,xn be given.
1. By,xn 18 Tow equivalent to A« < there exists an invertible Py, xm such that B = PA.
2. Ppnxm 18 an invertible matriz = PA is row equivalent to A.

Proof. 1.

[=] From Corollaries 99 and 97, B = Fy - ... - E}, - A with (Fy - ... - Ey) invertible matrix. Then,
it suffices to take P = Fy - ... - Ey.

[«<] From Proposition 104, P is row equivalent to I, i.e., there exist Ef, ..., Ex such that P =
Ey-...- Ep-1. Then by assumption B=FE; -...- E, - I - A, i.e., B is row equivalent to A.

2.

From Proposition 104, P is the product of elementary matrices. Then, the desired result follows
from Proposition 96. =

Proposition 106 If A is row equivalent to a matriz with a zero row, then A is not invertible.

Proof. Suppose otherwise, i.e., A is row equivalent to a matrix C with a zero row and A
is invertible. From Proposition 105, there exists an invertible P such that A = PC and then
P~'A = C. Since A and P~ 'are invertible, then, from Proposition 88, P~ A is invertible, while
C, from Remark 87, C' is not invertible, a contradiction. m

Remark 107 From Proposition 104, we know that if A, xm s invertible, then there exist F, ..., Ey
such that
I=FE-..-E;-A (3.15)

or

AY=F ... E,-1I (3.16)

Then, from (3.15)and (3.16), if A is invertible then A™' is equal to the finite product of those
elementary matrices which “transform” A in I, or, equivalently, can be obtained applying a finite
number of corresponding elementary operations to the identity matriz I. That observation leads to
the following (Gaussian elimination) algorithm, which either show that an arbitrary matriz A xm
is mot invertible or finds the inverse of A.
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An algorithm to find the inverse of a matrix A,,x,, or to show the matrix is not

invertible.

Step 1. Construct the following matrix M, (2m):

[ A In ]

Step 2. Row reduce M to echelon form. If the process generates a zero row in the part of
M corresponding to A, then stop: A is not invertible : A is row equivalent to a matrix
with a zero row and therefore, from Proposition 106 is not invertible. Otherwise, the part of
M corresponding to A is a triangular matrix.

Step 3. Row reduce M to the row canonical form

(Lo B]
Then, from Remark 107, A~! = B.
Example 108 We find the inverse of
1 0 2
A=1]2 -1 3],
4 1 8
applying the above algorithm.
Step 1.
1 0 2 1 00
M=]12 -1 3 010
4 1 8 0 0 1
Step 2.
10 2 | 1 00 10 2 | 1 00
o -1 -1 ] -210],/]0 -1 =1 ] -2 10
0 1 0 | -4 01 0 0 -1 1] -6 11
The matriz is invertible.
Step 3.
1 0 2 | 1 00 10 2 | 1 0 0
o -1 -1 | -210/(,{0 -1 -1 | -2 1 0 |,
o 0 -1} -611) [0 0 1 [ 6 -1 -1
1 0 0 | —11 2 2] 100 | =11 2 2
0 -1 0 | 4 0O -1|,{0 10 | -4 0 1
o 0 1] 6 -1 —1] 001 ] 6 -1 -1
Then
-1 2 2
Atlt=| -4 0 1
6 -1 -1
Example 109
13 ] 10
4 2 | 01
13 | 1 0
0 —-10 | -4 1
[1 3] 1 0 ]
01| 4 4
10 -2 2
R
10 10
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3.4 Elementary column operations

This section repeats some of the discussion of the previous section using column instead of rows of
a matrix.

Definition 110 An elementary column operation is one of the following operations on the columns
of Avxn:

[Fi] (Column interchange) Interchange C; with C;, denoted by C; < Cj;
[F2] (Column scaling) Multiply C; by k € R\ {0}, denoted by kC; — C;, k # 0;
[F3] (Column addition) Replace C; by ( k times C; plus C; ), denoted by (C; + kC;) — C;..

Each of the above column operation has an inverse operation of the same type just like the
corresponding row operations.

Definition 111 Let F be an elementary column operation on a matric Apxn. We denote the
resulting matriz by F (A). We define also

Fr=F(I,) € My .

Fr is then called an elementary matriz corresponding to the elementary column operation F. We
sometimes omit the subscript F.

Definition 112 Given an elementary row operation £, define Fg, if it exists®, as the column oper-
ation obtained by £ substituting the word row with the word column. Similarly, given an elementary
column operation F define Ex, if it exists, as the row operation obtained by F substituting the word
column with the word row.

In what follows, F and £ are such that F = F¢ and EF = €.

Proposition 113 Let a matriz A,,xn be given. Then
T
F(4)=[e(AN)] .

Proof. The above fact is equivalent to & (AT) = (F (A))" and it is a consequence of the fact
that the columns of A are the rows of AT and vice versa. As an exercise, carefully do the proof in
the case of each of the three elementary operation types. m

Remark 114 The above Proposition says that applying the column operation F to a matriz A gives
the same result as applying the corresponding row operation Ex to AT and then taking the transpose.

Proposition 115 Let a matriz A« be given. Then
1.
FA)=A-(EID)" =A-F(I),

or, since E :=& (I) and F := F (I),
F(A)=A-E"=A.F. (3.17)
2. F =E" and F is invertible.
Proof. 1.
F(4) Lemma 113_ G (AT)]T Lemma 96_ G (I)~AT)T AT Lemma 113 A-F(I).

2. From (3.17), we then get
F=F(I) =1 -E"=E".

From Proposition 90 and Proposition 98, it follows that F' is invertible.

20f course, if you exchange the first and the third row, and the matrix has only two columns, you cannot exchange
the first and the third column.
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Remark 116 The above Proposition says that says that the result of applying an elementary column
operation F on a matriz A can be obtained by postmultiplying A by the corresponding elementary
matriz F.

Definition 117 A matriz By, xy 1S said column equivalent to a matriz Apxn if B can be obtained
from A using a finite number of elementary column operations.

Remark 118 By definition of row equivalent, column equivalent and transpose of a matrix, we
have that
A and B are row equivalent < AT and BT are column equivalent,

and
A and B are column equivalent < AT and BT are row equivalent.

Proposition 119 1. B,,xn s column equivalent to A,,xn < there exists an invertible Q. xn such

that Bm><n = AanQan-
2. Qnxn 0 invertible matriz = AQ is column equivalent to A.

Proof. It is very similar to the proof of Proposition 105. =

Definition 120 A matriz By, «xy is said equivalent to a matrix A,,x. if B can be obtained from A
using a finite number of elementary row and column operations.

Proposition 121 A matriz By, «y is equivalent to a matriz A, xn < there exist invertible matrices
mem and ann such that Bmxn = PmeAanQan-

Proof. [=]
By assumption B=Fy -...- By - A-Fy - ... - Fy.
[«<]

Similar to the proof of Proposition 105. m

Proposition 122 For any matriz Apyxn there exists a number r € {0,1,...,min {m,n}} such that
A is equivalent to the block matriz of the form

I. 0
{ 0 0 } . (3.18)
Proof. The proof is constructive in the form of an algorithm.

Step 1. Row reduce A to row canonical form, with leading nonzero entries a1, azj,, ..., a;; -
Step 2. Interchange C? and Cj,, C® and Cj, and so on up to C, and C;,.You then get a matrix
of the form
I, B
0 0 |°

Step 3. Use column operations to replace entries in B with zeros.
|

Remark 123 From Proposition 155 the matriz in Step 2 is unique and therefore the resulting
matriz in Step 3, i.e., matriz (3.18) is unique.

Proposition 124 For any A €M, ,, there exists invertible matrices P € My, », and Q €M, ,, and
r€{0,1,...,min{m,n}} such that

=[5 4

Proof. It follows immediately from Propositions 122 and 121. =

Remark 125 From Proposition 155 the number r in the statement of the previous Proposition is
unique.
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Then

Example 126 Take

M O O

N0 O

— <t O

R*—(R'+R?)>R?
—

=B.

-1 _

I and therefore A is invertible and A

—6

M O D

[\ IS Tl o

— <t 0

|

0
PAQ

indeed, [
Summarizing

Proposition 127 If ApxmBmxm = 1, then BA



44 CHAPTER 3. MATRICES

Proof. Suppose A is not invertible, the from Proposition 104 is not row equivalent to I,,, and
from Proposition 122, A is equivalent to a block matrix of the form displayed in (3.18) with r < m.
Then, from Proposition 121, there exist invertible matrices Py, xm and @y, xm such that

I. 0
PAQ_[ ; 0]7
and from AB = I, we get

P =PAQQ'B

and

5 o]@-r

Therefore, P has some zero rows and columns, contradicting that P is invertible. m

Remark 128 The previous Proposition says that to verify that A in invertible it is enough to check
that AB = 1.

Remark 129 We will come back to the analysis of further properties of the inverse and on another
way of computing it in Section 5.3.
3.5 Exercises

From Lipschutz (1991),
starting from page 81: 3.1 - 3.11, 3.14 - 3.16;
starting from page 111: 4.1, 4.4, 4.5, 4.7, 4.8.
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Vector spaces

4.1 Definition

Definition 130 Let a nonempty set F' with the operations of
addition which assigns to any x,y € F' an element denoted by x y € F, and
multiplication which assigns to any x,y € F an element denoted by x ©y € F
be given. (F,®,®) is called a field, if the following properties hold true.

1. (Commutative) Ve,y € F, 2 Dy=y@x and 20 y =y O x;

2. (Associative) Vo,y,z € F,(z®y)®z=2®(yDz) and (z0Oy)©0z=20 (y©® 2);

3. (Distributive) Vz,y,z € F, 2 © (y®z) = (20 y) & (z O 2);

4. (Existence of null elements) 3fo, f1 € F such thatVx € F, fo@x =z and fL O x = x;
)

. (Existence of a negative element) Ve € F Iy € F such that © &y = fo;

From the above properties, it follows that fu and fiare unique.! We denote fy and f1 by 0
and 1, respectively.

6. (Existence of an inverse element) Vo € F\{0}, Jy € F such that t @y = 1.

Elements of a field are called scalars.

Example 131 The set R of real numbers with the standard addition and multiplication is a field.
From the above properties all the rules of “elementary” algebra can be deduced.? The set C of
complex numbers is a field .

The sets N := {1,2,,3,...,n,...} and Z of positive integers and integers, respectively, with the
standard addition and multiplication are not fields.

Definition 132 Let (F,®,©) be a field and V be a nonempty set with the operations of

addition which assigns to any u,v € V an element denoted by uw+ v € V, and

scalar multiplication which assigns to any w € V and any a € F an element a-u € V.

Then (V,+,+) is called a vector space on the field (F,®,®) and its elements are called vectors if
the following properties are satisfied.

Al. (Associative) Yu,v,w €V, (u+v)+w=u+ (v+w);

A2. (existence of zero element) there exists an element 0 in V such thatVu € V, u+0 = u;

A3. (exzistence of inverse element) Yu € V. Juv € V such that u+ v =0;

A4. (Commutative) Yu,v €V, u+v=v+u;

M1. (distributive) Voo € F andVu,v € V, a- (u+v) =a-u+a-v;

M2. (distributive) Vo, 3 € F andVu €V, (a® f) - u=a-u+ - u;

M3. VYo, € F andVu eV, (a®f) - u=a-(8-u);

My YueV, 1 -u=u.

Elements of a vector space are called vectors.

IThe proof of that result is very similar to the proof of Proposition 134.1 and 2.
2See, for example, Apostol (1967), Section 13.2, page 17.
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Remark 133 In the remainder of these notes, if no confusion arises, for ease of notation, we will
denote a field simply by F' and a vector space by V. Moreover, we will write 4+ in the place of &,
and we will omit ® and -, i.e., we will write xy instead of x ® y and av instead of o - v.

Proposition 134 IfV is a vector space, then (as a consequence of the first four properties)
1. The zero vector is unique and it is denoted by 0.
2. Yu € V, the inverse element of u is unique and it is denoted by —u.
3. (cancellation law) Yu,v,w € V,

utw=v+w=u="0.
Proof. 1. Assume that there exist 01,02 € V' which are zero vectors. Then from (A2),
01 +02 :01 and 02+01 :02.

From (A4),
01+ 02 =02+ 0y,

and therefore 0; = 0s.
2. Given u € V, assume there exist v',v? € V such that

ut+ov'=0 and wu+v?=0.
Then

V=0 +0=0"+ (u+tv') = (v +u) +0' = (u+2?) +0' =0+0' =0l
_ €Y) _ (2) _ GV
utw=v+w=utw+(—w)=v+w+(-w)Su+0=v+0=u=0,

where (1) follows from the definition of operation, (2) from the definition of —w and (3) from
the definition of 0. m

Remark 135 From A2. in Definition 132, we have that for any vector space V, 0 € V.
Proposition 136 IfV is a vector space over a field F', then

1. ForOe F andVu eV, Ou = 0.

2. For0eV andVae F , a0 =0.

3. IfaeF,uecV and au =0, then either a« =0 or u = 0 or both.

4. YaeF andVu eV, (—a)u = a(—u) = — (au) := —au.

Proof. 1. From (M1),
Ou + 0u = (0 + 0) u = Ou.

Then, adding — (0u) to both sides,
Ou + 0u + (— (0u)) = 0u + (— (0u))

and, using (A3),
Ou+0=0

and, using (A2), we get the desired result.
2. From (A2),
040=0;

then multiplying both sides by « and using (M1),
a0 =a(0+0)=al+ a0;

and, using (A3),
a0 + (— (a0)) = a0 + a0 + (— (a0))
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and, using (A2), we get the desired result.
3. Assume that au = 0 and « # 0. Then

u=1lu= (e a)u=a'(au)=a"'-0=0.

Taking the contropositive of the above result, we get (u # 0) = (au # 0V « = 0). Therefore
(u#0Aau=0)= (a=0).

4. From u+ (—u) = 0, we get a(u+ (—u)) = a0, and then au + o (—u) = 0, and therefore
— (au) = a(—u).

From a + (—a) = 0, we get (o + (—a))u = Ou, and then au + (—a)u = 0, and therefore
—(au)=(—a)u. =

Remark 137 From Proposition 136.4, and (M4)in Definition 132, we have
(—Du=1(-u) = - (lu) = —u.
We also define subtraction as follows:

v—u:=v+(—u)

4.2 Examples

Euclidean spaces.?

The Euclidean space R™ with sum and scalar product defined in Chapter 2 is a vector space
over the field R with the standard addition and multiplication

Matrices on R.

For any m,n € N, the set M, ,, of matrices with elements belonging to the field R with the
operation of addition and scalar multiplication, as defined in Section 2.3 is a vector space on the
field R and it is denoted by

M (m,n).

Matrices on a field F.

For any m,n € N, we can also consider the set of matrices whose entries are elements belonging
to an arbitrary field F. It is easy to check that set is a vector space on the field F, with the operation
of addition and scalar multiplication inherited by F, is a vector space and it is denoted by

Mg (m,n).

We do set
Mg (m,n) =M (m,n).

Polynomials
The set of all polynomials

aop + art + ast® + ... + ant"

with n € NU {0} and ag,a;,as,...,a, € R is a vector space on R with respect to the standard
sum between polynomials and scalar multiplication.

Function space F (X).

Given a nonempty set X, the set of all functions f : X — R with obvious sum and scalar
multiplication is a a vector space on R. More generally we can consider the vector space of functions
f X — F, where X is a nonempty set and F' is an arbitrary field, on the same field F.

Sets which are not vector spaces.

(0,400) and [0, +00) are not a vector spaces in R.

For any n € N, the set of all polynomials of degree n is not a vector space on R.

On the role of the field: put Exercise 5.29 from Lipschutz 2nd edition.

3A detailed proof of some of the statements below is contained, for example, in Hoffman and Kunze (1971),
starting from page 28.
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4.3 Vector subspaces

In what follows, if no ambiguity may arise, we will say “vector space” instead of “vector space on
a field”.

Definition 138 Let W be a subset of a vector space V.. W is called a vector subspace of V if W is
a vector space with respect to the operation of vector addition and scalar multiplication defined on
V. In other words, given a vector space (V,4+,-) on a field (F,®,®) and a subset W of V, we say
that W is a vector subspace of V' if, defined

tw WX W =W, (wy,ws) — w1 + w

and
wi FxW =W,  (q,wz) — a-ws,

then (W, 4w, -w) is a vector space on the field (F,®,®).

Proposition 139 Let W be a subset of a vector space V. The following three statements are
equivalent.

1. W is a vector subspace of V.

2. a. W # 2;
b. Vvu,v e W, u+veW;
c. Vvue WaeF, aueW.

3 a W #2;
b. Yu,v € W, Va,B8 € F, au+ fv e W.

Proof. 2. = 3.

From 2c., au € W and Bv € W. Then, from 2b., au + fv € W, as desired.

2. < 3.

From 3b., identifying o, u, 8,v with 1,u, 1,v, we get u +v € W, i.e., 2b.

From 3b., identifying o, u, 8, v with %,u, %,u, we get %u + %u € W. Moreover, since W C V|
then w € V and from the distributive property (M1) for V, we get %u + %u = (% + %) u=1lu =u,
where last equality follow from Property (M4).

1. = 2.

All properties follow immediately from the definition of vector space.

1. < 2.

2a., 2b. and 2c. insure that the “preliminary properties” of a vector space are satisfied: W # @
and the operations are well defined.

Properties A1, A4, M1, M2, M3 and M4 are satisfied because W C V. Let’s check the remaining
two properties.

(A2): Since W # &, we can take w € W. Since W C V, then w € V and from Proposition
136.1, Ow = 0. Moreover, from 2c., .identifying o, u with 0, w, we get Ow € W, as desired.

(A3): Take w € W. Then, again using the fact that since w € V, 0w = 0, we get

() w+ lw Ly

(=14 1)w=0w=0.
Since lw = w, from (M4), and (—1) w € W, from 2c., we have shown the desired result: the
inverse with respect to sum of w does belong to W. =m

Remark 140 An often successful way to show that a set S is a vector space is the following one:
1. find a vector space V' such that S C V; in Section 4.2 above, we provide a list of “commonly
used” wvector spaces;
2. Proposition 139.
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Example 141 1. Given an arbitrary vector space V, {0} and V are vector subspaces of V.

2. Given R3,

W = {(Il,SCQ,I’g) eR?: x5 = 0}

is a vector subspace of R3.

3. Given the space V of polynomials, the set W of all polynomials of degree < n is a vector
subspace of V.

4. The set of all bounded or continuous or differentiable or integrable functions f: X — R is a
vector subspace of F (X).

5. If V and W are vector spaces, then V NW is a vector subspace of V and W.

6. [0,400) is not a vector subspace of R.

7. Let V. ={0} x RC R? and W =R x {0} CR?. Then V UW is not a vector subspace of R.

4.4 Linear combinations

Notation convention. Unless otherwise stated, a greek (or Latin) letter with a subscript denotes
a scalar; a Latin letter with a superscript denotes a vector.

Definition 142 Let V be a vector space, m € N and v',v%,...,v™ € V. A linear combination of
L p? ™ wvia coefficients aq, aa, ...,y € Fis the vector

vectors v, v, ...,V
m
E ;v
i=1
The set of all such combinations

{v eV :3 ()it € F™ such that v = Zaw’}

i=1

1s called span of {Ul,UQ, ...,vm} and it is denoted by

span ({vl, 2., Um})
or simply

span (v',v?, ..., 0™).
Definition 143 Let V be a vector space and S C V. span (S) is the set of all linear combinations
of a finite number of vectors in S.

Proposition 144 Let V' be a vector space and S # &,S C V. Then, “‘span(S) is the smallest
vector space containing S”, i.e.,

1. a. S Cspan (S) and b. span (S) is a vector subspace of V.
2. If W is a subspace of V and S C W, then span (S) C W.

Proof. la. Given v € S, 1v = v € span (S). 1b. Since S # &, then span (S) # &. Given
a, € Fand v,w €span S. Then o, ..., o, € F, vt .. 0" € Sand Bq,...,08,, € F,w,...,w™ € S,
such that v = 371} v’ and w = Y70, B;w’. Then

n

av + Pw = Z (o) v* + Z (ﬂﬁj) w’ € span.
i=1 j=1
2. Take v € span S. Then Jay,...,an, € F, v!, .. ;0" € S C W such that v = Y | av’ € W,
as desired. m

Definition 145 Let V be a vector space and v',v?,...,v™ € V. IfV = span (Ul, v?, ...,vm), we say

that V is the vector space generated or spanned by the vectors v',v2, ..., v™.

Example 146 1. R = span ({(1,0,0),(0,1,0),(0,0,1)});
2. span ({(1,1)}) = span ({(1,1),(2,2)}) = {(z,y) e R? : z =y};
3. span ({(1, 1), (0,1)}) = RZ.
2. span ({t”}neN) is equal to the vector space of all polynomials.
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4.5 Row and column space of a matrix
Definition 147 Given A € M (m,n),
row spanA := span (R' (4),..,R' (4),...,R™ (4))

18 called the row space of A or rowspan of A.
The column space of A or colspanA is

colspanA := span (C' (A),..,C7 (A),...,C" (4)).
Remark 148 Given A € M (m,n)
col spanA = row spanA”.
Remark 149 Linear combinations of columns and rows of a matriz.
Let Ae M(m,n),x € R" andy € R™ . Then, Vj € {1,..,n}, C? (A) € R™ and Vi € {1,...,m},

R'(A) € R™. Then,

1
Az = [C1(A) s CF (A), s C(A)] - | 2 | = zn:xj .07 (A)
ZTn Fl
and

Ax is a linear combination of the columns of A via the components of the vector x.

Moreowver,
R (A)
i=1
R™(A)
and

yA is a linear combination of the rows of A via the components of the vector y.
As a consequence of the above observation, we have what follow.

1.
rowspan A ={w e R" : 3 y € R™ such that w = yA}.

colspan A ={z € R™:3 x € R" such that z = Ax};

Proposition 150 Given A, B € M (m,n),
1. if A is row equivalent to B, then row spanA = row spanB;
2. if A is column equivalent to B, then colspanA = colspanB.

Proof. 1. B is obtained by A via elementary row operations. Therefore, Vi € {1, ..., m}, either

i. R"(B) = R'(A), or

ii. R'(B) is a linear combination of rows of A.

Therefore, row spanB C row spand. Since A is obtained by B via elementary row operations,
row spanB D row span.

2. if A is column equivalent to B, then A7 is row equivalent to BT and therefore, from i. above,
row spanA” = rowspanB”. Then the result follows from Remark 148. m
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Remark 151 Let A € M (m,n) be given and assume that
bim )y = i B (4),
i=1
i.e., b is a linear combination of the rows of A. Then,
Vie{l,.,n}, b= ici R (A),
i=1

where Vi € {1,..m} and Vj € {1,..n}, RY (A) is the j — th component of the i —th row R' (A)
of A.

Lemma 152 Assume that A, B € M (m,n) are in echelon form with pivots

QAlgyseeey Qigiy eeny Argps

and
Dikys s Diky s -y Dok s

respectively, and* r,s < min{m,n}. Then
(row spanA = rowspanB) = (s =r and fori € {1,...,s}, j;=ki).

Proof. Preliminary remark 1. If A =0, then A = B and s =r = 0.

Preliminary remark 2. Assume that A, B # 0 and then s,r > 1. We want to verify that
j1 = k1. Suppose ji < ki. Then, by definition of echelon matrix, Cj, (B) = 0, otherwise you
would contradict Property 2 of the Definition 28 of echelon matrix. Then, from the assumption
that rowspanA = rowspanB,we have that R!(A) is a linear combination of the rows of B, via
some coefficients ¢y, ..., ¢;, and from Remark 151 and the fact that C7 (B) = 0, we have that
aij, =c1 -0+ ...cp, - 0 =0, contradicting the fact that a,;, is a pivot for A. Therefore, j; > k1. A
perfectly symmetric argument shows that j; < k.

We can now prove the result by induction on the number m of rows.

Step 1. m = 1.
It is basically the proof of Preliminary Remark 2.
Step 2.

Given A, B € M (m,n), define A", B € M (m — 1,n) as the matrices obtained erasing the first
row in matrix A and B respectively. From Remark 33, A’ and B’ are still in echelon form. If
we show that row spanA’ = rowspanB’, from the induction assumption, and using Preliminary
Remark 2, we get the desired result.

Let R = (a1, ...,a,) be any row of A’. Since R € rowspanB, 3(d;);", such that

R= i d;R" (B).
=1

Since A is in echelon form and we erased its first row, we have that if i < j; = ky, then a; = 0,
otherwise you would contradict the definition of j;. Since B is in echelon form, each entry in its
k1 — th column are zero, but big, which is different from zero. Then,

alk‘1 :Ozzdlbzlﬂ :dl'bi/ﬂ;

i=1
and therefore d = 0, i.e., R = Y i, d;R'(B), or R € rowspanB’, as desired. Symmetric

argument shows the other inclusion. m

Remark 153 Given

1 1 2
A—[2 1}andB—{6

clearly A # B and row spanA = row spanB.

W Do

4See Remark 30.
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Proposition 154 Assume that A, B € M (m,n) are in row canonical form. Then,
(row spanA = row spanB) < (A = B).

Proof. [<] Obvious.

[=] From Lemma 152, the number of pivots in A and B is the same. Therefore, A and B have
the same number s of nonzero rows, which in fact are the first s rows. Take ¢ € {1,...,s}. Since
row spanA = row spanB, there exists (c);_; such that

R'(A) = ich -R"(B). (4.1)
h=1

We want then to show that ¢; =1 and VI € {1,...,s}\ {i}, ¢, = 0.
Let a;;,be the pivot of R? (A) , i.e., a;;, is the nonzero j; — th component of R (A). Then, from
Remark 151,

@ij, = Z ¢ - R (B) = Z ch - bhj, - (4.2)
h=1 h=1

From Lemma 152, for i € {1,...,s}, j; = k;, and therefore b;j, is a pivot entry for B, and since
B is in row reduced form, b;;, is the only nonzero element in the j; column of B. Therefore, from
(4.2),

S
2 : hjs
Qij; = cp - RV (B):CZI)ZJ1
h=1
Since A and B are in row canonical form a;;, = b;;, = 1 and therefore
C; = 1.

Now take [ € {1,...,s}\{i} and consider the pivot element bj; in R'(B). From (4.1) and
Remark 151,

Q5 = Z cp - bng, = a, (4.3)
h=1

where the last equalities follow from the fact that B is in row reduced form and therefore b;;, is
the only nonzero element in the j; — th column of B, in fact, b;;, = 1. From Lemma 152, since by,
is a pivot element for B, a;; is a pivot element for A. Since A is in row reduced form, a;;, is the
only nonzero element in column j; of A. Therefore, since [ # i, a;;, = 0, and from (4.3), the desired
result,

vie{l,...,s}\{i}, «a=0,

does follow. m

Proposition 155 For every A € M (m,n), there exists a unique B € M (m,n) which is in row
canonical form and row equivalent to A.

Proof. The existence of at least one matrix with the desired properties is the content of
Proposition 38. Suppose that there exists B; and By with those properties. Then from Proposition
150, we get

row spanA = row spanB; = row spanBs.

From Proposition 154,
By = Bs.

Corollary 156 1. For any matriz A € M (m,n) there exists a unique numberr € {0, 1,...,min {m,n}}
such that A is equivalent to the block matrix of the form

KRl
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2. For any A € M (m,n), there exist invertible matrices P € M (m,m) and @ € M (n,n) and a
unique number r € {0, 1, ..., min {m,n}} such that

o[ 2]

Proof. 1.

From Step 1 in the proof of Proposition 122 and from Proposition 155, there exists a unique
matrix A* which is row equivalent to A and it is in row canonical form.

From Step 2 and 3 in the proof of Proposition 122 and from Proposition 155, there exist a unique
matrix
. 01"
5 o)

which is row equivalent to A*T and it is in row canonical form. Therefore the desired result follows.
2

From Proposition 105.2, PA is row equivalent to A; from Proposition 119.2, PAQ is column
equivalent to PA. Therefore, PAQ is equivalent to A.From Proposition 124 ,

L. 0
0 0
is equivalent to A. From part 1 of the present Proposition, the desired result then follows. m

Example 157 Let A = [ be given. Then,

Indeed,

|
|

4.6 Linear dependence and independence

Definition 158 Let V' be a vector space on a field F, m € N and v',v?,...,v™ € V. The set
S = {vl, V2, ...,vm} 1s a set of linearly dependent vectors if
either m =1 and v* =0, i.e., S = {0} ,
orm > 1 and 3k € {1,..m} and there exist (m — 1) > 1 coefficients o; € F with j €
{1,..m}\{k} such that
ok = Z v’

je{1,..m}I\{k}

k _ Y
v—Eoz]v

itk

or, shortly,

i.e., there exists a vector equal to a linear combination of the other vectors.

Geometrical example in R2.
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Proposition 159 Let V be a vector space and v',v%,..,v™ € V on a field F. The set S =
{vl, v?, ...,vm} CV is a set of linearly dependent vectors if and only if

3 (Bry-oes Bir s Brn) € F™\{0} such that » B, -v' =0, (4.4)

i=1
i.e., there exists a linear combination of the vectors equal to the null vector and with some

nonzero coefficient.

Proof. [=]
If #5 =1, i.e., S = {0}, any 8 € R\ {0} is such that -0 = 0. Assume then that #S > 1. Take

_ oo ifi#Eg
Bi_{ —1ifi=

[<]
If S = {v} and 38 € R\ {0} is such that 8- v = 0,then from Proposition 58.3 v = 0. Assume
then that #5 > 1. Without loss of generality take 8; # 0. Then,

Byt + Zﬂi”i =0
i#1
and 5
1 i
V= —Lo'.
25,
| ]

Proposition 160 Let m > 2 and v',...,v™ be nonzero linearly dependent vectors. Then, one of
the wvectors is a linear combination of the preceding vectors, i.e., 3 k > 1 and (ai)f:ll such that
ko xok=1o a

v =30 agnt

Proof. Since {v!,...,v™} are linearly dependent, 3(;);"; € R™\ {0} such that >, 30" = 0.
Let k be the largest ¢ such that 5, # 0, i.e.,

Jk € {1,...,m} such that 5, #0and Vi € {k+1,...,m}, B, =0. (4.5)

Consider the case k = 1. Then we would have 5, # 0 and Vi > 1, 5, = 0 and therefore
0= Z?il B,v* = B,v!, contradicting the assumption that v!,...,v™ are nonzero vectors. Then, we
must have k& > 1, and from (4.5) , we have

m . k )
0= Zﬁivl = Zﬁiv’
i=1 i=1
and

k—1
b .
Bk)v = Zﬁivza
i=1

or, as desired,

-V

B
B

vt

k—1
>
i=1
It is then enough to choose «; = % forany i€ {1,...k—1}. =m

Example 161 Take the vectors ' = (1,2), 2 = (=1,-2) and 2® = (0,4). S := {z',2%,2%} is a
set of linearly dependent vectors: x' = —1-2240-23. Observe that there are no a1,a2 € R such

that % =oa1 -z + a2 - 22.
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Definition 162 The set of vectors S = {vl, ...,vm} C V is called a set of linearly independent
vectors if it is not linearly dependent, i.e., { = (4.4)) ,i.e., if

V (Byseos Bis oy Bin) € F™\ {0} it is the case that Y v, B; - v" # 0,
or

i=1
or

Zﬁi'vizo = (/Bla-"a/@)ia'"’ﬂm):o
i=1

or the only linear combination of the vectors which is equal to the null vector has each coefficient
equal to zero.

Example 163 The vectors (1,2), (1,5) are linearly independent.

Example 164 Let V' be the vector space of all functions f : R — R. f,g,h defined below are
linearly independent:

f(x) =e", g(x) =22, h(x) =x.

Suppose there exists (aq, s, a3) € R such that
ar-f+az-gtaz-h=0y,

which means that
Ve eR, a1 f(z)+as-g(z)+ ag-h(z)=0.

We want to show that (a1, as, a3) = (0,0,0). The trick is to find appropriate values of x to get the
desired value of (a1, g, a3). Choose x to take values 0,1,—1. We obtain the following system of
equations

aq =0
ccar + as + a3 = 0
elag + a + (=)az = 0
It then follows that (a1, a2, a3) = (0,0,0), as desired.
Geometrical example in R2.
Remark 165 From Remark 149, we have what follows:
(Az = 0 = o = 0) < (the column vectors of A are linearly independent) (4.6)
(yA =0 =y = 0) & (the row vectors of A are linearly independent) (4.7)

Remark 166 9 is a set of linearly independent vectors: see Definition 162.

Example 167 Consider the vectors ' = (1,0,0,0) € R* and x? = (0,1,0,0). Observe that
a1l + agz? = 0 means (a1, a2,0,0) = (0,0,0,0).

Exercise 168 Say if the following set is a set of linearly dependent or independent vectors:
S = {xl,xQ,:z:3} with 2t = (3,2,1), 2% = (4,1,3), 2® = (3,-3,6).

Proposition 169 Let V be a vector space and v',v?,....,vm™ € V. If S = {vl, ...,vm} is a set of
linearly dependent vectors and vt ....v™T* € V are arbitrary vectors, then

S =S u{vmth o R L = Lol L et e R ]

b

is a set of linearly dependent vectors. In other words, roughly speaking “supersets of linearly depen-
dent sets are linearly independent”.
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Proof. From the assumptions 3i* € {1,...,m} and (a;);j;+ such that
vl = Z v’
J#*
But then _ '
v = Zajvj +0- v tE
I
|
Proposition 170 If S = {vl, ...,vm} C V is a set of linearly independent vectors, then S’ C S is

a set of linearly independent vectors. In other words, subsets of linearly dependent sets are linearly
independent.

Proof. Suppose otherwise, but then you contradict the previous proposition.
The above two Propositions allow to generalize the definition of linearly dependent and linearly
independent sets of vectors for sets of arbitrary cardinality as follows.

Definition 171 Let V' be a vector space and S C V. The set S is linearly independent if every
subset of S with finite cardinality is linearly independent.

Definition 172 Let V be a vector space and S C V. The set S is linearly dependent if there exists
a subset of S with finite cardinality which is linearly dependent.

Remark 173 Consider vectors in R™.

1. Adding components to linearly dependent vectors gives raise to linearly dependent or indepen-
dent vectors;

2. Eliminating components from linearly independent vectors gives raise to linearly dependent or
independent vectors;

3. Adding components to linearly independent vectors gives raise to linearly independent vectors;

4. Eliminating components from linearly dependent vectors gives raise to linearly dependent vec-
tors.

To verify 1. Ind 2. above consider the following two vectors:

1 2
1,]2
0 1

To verify 4., if you have a set of linearly dependent vectors, it is possible to express one vector
as a linear combination of the others and then eliminate components leaving the equality still true.
The proof of 3 is contained in the following Proposition.

Proposition 174 If S, = {xl,...,azm} C R™ is a set of linearly independent vectors and S, =
{yl, ...,ym} C R* is a set of vectors, then S = {(zl,yl) e (,xm,ym)} C R™* is a set of linearly
independent vectors.

Proof. By assumption
Zﬁi =0 = (By,ee By Brn) = 0.
S is a set of linearly independent vectors if
iﬁi WLy =0 = (Byyens Bis ey Brn) = 0.
i=1

Since
m m

Zﬁi~(vi,yi)20 & Z,Bi-vi20and Zﬁi-yi:O
i=1 i=1 i=1

the desired result follows. m
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Corollary 175 If S, = {xl,...,xm} C R" is a set of linearly independent vectors and S, =
{yl, ...,y"‘} CRF and S, = {zl, ...,zm} C Rlare sets of vectors, then

S = {(217$17y1) yens (z,n“ $m7ym)} g Rl+7z+k
is a set of linearly independent vectors.

Example 176 1. The set of vectors {111, ...,vm} is a linearly dependent set if 3k € {1,...,m} such

that v* = 0: _
ok + Z 0-v"'=0
ik
2. The set of vectors {vl, ...,v"‘} is a linearly dependent set if Ik, k' € {1,...,m} and a € R

such that v¥ = avk: ) '
P — an® + Z 0-2"'=0
ik, k!

3. Two vectors are linearly dependent if and only if one is a multiple of the other.
Proposition 177 The nonzero rows of a matriz A in echelon form are linearly independent.

Proof. We will show that each row of A starting from the first one is not a linear combination
of the subsequent rows. Then, as a consequence of Proposition 160, the desired result will follow.

Since A is in echelon form, the first row has a pivot below which all the elements are zero. Then
that row cannot be a linear combination of the following rows. Similar argument applies to the
other rows. m

Remark 178 (Herstein (1975), page 178) “We point out that linear dependence is a function not
only of the vectors but also of the field. For instance, the field of complex numbers is a vector space
over the field of real numbers and it is also a vector space over the field of complex numbers. The
elements v1 = 1,v9 = iin it are linearly independent over the reals but linearly dependent over the
complexes, since ivy + (—1)ve = 0.7

4.7 Basis and dimension

Definition 179 An ordered set S (of arbitrary cardinality) in a vector space V on a field F is a
basis of V if

1. S is a linearly independent set;
2. span (S)=V.

Proposition 180 A set S = {ul,u2, ...,u"} CV is a basis of Von a field F if and only if Vo € V
there exists a unique (o;);_, € F™ such that v =", a;u’.

Proof. [=] Suppose there exist (a;);_; ,(8;)i; € R™ such that v = Y1 | ayu’ = Y"1 | Bul.

Then . N .
0= Zaiui - ZBZUZ = Z (i — B;) u'.
i=1 i=1

=1

2

Since {u17u 7...7u"} are linearly independent,

Vie{l,...,n}, a;—B; =0,

as desired.

[<]

Clearly V = span (S); we are left with showing that {ul,u ,...,u”} are linearly independent.
Consider Y 7| a;u’ = 0. Moreover, > i 0-u’ = 0. But since there exists a unique (a;);_, € R"
such that v = Y"1 | a;u’, it must be the case that Vi € {1,...,n}, a; =0. m

The above proposition allows to give the following definition.

2
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Definition 181 Given a vector space V on a field F with a basis V = {vl, ...,v”}, the associated
coordinate function is
cry:V—F" v cry(v) = [v],

where cry (v) is the unique vectors of coefficients which give v as a linear combination of the
element of the basis, i.e., cry (v) := (q;)i_; such that v=>""_; a;v".

Lemma 182 Suppose that given a vector space V', span (111, ...,vm) =V.

1. IfweV, then {w,vl7 ...71)7"} is linearly dependent and span (wml, ...,vm) =V;

. . . . =1 . .
2. Ifv* is a linear combination of {UJ };:1, then span (vl, ey 0L gL ...,vm) =V.

Proof. Obvious. m
Lemma 183 (Replacement Lemma) Given a vector space V, if
1. span ({vl, ...,v”}) =V,
2. {wl, ,wm} CV is linearly independent,
then

1. n>m,

2. a. If n =m, then span ({ wl, ...,wm}) =V.

b. if n > m, there exists {Uil, ...,vi"*m} C {vl, ...,v"} such that

span ({w', ..., w™ 0", v} =V

Proof. Observe preliminary that since {wl,...,wm} is linearly independent, for any j €
{1,...,m}, w? #0.

We now distinguish 2 cases: Case 1. For any i € {1,...,n}, v* # 0, and Case 2. There exists
i € {1,...,n} such that v’ = 0.

Case 1.

Now consider the case n = 1. {wl, ...,wm} C V implies that there exists (aj)z.nzl € R™ such
that Vj, a; # 0 and w/ = afv?, then it has to be m = 1 (and conclusion 1 holds) and since
w!' = aqvy, span (w') =V (and conclusion 2 holds).

Consider now the case n > 2.

First of all, observe that from Lemma 182.1, {wl, LI v”} is linearly dependent and

span ({wl,vl, ...,v”}) =V.

By Lemma 160, there exists k; € {1,...,n} such that v* is a linear combination of the preceding
vectors. Then from Lemma 182.2, we have

span (wl, (v")#kl) =V

Then again from Lemma 182.1, {wl, w?, (vi)#kl} is linearly dependent and span ({wl, w?, (vi)#kl }) =

V. By Lemma 160, there exists ko € {2,...,n} \ {k1} such that v*2 or w? is a linear combination of
the preceding vectors. That vector cannot be w? because of assumption 2. Therefore,

span ({wl,wQ, (Ui)i#kl’kZ}) =V.

We can now distinguish three cases: m <n, m =n and m > n.
Now if m < n, after m steps of the above procedure we get

span ({wl, --'7wm’ (Ui)i;ékl,kQ,-wkM}) - ‘/7
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which shows 2.a. If m = n,we have
span ({wl, ...,wm}) =V,

which shows 2.b.

Let’s now show that it cannot be m > n. Suppose that is the case. Then, after n of the above
steps, we get span (wl, ...,w") = V and therefore w™*! is a linear combination of (wl, ...7w"),
contradicting assumption 2.

Case 2.

In the present case, we assume that there exists a set Iy such that Iy # & and Iy C {1,...,n}.
Define also I; = {1,...,n}\Iy and n; = #I;. Clearly, span ({v':i € I }) = span ({v',...,v"}) =
V and n; < n. Then, repeating the “replacement” argument described in Case 1 applied to
{vi 11 € Il} and {wl, ...,wm}, we get

(i) n > ny > m, i.e., Conclusion 1 holds and Conclusion 2a does not hold true, and

(ii) there exists {v™, ..., v"#n-m} C{v':i € L1} C {v',...,v"} such that span ({w?, ..., w™, v™, .. v"#h-m}) =
V', and therefore Conclusion 2b does hold true. =

Proposition 184 Assume that S = {u17u2, ,u"} and T = {vl,vz, ...71)7"} are bases of V. Then
n=nm.

Proof. By definition of basis we have that

span ({ul,u2, ,u"}) =V and {vl,vz, ...,vm} are linearly independent.
Then from Lemma 183, m < n. Similarly,

span ({vl,v2, ...,vm}) =V and {ul,u2, ,u"} are linearly independent,

and from Lemma 183, n <m. m
The above Proposition allows to give the following Definition.

Definition 185 A vector space V' has dimension n € N if there exists a basis of V whose cardinality
is n. In that case, we say that V has finite dimension (equal to n) and we write dimV =n. If a
vector space does not have finite dimension, it is said to be of infinite dimension.

Definition 186 The vector space {0} has dimension 0.

Example 187 1. A basis of R™ is {el, ...,ei7...7e"}, where €' is defined in Definition 55. That
basis is called canonical basis. Then dimR"™ = n.

2. Consider the vector space Py, (t) of polynomials of degree < n. The set {to,tl, t”} of
polynomials is a basis of P, (t) and therefore dimP, (t) =n + 1.

Example 188 Put the exzample of infinite dimensional space from Hoffman and Kunze,
page 43.

Proposition 189 Let V' be a vector space of dimension n.
1. m > n vectors in 'V are linearly dependent;
2. IfS = {ul, ,u”} C V is a linearly independent set, then it is a basis of V;
3. If span (ul, ,u”) =V, then {ul,...,u”} is a basis of V.
Proof. Let {wl, ...,w"} be a basis of V.

1. We want to show that {vl, ...,vm} arbitrary vectors in V are linearly dependent. Suppose
otherwise, then by Lemma 183, we would have m < n, a contradiction.

2. It is the content of Lemma 183.2.a.

3. We have to show that {ul, e u”} are linearly independent. Suppose otherwise. Then there
exists k € {1,...,n} such that span ({ (u")#k}) =V, but since {w?,...,w"} is linearly inde-

pendent, from Proposition 183 (the Replacement Lemma), we have n < n—1, a contradiction.
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Remark 190 The above Proposition 189 shows that in the case of finite dimensional vector spaces,
one of the two conditions defining a basis is sufficient to obtain a basis.

Proposition 191 (Completion Lemma) Let V be a vector space of dimension n and {wl, ...,wm} C
V be a linearly independent set, with> m < n. If m < n, then, there exists a set {ul, ...,u”*m}
such that

{w17...7wm7u1, ...,u"_m}

is a basis of V.
Proof. Take a basis {vl, e v”} of V. Then from Conclusion 2.b in Lemma 183,
span (wl, ey w™ vt ...,vi”*””) =V.
Then from Proposition 189.3, we get the desired result. m
Proposition 192 Let W be a subspace of an n—dimensional vector space V. Then
1. dimW < n;
2. If dmW =n, then W =V.

Proof. 1. From Proposition 189.1, m > n vectors in V are linearly dependent. Since a basis of
W is a set of linearly independent vectors then dim W < n.

2. If {wl, ...,w"} is a basis of W, then span (wl, 7w”) = W. Moreover, those vectors are n
linearly independent vectors in V. Therefore from Proposition 189.2.; span (wl, . w") =V. n

Remark 193 As a trivial consequence of Proposition 191, V = span {ul, ...,ur} =dimV <r.

Example 194 Let W be a subspace of R?, whose dimension is 3. Then from the previous Propo-
sition, dim W € {0,1,2,3}. In fact,

1. If dim W = 0, then W = {0}, i.e., a point,

2. if dimW =1, then W is a straight line trough the origin,

8. if dimW = 2, then W is a plane trough the origin,

4. if dim W = 3, then W = R3.

Definition 195 A mazimal linearly independent subset S’ of a set of vectors S CV is a subset of
S such that

1. S’ is linearly independent, and

2.8 CS8"CS = 8" islinearly dependent, i.e., if S is another subset of S whose cardinality
is bigger than the cardinality of S’, then S” is a linearly dependent set.

Lemma 196 Given a vector space V, if
1. §= {vl, ...,vk} C Vare linearly independent, and
2. 8" = SU{v*t1} are linearly dependent,
then
vFt1 s a linear combination of the vectors in S.

Proof. First Proof.
Since S’ is a linearly dependent set,

Fe{l,...k+1}, (Bj)je{l,.“,kJrl}\{i} such that v = Z ijj.
FE{L k1 {i}
If i = k + 1,we are done. If ¢ # k + 1, without loss of generality, take ¢ = 1. Then

k+1
such that v' = Z’ij].

Jj=2

3 (7j)je{1,...,k+1}\{1}

5The inequality m < n follows from Proposition 189.1.
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1

If 74,41 = 0, we would have v* — Z?:Q ’ijj = 0, contradicting Assumption 1. Then

1 k
Rl — Wb — Z%‘U
Tk+1 =2

Second Proof.

It follows from Proposition 160, as shown below. Observe that for any i € {1,...,k}, v # 0,
otherwise S would be linearly dependent. If v**1 = 0, we are done. If v**! # 0, assume the
conclusion is false; then, from Proposition 160, 3k’ € {1, ..., k} such that v*" is a linear combination
of the preceding vectors, contradicting assumption 1. =

Remark 197 Let V be a vector space and S CT C V. Then,
1. span S C span T';
2. span (span S) = span S.

Proposition 198 If S is a finite set of vectors in V and S’ is a maximal linearly independent
subset of S, then S’ is a basis of span S.

Proof. Let S’ be equal to {vl,...,v”}. If we S, then w € span S5 if w € S\S’, then
{vl, ...,v”,w} is linearly dependent and w € span S’. Therefore, w € S implies that w € span
S'ie.,

S C span S'.
Then
S n (2) /(3)
span S C span (span S’) = span S’ C span S.

where (1) follows from Remark 197.1, (2) Remark 197.2, and (3) from Remark 197.1. Then span
S = span S’ and therefore S’ is a basis of span S. B

Proposition 199 Let S’,S"”be two mazximal linearly independent subsets of a finite S C V. Then
#S = #5".

Proof. From Proposition 198 , S’ and S”are a basis of span S. Therefore, they have the same
cardinality. =
Proposition 199 allows to give the following definition.

Definition 200 The row rank of A € M (m,n) is the mazimum number of linearly independent
rows of A (i.e., the cardinality of each maximal linearly independent subset of the set of the row
vectors of A).

Definition 201 The column rank of A € M (m,n) is the mazimum number of linearly independent
columns of A.

Proposition 202 For any A € M (m,n),
1. row rank of A is equal to dimrow span of A;
2. column rank of A is equal to dim col span of A.

Proof. 1.
Take a maximal linearly independent subset S of the rows of A. Then, by definition,

#S5 = rowrank A. (4.8)
From Proposition 198, S is a basis of row span A, and therefore
#S5 = dimrowrank A. (4.9)

(4.8) and (4.9) give the desired result.
2.

. Rmk.148
dimcolspan A =

dimrowspan AT = max # li. rows in AT = max # Li. columns in A.
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Proposition 203 For any A € M (m,n), row rank of A is equal to column rank of A.

Proof. Let A be an arbitrary m x n matrix

aii - A1y e Q1p
;1 cee Qg e Qgm
ami1 - Amj ... Amn

Suppose the row rank is » < m and the following r vectors form a basis of the row space:

Sl = [bll blj bln]
Sy = [bkl bkj bgm]
Sy = [bp1 o by . by

Then, each row vector of A is a linear combination of the above vectors, i.e., we have

Vie{l,..m}, R'= Zaikska
k=1

or

Vi € {1,...,m}, [aﬂ cee Qg e Qg ] :Zaik [bkl bkj bkn} ,
k=1

and setting the j component of each of the above vector equations equal to each other, we have

Vje{l,.,n} and Vie{l,..m}, a;= Zaikbkj;
k=1

and i,
ai; = Y Qikbrj,
. T
V] (S {1, . n} s Qij = Zk:l aikbkj,
T
Amj = Zk:1 amk:bkju
ayj A1k
r
Vie{l,.,n} | ai = E brj | o |,
k=1
Amj Amk

i.e., each column of A is a linear combination of the r vectors

11 a1k a1y
an || o || @
Om1 Oémk Amyr
Then, from Remark 193,
dim colspan A < r = rowrank A, (4.10)

ie.,
colrank A <rowrank A.

From (4.10) ,which holds for arbitrary matrix A, we also get

dim colspan A7 < rowrank A7, (4.11)
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Moreover,

T Rmk. 148

dim col span A dimrow span A := rowrank A

and Rmk. 148
rowrank AT := dimrowspan AT "= """ dim col span A.

Then, from the two above equalities and (4.11), we get
rowrank A < dim colspan A, (4.12)

and (4.10) and (4.12) gives the desired result. m
We can summarize Propositions 202 and 203 as follows.
For every A € M (m,n),

rowrank A = dimrow spanA = colrank A = dimcolspan A.

Exercise 204 Check the above result on the following matrix

1 2 3
5 1 6
3 7 10

4.8 Exercises

Problem sets: 1,2,3,4,5,6,7.
From Lipschutz (1991), starting from page 162:
5.3, 5.7, 5.8, 5.9, 5.10, 5.12 — 5.15, 5.17 — 5.23, 5.24 — 5.29, 5.31 — 5.34, 5.46 — 5.49.
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Chapter 5

Determinant and rank of a matrix

In this chapter we are going to introduce the definition of determinant, an useful tool to study
linear dependence, invertibility of matrices and solutions to systems of linear equations.

5.1 Definition and properties of the determinant of a matrix

To motivate the definition of determinant, we present an informal discussion of a way to find
solutions to the linear system with two equations and two unknowns, shown below.

a11r1 + a2y = by
5.1
{ a2171 + a2 = by (5-1)

The system can be rewritten as follows

Ax =10

A= ail  ai2 = T b= by
as  ax |’ xz2 |’ by |
Let’s informally discuss how to find solutions to system (5.1). If ase # 0 and a;2 # 0, multiplying
both sides of the first equation by aso, of the second equation by —a;2 and adding up, we get

where

01102271 + A12022T2 — A12021T1 — G12022T2 = G22b1 — a12b2
Therefore, if
a11a22 — a12621 # 0

we have
brazs — baaio

r=— (5.2)
a11a22 — 612021
In a similar manner! we have
boai1 — bia
gy = 2011~ 01021 (5.3)
a11a22 — 12021
We can then the following preliminary definition: given A € My, the determinant of A is

ailp a2
det A = det = 11022 — G12021
a1 a2

Using the definition of determinant, we can rewrite (5.2) and (5.3)as follows.

det b det | “1 b
S by aog and g — az1 b
L= det A 27 det A

I Assuming a21 # 0 and a11 # 0, multiply both sides of the first equation by agi, of the second equation by —a11
and then add up.

65
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We can now present the definition of the determinant of a square matrix A, «, for arbitrary
n € N.

Definition 205 Givenn >1 and A € M (n,n), Vi,j € {1,...,n}, we call A;; € M (n —1,n — 1) the
matrix obtained from A erasing the i — th row and the j — th column.

Definition 206 Given A € M (1,1), i.e., A = [a] with a € R. The determinant of A is denoted by
det A and we let det A := a. For N\ {0,1}, given A € M (n,n), we define the determinant of A as
det A := Z(—1)1+ja1j det Alj

j=1
Observe that [alj]?zl is the first row of A, i.e.,
det A=Y (—1)""RY (A)det Ay;
j=1

Example 207 Forn = 2, we have

2
ailr a2 | 144 _ 1+1 142 _
det = —1)""ay;det Ay; = (—1 ajpdet A1 + (=1 ajgdet A1 =
[am 2 ] jEZl( ) 1) ;= (1) 11 11+ (=1) 12 12

= 11022 — A120G21

and we get the informal definition given above.
Example 208 For n = 3, we have

a1l a2 a13
det A = det a21 Qa22 0423 = (—1)1+1a11 det A11 + (—1)1+2a12 det A12 + (—1)1+3a13 det A13
aszy asz as3

Definition 209 Given A = [a;;] € M (n,n), , Vi, 7, det A;j is called minor of a;; in A;
(71)i+j det AZJ
is called cofactor of a;; in A.

Theorem 210 Given A € M (n,n), det Ais equal to the sum of the products of the elements of any
rows or column for the corresponding cofactors, i.e.,

Vi€ {l,..n}, det A= (=1)"" R (A)det A; (5.4)

j=1

and .
Vi€ {1,.n}, det A= (=1)"7CI" (A)det Ay (5.5)

i=1

Proof. Omitted. We are going to omit several proofs about determinants. There are different
ways of introducing the concept of determinant of a square matrix. One of them uses the concept of
permutations - see, for example, Lipschutz (1991), Chapter 7. Another one is an axiomatic approach
- see, for example, Lang (1971) - he introduces (three) properties that a function f: M (n,n) — R
has to satisfy and then shows that there exists a unique such function, called determinant. Following
the first approach the proof of the present theorem can be found on page 252, in Lipschutz (1991)
Theorem 7.8, or following the second approach, in Lang (1971), page 128, Theorem 4. =

Definition 211 The expression used above for the computation of det A in (5.4) is called “(Laplace)
expansion” of the determinant by row 1.

The expression used above for the computation of det A in (5.5) is called “(Laplace) expansion”
of the determinant by column j.
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Definition 212 Consider a matriz A,xn. Let 1 < k < n. A k — th order principal submatriz
(minor) of A is the (determinant of the) square submatriz of A obtained deleting (n — k) rows and
(n — k) columns in the same position.

Theorem 213 (Properties of determinants)
Let the matriz A = [a;;] € M (n,n) be given. Properties presented below hold true even if words
“column, columns” are substituted by the words “row, rows”.

1. det A = det AT
2. if two columns are interchanged, the determinant changes its sign,.

3. if there exists j € {1,..,n} such that CJ (A) = S"F_, B,b*, then

p p
det [C (A), .., > BebF, ., C™ (A)| =D By det [CF (A),...,b",....,C" (A)],
k=1

k=1

i.e., the determinant of a matriz which has a column equal to the linear combination of some
vectors is equal to the linear combination of the determinants of the matrices in which the
column under analysis is each of the vector of the initial linear combination, and, therefore,
VB eR and Vj € {1,...,n},

det [C" (A), ..., BCY (A),...,C" (A)] = Bdet [C (A),...,CY (A),...,C" (A)] = Bdet A.

4. if 35 € {1,...,n} such that C7 (A) = 0, then det A = 0, i.e., if a matriz has column equal to
zero, then the determinant is zero.

5. 4f3 4,k € {1,...n} and B € Rsuch that C7 (A) = BC* (A), then det A =0, i.e., the determi-
nant of a matriz with two columns proportional one to the other is zero.

6. If 3k € {1,....,n} and By, ..., Br_1:Bps1, - Bn € R such that C* (4) = D itk ,BjCj (A), then
det A = 0, i.e., if a column is equal to a linear combination of the other columns, then
det A =0.

det |C' (A),...C*(A)+ ) B;-CI(A),...C" (A)| =det A
Jj#k

8. Vi ef{l,..,n}, >, aij-(—l)iﬂ* det A;j+ =0, i.e., the sum of the products of the elements
of a column times the cofactor of the analogous elements of another column is equal to zero.

9. If A is triangular, det A = aq + ... - @22 * ...Qnn, i.€., if A is triangular (for example, diagonal),
the determinant is the product of the elements on the diagonal.

Proof. 1.

Consider the expansion of the determinant by the first row for the matrix A and the expansion
of the determinant by the first column for the matrix A”.

2.

We proceed by induction. Let A be the starting matrix and A’the matrix with the interchanged
columns.

P (2) is obviously true.

Pn—-1)="P(n)

Expand det A and det A’ by a column which is not any of the interchanged ones:

det A = (~1)"7C; (A) det Ay
=1

det A" = "(=1)"**C5 (A) det A

=1
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Since Vk € {1,...,n}, Agj, A;j € M(n—1,n—1), and they have interchanged column, by the
induction argument, det Ay; = —det A}, ;» and the desired result follows.

3.
Observe that N

iﬁkb’“ = (iﬂkbi-“)
k=1 k=1

=1
Then,
det [Cl (A), ..., Y0 Bpbr, ..o (A)] =
b
P
=det [C'(A),...> By | b |, C(A)] =
k=1
bk
> k1 BibY
=det |C' (A), ..., P BebE |0 (A)| =
> k1 Bibr
n D
=> (=) (Z ﬁkbf> det A;; =
i=1 k=1
= B () T b det Ay = SSh_, B det [CF(A), .., b, ., O (A)].
4.
It is sufficient to expand the determinant by the column equal to zero.
5

Let A= [C1(A), BCT (A),C? (4),....C" (A)] and A = [C1(4),C" (A),CP(A),....C" (A)] be
given. Then det A = 3 det [C' (A),C* (A),C? (A),...,C" (A)] = Bdet A. Interchanging the first

column with the second column of the matrix Z’ from property 2, we have that det A= —det Aand
therefore det A = 0, and det A = Sdet A = 0.

6.

It follows from 3 and 5.

7.

It follows from 3 and 6.

8.

It follows from the fact that the obtained expression is the determinant of a matrix with two
equal columns.

9.

It can be shown by induction and expanding the determinant by the firs row or column, choosing
one which has all the elements equal to zero excluding at most the first element. In other words, in
the case of an upper triangular matrix, we can say what follows.

a1l a2
det = a1 - a99.
0 ag 11 * @22

aix a2 aiz ... Qin

a as3 ... Q9
0 a29 a23 ... agn 2 z "
0 0 a a 0 ass asn

det 33 3n = aill det = a11+0a22 033 " ...Qpnp.
.. 0 ..a
0 .. 0 vee Qpn, nn

Theorem 214 VA, B € M (n,n), det(AB) = det A - det B.
Proof. Exercise. m

Definition 215 A € M (n,n) is called nonsingular if det A # 0.
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5.2 Rank of a matrix

Definition 216 Given A € M (m,n), a square submatriz of A of order k < min{m,n} is a matriz
obtained considering the elements belonging to k rows and k columns of A.

Definition 217 Given A € M (m,n), the rank of A is the greatest order of square nonsingular
submatrices of A.

Remark 218 rankA < min{m,n}.

To compute rank A, with A € M (m,n), we can proceed as follows.

1. Consider £ = min{m,n}, and the set of square submatrices of A of order k. If there exists
a nonsingular matrix among them, then rank A = k. If all the square submatrices of A of order &
are singular, go to step 2 below.

2. Consider k — 1, and then the set of the square submatrices of A of order k — 1. If there exists
a nonsingular matrix among them, then rank A = k — 1. If all square submatrices of order k — lare
singular, go to step 3.

3. Consider k — 2 ...

and so on.

Remark 219 1. rank I,, = n.
2. The rank of a matriz with a zero row or column is equal to the rank of that matriz without
that row or column, i.e.,

A A 0
rank { 0 ] = rank [ A 0 ] —rank[ 0 0 } =rank A
That result follows from the fact that the determinant of any square submatriz of A involving
that zero row or columns is zero.
8. From the above results, we also have that

I, 0|
rank[o O}—r

We now describe an easier way to the compute the rank of A, which in fact involves elementary
row and column operations we studied in Chapter 1.

Proposition 220 Given A, A’ € M (m,n),
( A is equivalent to A’) < (rank A = rank A’)

Proof. [=] Since A is equivalent to A’, it is possible to go from A to A’ through a finite number
of elementary row or column operations. In each step, in any square submatrix A* of A which has
been changed accordingly to those operations, the elementary row or column operations 1, 2 and 3
(i.e., 1. row or column interchange, 2. row or column scaling and 3. row or column addition) are
such that the determinant of A* remains unchanged or changes its sign (Property 2, Theorem 213),
it is multiplied by a nonzero constant (Property 3), remains unchanged (Property 7), respectively.

Therefore, each submatrix A* whose determinant is different from zero remains with determinant
different from zero and any submatrix A* whose determinant is zero remains with zero determinant.

[<]

From Corollary 156.2 2, we have that there exist unique 7 and 7’ such that

. . I 0
A is equivalent to { 0 0 }

2That results says what follows:
For any A € M(m,n), there exist invertible matrices P € M (m, m) and Q@ € M (n,n) and a unique number
r €{0,1,...,min {m,n}} such that A is equivalent to

pia=[ 5 1]
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and
A’ is equivalent to [ Ig 8 ]
Moreover, from [=] part of the present proposition, and Remark 219
rankA = rank { IOF 8 } =7
and .
rankA’ = rank[ gl 8 } =7.

Then, by assumption, 7 = 7 :=r, and A and A’ are equivalent to

I, 0O
0 O
and therefore A is equivalent to A’. m
Example 221 Given
1 2 3
2 3 4
3 5 7

we can perform the following elementary rows and column operations, and cancellation of zero

row and columns on the matrix:

b2 12 1 2 3 11 3
2 3 41,12 3 41|, o3 4121 4/
3 5 7 0 0 O

1 10 110 010 10
21 1{’{00 1’00 1|0 1]

Therefore, the rank of the matrix is 2.

5.3 Inverse matrices (continued)

Using the notion of determinant, we can find another way of analyzing the problems of i. existence
and ii. computation of the inverse matrix. To do that, we introduce the concept of adjoint matrix.

Definition 222 Given a matriz A,xn, we call adjoint matriz of A, and we denote it by Adj A,
the matriz whose elements are the cofactors® of the corresponding elements of AT.

Remark 223 In other words to construct Adj A,
1. construct AT,
2. consider the cofactors of each element of AT.

Example 224
12 r_ |1 0 a2 =2
aefo 2] arefan] s[5 7

o 3]

3From Definition 209, recall that given A = [a;;] € M (m,m), Vi, j,
(71)i+j det Ai]'

Observe that
120

22}_[02

] = (det A) - I.

is called cofacor of a;; in A.
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Example 225

1 2 3 1 0 1 -4 6 1
A=|0 1 2|, AT=|2 1 2|, AjA=| 2 -3 -2
1 2 0 320 -1 0 1
Proposition 226 Given A, x,, we have
A-Adj A=Adj A-A=detA-I (5.6)

Proof. Making the product A- Adj A := B, we have

1. Vi € {1,...,n}, the i — th element on the diagonal of B is the expansion of the determinant
by the ¢ — th row and therefore is equal to det A.

2. any element not on the diagonal of B is the product of the elements of a row times the
corresponding cofactor a parallel row and it is therefore equal to zero due to Property 8 of the
determinants stated in Theorem 213). m

Example 227

1 2 3
det| 0 1 2| =-3
1 2 0 |
1 2 3 -4 6 1 (-3 0 o0
01 2 2 -3 —2|=|0 -3 0 |=-3-T
1 2 0 -1 0 1 | 0 0 -3

Proposition 228 Given an n X n matriz A, the following statements are equivalent:

1. det A # 0, i.e., A is nonsingular;
2. A1 exists, i.e., A is invertible;
3. rank A =n;
4. colrank A = n, i.e., the column vectors of the matrixz A are linearly independent;
5. rowrank A =n, i.e., the row vectors of the matriz A are linearly independent;
6. dimcolspan A =n;
7. dimrow span A = n.
Proof. 1 =2
From (5.6) and from the fact that det A # 0, we have
Adj A  Adj A
' deiA - dech A=
and therefore oAdjA -
~ detA '

1«2
AAT =T = det (AA™!) =det ] = det A-det A~ =1 = det A # 0 (and det A~' # 0).

13

It follows from the definition of rank and the fact that A is n x n matrix.

2=4

From (4.6), it suffices to show that (Az = 0=z =0). Since A~! exists, Az = 0= A"1Az =
A7 0=2z=0.

2«4

From Proposition 189.2, the n linearly independent column vectors [C? (A), ..., C; (4),...,C" (A)]
are a basis of R™. Therefore, each vector in R" is equal to a linear combination of those vectors.
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Then Vk € {1,...,n} ¥ € R™ such that the k — th vector e* in the canonical basis is equal to
[C(A),....,Ci(A),...,C" (A)] - bF = Ab*, i.e.,

[ el ...oef L oen ] = [ Abt .. ABE L AD? ]
or, from (3.4) in Remark 70, defined
Bi=[b .. b . ob]

i.e., A~! exists (and it is equal to B).
The remaining equivalences follow from Corollary 4.7. m

Remark 229 From the proof of the previous Proposition, we also have that, if det A # 0, then
det A=1 = (det A)~".

Remark 230 The previous theorem gives a way to compute the inverse matrix as explained in
(5.7).

Example 231 1.

1 2 3 -4 6 1
01 2 =—= 2 -3 -2
1 20 -1 0 1
2. L
0 1 1] -1 0 1
110 = 1 1 -1
1 11 0 -1 1
3. L
01 21 01 2
3 4 5 does not exist because det | 3 4 5 | =0
6 7 8 6 7 8
4 .
01 01 1 % —%
2 0 2 = 1 0 0
123 -1 -3 3
5. .
a 0 07" L 00
0 b 0 =0 3 0
00 c 0 0 2
if a,b,c #0.

5.4 Span of a matrix, linearly independent rows and columns,
rank
Proposition 232 Given A € M (m,n), then
dimrow span A = rank A.

Proof. First proof.

The following result which is the content of Corollary 156.5 plays a crucial role in the proof:

For any A € M (m,n), there exist invertible matrices P € M (m,m) and @ € M (n,n) and a
unique number r € {0, 1, ..., min {m,n}} such that

A is equivalent to PAQ = [ {)T 8 ] .
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From the above result, Proposition 220 and Remark 219 , we have that

L 0]
rank A = rank { 0 0 } =7 (5.8)

From Propositions 105 and 150, we have
row span A = row span PA,;

from Propositions 119 and 150, we have

colspan PA = colspan PAQ = colspan [ ‘3 8 ] .

From Corollary 4.7,
dim row span PA = dim col span PA.

Therefore
dim row span A = dim col span { IOT 8

where the last equality follows simply because

1 L0 | ’
colspan | gy [ =colspan | 4 |,

T

and the r column vectors of the matrix{ 0

} are linearly independent and therefore, from Propo-

I,
0
From (5.8) and (5.9), the desired result follows.

sition 198 | they are a basis of span

Second proof.
We are going to show that row rank A = rank A.
Recall that

r € N such that
rowrank A := < i. r row vectors of A are linearly independent, >
ii. if m > r, any set of rows of A of cardinality > r is linearly dependent.

We ant to show that

1. if rowrank A = r, then rank A = r, and

2. if rank A = r, then rowrank A = r.

1.

Consider the r 1i. row vectors of A. Since r is the maximal number of 1.i. row vectors, from
Lemma 196, each of the remaining (m — r) row vectors is a linear combination of the r Li. ones.
Then, up to reordering of the rows of A, which do not change either row rank A or rank A, there
exist matrices A; € M (r,n) and Ay € M (m — r,n) such that

rank A = rank [ A ] =rank A;
Az
where the last equality follows from Proposition 220. Then r is the maximum number of Li. row
vectors of A; and therefore, from Proposition 203, the maximum number of Li. column vectors of
Aj. Then, again from Lemma 196, we have that there exist A;; € M(r,r) and A5 € M (r,n —r)
such that
rank A; = rank [ A Aqs ] =rank A

Then the square r x r matrix A;; contains r linearly independent vectors. Then from Proposition
228, the result follows.
2.
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By Assumption, up to reordering of rows, which do not change either row rank A or rank A,

s r n—r—s
A =
T A A Ass
m—rT A21 A22 A23

with
rank Aq; = 7.

Then from Proposition 228, row, and column, vectors of Ajs are linearly independent. Then
from Corollary 175, the r row vectors of

[An A1z A13]

are Li.

Now suppose that the maximum number of Li. row vectors of A are r’ > r (and the other m —r’
row vectors of A are linear combinations of them). Then from part 1 of the present proof, rank
A =171’ > r, contradicting the assumption. m

Remark 233 From Corollary 4.7 and the above Proposition, we have for any matriz Amxn, the
following numbers are equal:
1. rank A :=greatest order of square nonsingular submatrices of A,
dim row span A4,
dim col span A
row rank A := max number of linear independent rows of A,
colrank A := max number of linear independent columns of A.

Cuds Lo de

5.5 Exercises

Problem sets: 9,10
From Lipschutz (1991), starting from page 115:
413, 4.14;
starting from page 258:
7.1 — 7.10, 7.14 — 7.16, 7.44, 7.48.



Chapter 6

Linear functions

6.1 Definition

Definition 234 Given the vector spaces V' and U over the same field F', a functionl : V — U is
linear if

1. Yo,weV,l(v+w)=1(v)+1(w), and
2. Vae F,YveV,l(aw)=al(v).

Call L (V,U) the set of all such functions. Any time we write L (V,U), we implicitly assume
that V and U are vector spaces on the same field F.

In other words, [ is linear if it “preserves” the two basic operations of vector spaces.

Remark 235 1. [ € L(V,U) iff Vo,w € V and Vo, 5 € F,l (av + fw) = ol (v) 4+ Bl (w);
2. Ifl e L(V,U), then1(0) = 0: for arbitrary x € V, 1(0) =1(0x) =0l (x) = 0.

Example 236 Let V and U be vector spaces. The following functions are linear.
1. (identity function)
L:V =V, li (v) =wv.

2. (null function)
lh: V—=U, o (v) =0.
Ya € F, lo: V-V, lo (v) = av.

4. (projection function)
Vn e N,Vk € N,

. k . n+k n
Projatin : RYF =R, projuiwm  (2i);2) = (2i)i2; s

5. (immersion function)
Vn e N,Vk € N,

Gk R = RYTE g (@) = (), ,0) with 0 € R
Example 237 Taken A € M (m,n), then
[:R* -R™, [(z)=Ax
s a linear function, as shown in part 8 in Remark 76.

(0]
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Example 238 Let V' be the vector space of polynomials in the variable t. The following functions

are linear
1. The derivative defines a function DD : V — V as

D:p—p

where p’ is the derivative function of p.
2. The definite integral from 0 to 1 defines a functioni:V — R as

1
i:p|—>/ p(t)dt.
0

Proposition 239 Ifl € L(V,U) is invertible, then its inverse [~ is linear.

Proof. Take arbitrary u,u’ € U and a, 8 € F. Then, since [ is onto, there exist v,v" € V such
that
[l(wv)=u and [(¥) =1

and by definition of inverse function
7' (w)=v and [71(u)=0".

Then
au+ Bu’ = al (v) + Bl (V') =1 (av + o)

where last equality comes from the linearity of [. Then again by definition of inverse,

™ (qu+ Bu)) = av+ Bv' = al ™ (u) + BI7H ().

6.2 Kernel and Image of a linear function
Definition 240 Assume thatl € L(V,U). The kernel of I, denoted by kerl is the set
{fveV:l(w)=0}=1"1(0).
The Image of 1, denoted by Im1 is the set
{ueU:3weV such that f (v) =u}=1(V).

Proposition 241 Givenl € L(V,U), then
1. kerl is a vector subspace of V, and
2. Im1 is a vector subspace of U.

Proof. 1.
Since [ (0) = 0, then 0 € kerl.
Take v',v2 € kerl and o, 3 € F. Then

l (ozv1 + BUQ) = al (Ul) + Bl (v2) =0
ie., aw' 4 Bv? € kerl.
2

Since 0 € V and [ (0) = 0, then 0 € Im/.
Take w!,w? € Iml and «, 3 € F. Then for i € {1,2} , Jv’* € V such that [ (v’) = w;. Moreover,

aw' + pw? = al (v;) + Bl (v?) =1 (aw' + pv?)
ie., aw! + fw? € Iml. =

Proposition 242 If span ({v',...,v"}) =V and l € L (V,U), then span ({l (vi)}:zl) =1Im .
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Proof. Taken u € Tm I, there exists v € V such that [ (v) = u. Moreover, 3 (a;);_, € R" such
that v = 3" | a;v’. Then

u=1w)=1 (Zaﬂﬁ) = Zail (Ui) )
i=1 i=1
as desired. ®m

Remark 243 From the previous proposition, we have that if {Ul, ...,v"} is a basis of V', then

n

n > dimspan ( {1 )V ) = dimIml.
=1

Example 244 Let V the vector space of polynomials and I® : V. — V, p s p'”, i.e., the third
deriwative of p. Then
ker D® = set of polynomials of degree < 2,

since D* (at? 4 bt + c) = 0 and D? (t") # 0 for n > 2. Moreover,
ImD? =7V,
since every polynomial is the third derivative of some polynomial.

Proposition 245 (Dimension Theorem)IfV is a finite dimensional vector space andl € L (V,U),
then
dimV = dimker! + dimIm!

Proof. (Idea of the proof.

1. Using a basis of ker! (with n; elements) and a basis of Im! (with ny elements) construct a
set with nq 4+ ng elements which generates V.

2. Show that set is linearly independent (by contradiction), and therefore a basis of V, and
therefore dim V' = ny + ns.)

Since ker! C V and from Remark 243, ker! and Im/{ have finite dimension. Therefore, we can
define n; = dimker! and ny = dimIm/{.

Take an arbitrary v € V. Let

{w',..,w™} be a basis of kerl (6.1)
and
{u',..,u™} be a basis of Im! (6.2)
Then, ' _ '
Vi€ {l,..,n2}, ' €V such that v’ =1 (v') (6.3)
From (6.2),
)
Je = (¢;);2, such that [ (v) = Z ciu’ (6.4)
i=1

Then, from (6.4) and (6.3) ,we get
1 (v) = i ciu' = i cil (v')
i=1 =1
and from linearity of I
YRS TIN5 0y N1 O Y
i=1 i=1 =1

ie.,

nao
v— Z civ' € kerl (6.5)
i=1
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From (6.1),
no ni
3 (dj)?:1 such that v — Z cvt = Zdjwj
i=1 j=1
Summarizing, we have
no ) ni )
Vv € V.3(ei);2, and (d;);1, such that v = Z:cz-vZ + Zdjw]
i=1 =1

Therefore, we found n; + ny vectors which generate V; if we show that they are 1 .i., then, by
definition, they are a basis and therefore n = nj + ng as desired.
We want to show that

no ni
S+ Bl =0 = ((ai);zl , (,Bj);il) —0 (6.6)
i=1 j=1
Then
na ) ny ) ng ) ni )
0=1 Zaivl—i—Zijj :Zail(vl)—i—Zle (wj)
i=1 Jj=1 i=1 j=1

From (6.1), i.e., {w',..,w™ } is a basis of ker[, and from (6.3), we get

no
E ;U = 0
=1

From (6.2), i.e., {u',..,u"} be a basis of Im{,
()72, = 0 (6.7

But from the assumption in (6.6) and (6.7) we have that
ni )
> B! =0
j=1
and since {wl, . w”l} is a basis of ker [, we get also that
ni
(ﬁj)jZI = 0,

as desired. m

Example 246 Let V and U be vector spaces, with dimV = n,.
In 1. and 2. below, we verify the statement of the Dimension Theorem: in 3. and 4., we use
that statement.
1. Identity function idy .
dimImidy =n
dimker{ = 0.

2. Null function 0 € L(V,U)
dimIm0 =20
dimker 0 = n.
3. 1€ L(R%R),
I ((z1,22)) = x1.

Since kerl = {(z1,22) € R? : &1 = 0}, {(0,1)} is a basis' of kerl and

dimkerl =1,
dimIml=2-1=1.

1Tn Remark 324 we will present an algorithm to compute a basis of kerl.
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4. le L(R%R?),

Ty
1 2 3
l(($1,$2,$3)) - |: 0 1 0 :| T2
x3
Defined
1 2 3
A= [ 01 0 } ’
since

Iml = {y € R*: 3z € R? such that Az =y} = spancol A =rank A,

and since the first two column vectors of A are linearly independent, we have that

dimIm! =2
dimker{=3-2=1.

Exercise 247 Let | € L(R? R3) such that

T xcosf —ysinf
Il v — xsin @ + y cos 6
z z

be given. Find kerl and Im[ (Answer: kerl = {0}; Im [ = R3).

6.3 Nonsingular functions and isomorphisms

Definition 248 [ € L(V,U) is singular if Jv € V\ {0} such that I (v) = 0.

Remark 249 Thus !l € L(V,U) is nonsingular if Vv € V\{0}, [ (v) # 0 i.e., kerl = {0}. Briefly,
le L(V,U) is nonsingular < kerl={0}.

Remark 250 In Remark 287, we will discuss the relationship between singular matrices and sin-
gular linear functions.

Example 251 1. Let | € L(R3,R3) be the projection mapping into the xy plane, i.e.,

l: R3 — R3

x x

Y = Y

z 0

Then [ is singular, since for any a € R, 1(0,0,a) = (0,0,0).
2. 1 € L(R3 R3) defined in Example 247 is nonsingular, since kerl = {0}.

Proposition 252 Ifl € L(V,U) is nonsingular, then the image of any linearly independent set is
linearly independent.

Proof. Suppose {vl, - v"} are linearly independent. We want to show that {l (vl) s ooy 1 (v")}
are linearly independent as well. Suppose

iai~l(vi) =0.
i=1

{ (iai~vi> =0.
i=1

and therefore (3, c; - v') € kerl = {0}, where the last equality comes from the fact that [ is
nonsingular. Then Z?:l a; -v* = 0 and, since {111, e v"} are linearly independent, (ai)?zl =0, as
desired. m

Then



80 CHAPTER 6. LINEAR FUNCTIONS

Definition 253 Let two vector spaces V and U be given. U is isomorphic to V if there exists a
function I € L (V,U) which is one-to-one and onto. 1 is called an isomorphism from V to U.

Remark 254 By definition of isomorphism , ifl is an isomorphism, thel is invertible and therefore,
from Proposition 239, 1~ Vis linear.

Remark 255 “To be isomorphic” is an equivalence relation.
Proposition 256 Any n-dimensional vector space Von a field F is isomorphic to F™.

Proof. Since V and F™ are vector spaces, we are left with showing that there exists an isomor-
phism between them. Let v = {Ul7 ey v"} be a basis of V. Recall that we define

er:V—F" vV

v ?

where cr stands for “coordinates”.
1. cr is linear. Given v,w € V, suppose

n n
v = E a;v" and w= E b;v’
i—1 i=1

Pl, = lal,  and  [w], = B, |

Va,B € F and Yo', v2 € V,

av + fw = aZaivi —l—ﬂZbivi = Z(aai + Bb;) v*
i=1 i=1 i=1
ie.,
[av + Buw], = a [%‘}?:1 + 8 [bi]?:u =a [v], + 8w, .
2. cr is onto. V(a);_; € R™, er (X0 aiv') = (a)};.
3. cr is one-to-one. cr (v) = er (w) implies that v = w, simply because v = Y"1, ¢r; (v) u' and
w=>y " cri(w)u'. m

Proposition 257 Let V and U be finite dimensional vectors spaces on the same field F' such that
S = {Ul, ...,v"} s a basis of V' and {ul, ...,u"} 1s a set of arbitrary vectors in U. Then there exists
a unique linear function | : V. — U such that Vi € {1,...,n}, (v’) = ul.

Proof. The proof goes the following three steps.

1. Define I;

2. Show that [ is linear;

3. Show that [ is unique.

1. Using the definition of coordinates, Vv € V, define

n
1:V—U, UHZ[U]Z-ui,
i=1
where [v]g denotes the i —th component of the vector [v]4. Recall that e, € R™ is the j —th element

. . n
in the canonical basis of R" and defined e/, := (e] ) , we have
i=1

n,t

1 if i=j

Then Vj € {1,..,n}, [v] ; = ¢}, and
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2. Let v,w €V and o, € F. Then

l(av—i—ﬂw):Z[av—&—ﬁw]g-ui:Z(a[v]g—i—ﬁ[w]iS) -ui:aZ[v]g~ui+BZ[w]g-ui,

i=1 i=1

where the before the last equality follows from the linearity of [.] - see the proof of Proposition 256
3. Suppose g € L(V,U) and Vi € {1,...,n}, g (v’) =u’. Then Vv € V,

g<v>=g<2[v1g-vi> =2 bl (v) =D _bls - =1()

where the last equality follows from the definition of /. m

Remark 258 Observe that if V. and U are finite(nonzero) dimensional vector spaces, there is a
multitude of functions from V to U. The above Proposition says that linear functions are completely
determined by what “they do to the elements of a basis”of V.

Example 259 We want to find the unique linear mapping [ : R2 — R? such that
1(1,2) = (2,3) and 1(0,1) =(1,4).
Observe that B := {(1,2),(0,1)} is a basis of R2. For any (a,b) € R?, there exist x,y € R such that
(a,b) = x(1,2) + y(0,1) = (z,2z + y),
i.e, a =x and b= 2z +y and therefore t = a and y = —2a +b. Then,
I(a,b) = 1(z(1,2) + y(0,1)) " " 21(1,2) + y1(0,1) = a(2,3) + (—2a + b)(1,4) = (b, —5a + 4b),

i.e.,

Proposition 260 Assume thatl € L(V,U).Then,
l is one-to-one < 1 is nonsingular

Proof. [=]
Take v € ker!. Then
I(v)=0=1(0)

where last equality follows from Remark 235. Since [ is one-to-one, v = 0.
[<] If I (v) =1 (w), then ! (v — w) = 0 and, since [ is nonsingular, v —w =0. =

Proposition 261 Assume that V and U are finite dimensional vector spaces andl € L (V,U) . Then,
1. | is one-to-one = dimV < dimU;
2. l1s onto = dimV > dimU;
8. 1 is invertible = dim V = dim U.

Proof. The main ingredient in the proof is Proposition 245 , i.e., the Dimension Theorem.

1. Since [ is one-to-one, from the previous Proposition, dimker! = 0. Then, from Proposition
245 (the Dimension Theorem), dimV = dimIm/{. Since Im/ is a subspace of U, then dimIml <
dimU.

2. Since [ is onto iff Im{ = U, from Proposition 245 (the Dimension Theorem), we get

dimV =dimker! + dimU > dim U.

3. [ is invertible iff [ is one-to-one and onto. m
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Proposition 262 Let V and U be finite dimensional vector space on the same field F. Then,

U and V' are tsomorphic < dimU = dimV.

Proof. [=]
It follows from the definition of isomorphism and part 3 in the previous Proposition.
[<]

Assume that V and U are vector spaces such that dimV = dim U = n. Then, from Proposition
256, V and U are isomorphic to F™ and from Remark 255, the result follows. m

Proposition 263 Suppose V and U are vector spaces such that dimV = dimU = n and | €
L(V,U). Then the following statements are equivalent.

1. 1 is nonsingular, i.e., kerl = {0},

2. 1 is one-to-one,

3. 1 is onto,

4. 1 is an isomorphism.

Proof. [1 & 2].
It is the content of Proposition 260.
[1=3]

Since [ is nonsingular, then ker! = {0} and dimker! = 0. Then, from Proposition 245 (the
Dimension Theorem), i.e., dimV = dimker! 4+ dimIm!, and the fact dimV = dimU, we get
dimU = dimIm/. Since Im! C U and U is finite dimensional, from Proposition 192, Iml = U, i.e.,
[ is onto, as desired.

[3=1]

Since [ is onto, dimIm! = dim V" and from Proposition 245 (the Dimension Theorem), dimV =
dimkert + dim V, and therefore dimker! = 0, i.e., [ is nonsingular.

[1=4]

It follows from the definition of isomorphism and the facts that [1 < 2] and [1 = 3].

[4=1]

It follows from the definition of isomorphism and the facts that [2 < 1]. m

Definition 264 A vector space endomorphism is a linear function from a vector space V into itself.

6.4 Exercises

From Lipschutz (1991), starting from page 325:
9.3, 9.6, 9.9 — 9.11, 9.16 — 9.21, 9.26, 9.27, 9.31 — 9.35, 9.42 — 9.44; observe that Lipscutz

denotes £ (V,U) by Hom (V,U).



Chapter 7

Linear functions and matrices

In Remark 65 we have seen that the set of m x n matrices with the standard sum and scalar
multiplication is a vector space, called M (m,n). We are going to show that:

1. the set L (V,U) with naturally defined sum and scalar multiplication is a vector space, called
L(V,U);

2. If dimV = n and dim U = m, then £ (V,U) and M (m,n) are isomorphic.

7.1 From a linear function to the associated matrix
Definition 265 Suppose V and U are vector spaces over a field F' and l1,lo € L(V,U) anda € F.
Lh+l:V—-U, vl (v) + g (v)

aly : V= U, v = aly (v)

Proposition 266 L (V,U) with the above defined operations is a vector space on F, denoted by
LV, U).

Proof. Exercise.! m

Proposition 267 Compositions of linear functions are linear.

Proof. Suppose V, U, W are vector spaces over a field F, 1; € L(V,U) and Iy € L (U, W). We
want to show that [ := Iy 0oly € L(V,W). Indeed, for anya,as € F and for any v',v? € V, we
have that

l (041111 + a2v2) = (lgoly) (041111 + a2v2) =1 (l1 (alvl + a2v2)) —
=1y (Ozlll (Ul) + anly (1}2)) = aqls (ll (1}1)) + anls (ll (1}2)) = ol (1}1) + anl (UQ) R
as desired. ®m

Definition 268 Supposel € L(V,U) , v = {vl, .‘.,v"} is a basis of V, u = {ul, ...,um} s a basis
of U. Then,
= Y], -~ (0], . L@ ] €Mmn), (7.1)

where for any j € {1,...,n}, [l (vj)]u s a column vector, is called the matriz representation of
relative to the basis v and u. In words, [I], is the matriz whose columns are the coordinates relative
to the basis of the codomain of I of the images of each vector in the basis of the domain of [.

Remark 269 Observe that since a basis is an order set there is a unique matrix representation of
a linear function.

IFor a detailed proof see Lipschutz (1989), page 270.

83
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Definition 270 Supposel € L(V,U) , v = {Ul, ...,v"} is a basis of V, u = {ul, ,um} 18 a basis
of U.

o2 L(V,U) —M(m,n), 1+~ [l]y defined in (7.1).

If no confusion may arise, we will denote @3 simply by ¢.

The proposition below shows that multiplying the coordinate vector of v relative to the basis v
by the matrix [I]}, we get the coordinate vector of I (v) relative to the basis u.

Proposition 271 Yv € V,

[v]
e =[], ~ @), — LeML ]| RE | =D 0BR[],
J=1
G
Moreover, from the linearity of the function cry := [.],,, and using the fact that the composition
of linear functions is a continuous function, we get:
F@ly=cra@ @) =(crao) [ D [l v | = bR (craoh) (o) = Wl [1(+7)],-
Jj=1 j=1 j=1

Example 272 Let’s verify equality (7.2) in the case in which
a.

Tl — T2

ZZRQ —>R27 (!,'617‘/132)’_> < T+ T2 )

b. the basis v of the domain of | is

c. the basis u of the codomain of 1 is

().

The main needed computations are presented below.

= Co ) LCOLI = L LA L) = 1 2)
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7.2 From a matrix to the associated linear function
Given A € M (m,n), recall that Vi € {1,..,m}, R' (A) denotes the i — th row vector of A, i.e.,
R (A)
A= | R'(A)
R™(A) | ,xn

Definition 273 Consider vector spaces V' and U with basis v = {111, e v"} and a = {ul, ...,um},
respectively. Given A € M (m,n), define

liy:V—=U v Z (R (A) - [v],) - u".

=1

Example 274 Take U =V = R?, v—Eg,u—{< } ),( ? )} and A = {(1) _23 ] Then,

o o) = S, (R ) o) = (0 =3 ][ 2 ) (3)+ (1o 21| 2 ) (F)
@ (1 ) (1)= (020 )= (0)
Proposition 275 [} | defined above is linear, i.e., I} , € L(V,U).
Proof. Yo, 3 € R and Vo!,v2 € V,
Aw (@0 +6v?) = 300, B (A) - [av! + Bo?] ol = 308, RY(A) - (a[ol], + B[07],) -u' =
=a )L RU(A)- o] cut + BT R (A) - [7] -ut = ol (v!) + BIY  (v).
where the second equality follows from the proof of Proposition 256. m

Definition 276 Given the vector spaces V and U with basis v = {vl, e v"} andu = {ul, ...,um},
respectively, define
vy : M(m,n) — L(V,U) AR

If no confusion may arise, we will denote ¥y simply by 1.
Proposition 277 i defined above is linear.
Proof. We want to show that Vo, 8 € R and VA, B € M (m,n),

Y (aA+BB) = ay (A) + B¢ (B)

ie.,
loavspa=aliy + B3,
ie,YveV,
Ioasppu () =ally, (v) +Bl5, (v).
Now,

aypBu (V) = Yoty (a- R (A)+ 8- R (B)) - [v], - u' =
=a) L R(A) -], u' + B0 RY(B) - o], - u' = al} , (v) + BlE  (v),

where the first equality come from Definition 273. m
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7.3 M(m,n) and L (V,U) are isomorphic
Proposition 278 Given the vector space V' and U with dimension n and m, respectively,
M (m,n) and L (V,U) are isomorphic,

and
dim £ (V,U) = mn.

Proof. Linearity of the two spaces was proved above. We want now to check that i presented
in Definition 276 is an isomorphism, i.e., 9 is linear, one-to-one and onto. In fact, thanks to
Proposition 277, it is enough to show that 1) is invertible.

First proof.

1. 1) is one-to-one: see Theorem 2, page 105 in Lang (1971);

2. 1) is onto: see bottom of page 107 in Lang (1970).

Second proof.

1. 1ﬁ oY = idﬁ(V,U)'

Given [ € L (V,U), we want to show that Yv € V,

L) =((op) (1) (v)

i.e., from Proposition 256,

[[(W)]y = [((¥op) () (v)],-

First of all, observe that from (7.2), we have

Moreover,
(o)1) @], & [¥ (12) )], @[S0, (i — th row of [II%) - [v], ', =

= [(i — th row of [I]}) - [v]v]n @ 15 - [l

i=1
where (1) comes from the definition of ¢, (2) from the definition of ¢, (3) from the definition of
[.]4» (4) from the definition of product between matrices.
Given A € M (m,n), we want to show that (¢ o) (A) = A. By definition of %,
m
Y (A) =14y such that Yo € V., I} | (v) = ZRi (A) - [v], - u". (7.3)
i=1

By definition of ¢,

u

e (A4)=[11,], -

Therefore, we want to show that | 37‘,]3 = A. Observe that from 7.3,

l‘};y‘,(vl) = Y™ Ri(A)[v],ut = S lair,e @iy, ain][1,...,0,...,0]-ut = apul+..taiuit....Famum
l‘A’v(vJ‘) = Xn, Ri(A)-[vi],u? = S lair,eaig,..., ain][0,...,1,...,0]-ut = apjut+. tajjuit.Famjum
15, = X, Ri(A) o], vl = Tlaitsesaijsesain] (0,001 ut = arpul4tainuitFamaum

(From the above, it is clear why in definition 268 we take the transpose.) Therefore,

a1l ayj a1n
[lA,V]V = ai1 Q5 Qin = A,
aml - Qmj .. Omn

as desired.
The fact that dim £ (V,U) follows from Proposition 262. m
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Proposition 279 Let the following objects be given.

1. Vector spaces V' with basis v = {vl,...,vj, ...,v"}, U with basis u = {ul, ol ...,um} and
W' with basis w = {wl, L wk, ...,w”};

2.1 € E(‘/,U) and ls € E(U,W)

Then

[12 o 11]3 = [12]:: : [l1]3 )
or
oy (laol) = ¢y (l2) - ¢y (I1) -

Proof. By definition?

Ly =[ [ ()], « @), « L], ., =

R I (2 R F N 1) L A
=1 U '('{;1) 15 (v7) By | =] 1y | =
) () (o) A A A (A

=AeM(m,n),

and therefore Vj € {1,...,n}, I (v7) = 3" 19 i,

Similarly, =
Ly =[ ()], - [L@)], ~ L], =
B) o B() 1™ B
= ) B mem) = g | =
) e B(w) . () g e

.....

and therefore Vi € {1,...,m}, Iy (u’) = > 7_ 15" - wh.
Moreover, defined [ := (I3 0ly), we get

lpolly =] [1(vY)], - [T@)], - @], ] =

pxn
1" (vh) 1" () I (o) M 1 [in

o G R (O R O I N R L
17 (vt) P (v7) 1P (v™) Pl 1pi Pn

=[] i pbe oy = C €MD),

and therefore Vj € {1,...,n}, 1 (v/) = Y0 _; I¥ - wk.
Now, Vj € {1,...,n}

(W) = (o) () = o (1 () =1 (S 1 o) =

217'11 lzij 1o (uz) = Z:il lij : i:l llzci cwh = Ziﬂ ZZ’Ll 112“ ) lij -wh.

2l (0h)],, 5 [l (v™)], -are column vectors.
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The above says that Vj € {1,...,n}, the j — th column of C' is
21'11 l%i ’ lij
2211 l]2€i ’ lij
Z;ﬂ:l lgi ’ lij

On the other hand, the j — th column of B - A is

— li] -
R L N B

mj
Iy

[Lst row of B] - [j — th column of A] I S gt

[k — th row of B]-[j — th column of A] | = [ k]| =| 3 ik

[p — th row of B]-[j — th column of A] 1 S

1

1j
b

S A A I i

mj
h

as desired. m

7.4 Some related properties of a linear function and associ-
ated matrix
In this section, the following objects will be given: a vector space V with a basis v = {vl, e v”};

a vector space U with a basis u = {u!,...,u"}; 1 € L(V,U) and A € M (m,n).
From Remark 149, recall that

colspan A ={z € R™:3 z € R" such that z = Azx};
Lemma 280 cry (Im!) = colspan [I]}.

Proof. [C]
y € cry (Iml) 1L 3y € Tm1 such that cry (u) =[ul, =y 4Ll 3 € V such that l(v) =u=

Jv € V such that [l (v)], =y Props 271
2]
We want to show that y € colspan[l]} = y € cry (Iml), i.e., Ju € Im! such that y = [u],,.

Jv € V such that [I]; - [v], =y = y € colspan [I].

y € colspan [I]) = Jz,, € R"™ such that [l -z, =y 1L 3y = >y @y ;07 such that [1]y-[v], =
Y ProRs 2Tl 30 € V such that LW],=vy “=*) 34 € Im1 such that y = [u],, as desired. m
Lemma 281 dimIm! = dim colspan [I], = rank [I]}.

Proof. It follows from the above Lemma, the proof of Proposition 256, which says that cry is
an isomorphism and Proposition 262, which says that isomorphic spaces have the same dimension.
|

Proposition 282 Givenl € L(V,U),

ij
'll

j
'll
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1. 1 onto < rank [I]} = dim U;

2. 1 one-to-one < rank [I]} = dim V;

invertible, and in that case [l’l]z = [[10y] 71,

3. 1 invertible < [1]%

v

i.e.,

Proof. Recall that from Remark 249 and Proposition 260, [ one-to-one < [ nonsingular <
kerl = {0}.

1. lonto & Iml = U < dimIm! = dim U " **' rank [|¥ = dimU.

Proposition 245 Lemma 281
=

2. [ one-to-one dimIm!/=dimV & " rank [l =dimV.

3. The first part of the statement follows from 1. and 2. above. The second part is proven
below. First of all observe that for any vector space W with basis w, idy € £ (W, W) and if
W has a basis w = {wl7 ..,wk}, we also have that

lidw]w = [[idw (w")], .- [idw (w*)] ] = Ik

Moreover, if [ is invertible
[Tt ol =idy

and
(171 ol]) = [idy]y = Im.

Since
LY M [ MR

the desired result follows.
| ]

Remark 283 From the definitions of ¢ and v, we have what follows:
1.

L= ()= (1Y) =l

A=pW(A) =¢(5y) =[],
Lemma 284 cry (Im lj,v) = colspanA.
Proof. Recall that ¢ (1) = [I]; and ¢ (A) =14 ,. For any I € L(V,U),

Lemma 280 u Def_. 270

col span [] =" colspan ¢ (I) (7.4)

cry (Im1) v

Take [ = [} ,. Then from (7.4) ,we have

u ) Rmk._283.2

cry (ImlY ) = colspan o (1% , colspan A.

|
Lemma 285 dimIm!} , = dimcolspanA = rankA.
Proof. Since Lemma 281 holds for any | € £(V,U) and I} |, € £L(V,U), we have that

u Rmk. 283.2
v =

Rmk. 233.
s rank A.

dimIm/} , = dim col span [l;‘hv] dim colspan A
]

Proposition 286 Let A € M (m,n) be given.
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1. rankA=m & %)y onto;

2. rankA = n < [} , one-to-one;

3. Ainvertible < 13 , invertible, and in that case I}, |, = (l37‘,)71 .

Lemma 285
<~

Proof. 1. rankA =m dimImly , =m < 1} | onto;

(G Proposition 260
2. rankA =n < dimker{4 , =0 & 1, one-to-one,

where (1) the first equivalence follows form the fact that n = dimker I3y +dimIml} ,, and
Lemma, 285. Pron. 298 1
3. First statement: A invertible %% rankA =m =n ' "1&" A,y invertible.

Second statement: Since [} , invertible, there exists (lj)v)fl : U — V such that

idV = (l:f}?v)il o lz,v'

Then v /- Prop. 279 u -1 u /1 Rmk. 283 u -1
I= Py (’Ldv) = Pu ((ZA,V) ) " Py (lA,v) = Pu (( A,v) ) - A.

Then, by definition of inverse matrix,

Y A
and . . .

Un (A1) = (Wi oed) ((lfx,v) ) = idew) ((lfx,v) ) =) -
Finally, from the definition of 1},, we have
vu (A7) = Ui

as desired. ®
Remark 287 Consider A € M (n,n). Then from Proposition 286,

A invertible < 13 |, invertible;

from Proposition 228,
A invertible < A nonsingular;

from Proposition 263,
Ay tnvertible < 1y | nonsingular.

Therefore,
A nonsingular < I3 , nonsingular.

Symmetrically,
[l]s invertible < [l]y nonsingular < 1 invertible< | nonsingular.

Proposition 288 Let | € L(V,U) be given. Then there exists a basis V of V and a basis U of U

such that ;
u _ 0
[Z]V - |: 0 0 :l )

where I is the r-square identity matriz and r = rank[l)%.

Proof. Suppose dimV = m and dimU = n. Let W = kerl and U’ = Iml. By assumption,
rank[l)¥ = r. Then, by Lemma 281,

dim I'ml = rank[l]% = r.
Therefore, from the Dimension Theorem

dimker =dimV —dimIml =m — r.
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Let W = {w!,..,w™ "} be a basis of W. Then, from the Completion Lemma, there exists
{vl,.j.,v’"} € V such that V := {vl, L om wh . w™ "} s a basis of V. For any i € {1,...,r},
set u® = I(v*). Then, U, ...,u"} is a basis of U’. Then, again from the Completion Lemma, there

exists {u"*!,...,u"} € U such that U := {u',...,u",u" 1 ..., u"} is a basis of U. Then,

ie.,

Tul +0u? + ...+ 0u” + 0u" 1 + ... 4+ 0u”,
20wt + 1+ 0um 0w 4 0,
(") =u” = 0ul + 0u? + ... + 1u" + 0u" ! + ... + Ou”,
I(wh) =0=0u" +0u®+ ... + 0u” + 0u" T + ... 4+ 0u™,

o O
| I

7.5 Some facts on £ (R",R™)

In this Section, we specialize (basically repeat) the content of the previous Section in the important

case in which

and therefore

V =R", v = (e%)?zl =e,
U=R" u= (efn)?il =eny
v=2a
le L(R",R™).

From £ (R",R™) to M (m,n).
From Definition 268, we have

wer = [ e, - B, -~ [E, | =

from Definition 270,

=g LR",R™) = M(m,n), [+ ][l];

from Proposition 271,

From M (m,n) to £ (R™,R™).
From Definition 273,

(7.7)
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From Definition 276,

Y=g : M(m,n) — L (R",R™) A g,

en
From Proposition 278,
M (m,n) and £ (R™,R™) are isomorphic.
From Proposition 279, if [; € £(R™,R™) and I, € £ (R™,RP), then
[l2 0 l1] = [I2] - [la] - (7.10)

Some related properties.

From Proposition 282, given [ € £ (R™,R™),

1. [ onto < rank [l] = m;

2. [ one-to-one < rank [I] = n;

3. l invertible < [I] invertible, and in that case [I7!] = [[]
From Remark 283,

1.

-1

L=4(e) =¢{l]) =l

A= (A) =¢(a) = [la].

From Proposition 286, given A € M (m,n),
1. rankA = m < 4 onto;
2. rankA = n < 4 one-to-one;

3. A invertible < I invertible, and in that case [4—1 = (I4) "

Remark 289 From (7.7) and Remark 149,
Imil:={y e R™: 3z € R" such that y =[] - ©} = colspan [I]. (7.11)
Then, from the above and Remark 233,
dimIm! = rank [I] = max# linearly independent columns of [I] . (7.12)
Similarly, from (7.9) and Remark 233, we get
Imly :={y € R™: 3z € R" such that y =14 - © = Ax} = colspan A,

and
dimIm!l4 = rank A = max# linearly independent columns of A.

Remark 290 Assume that | € L (R™,R™). The above Remark gives a way of finding a basis of
Tml: it is enough to consider a number equal to rank [I] of linearly independent vectors among the
column vectors of [l]. In a more detailed way, we have what follows.

1. Compute [1].

2. Compute dimIm! = rank [[] :=r.

8. To find a basis of Iml, we have to find r vectors which are a. linearly independent, and b.
elements of Iml. Indeed, it is enough to take r linearly independent columns of [l]. Observe that
for anyi € {1,...,m}, C*([I]) € Iml = colspan [I].

To get a “simpler” basis, you can make elementary operations on those column. Recall that
elementary operations on linearly independent vectors lead to linearly independent vectors, and that
elementary operations on vectors lead to vector belonging to the span of the set of starting vectors.

Example 291 Given n € N with n > 3, and the linear function
Z?:l Ti

LR 5 R 2= ()], — { T2
To + X3



7.6. EXAMPLES OF COMPUTATION OF [L]9 93

find a basis forIm (.

1.
1 1 11 1
fl=({0 1 0 0 0
0 1 10 0
2. Since
1 1 1 [0 1 17 0 0 1
rank | 1 0 O | =rank| 1 0 O |O=rank| 1 0O O [ =3
1 10 0 1 0 0 1 0

3. A basis of Iml, is given by the column vectors of

1 11
1 0
1 10

Remark 292 From (7.7), we have that
kerl ={z e R": [[]z =0},

i.e., ker [ is the set, in fact the vector space, of solution to the systems [[|z = 0. In Remark
324, we will describe an algorithm to find a basis of the kernel of an arbitrary linear function.

Remark 293 From Remark 289 and Proposition 245 (the Dimension Theorem), givenl € L (R"™,R™),
dimR" = dimker! + rank [I],

and given A € M (m,n),
dimR"™ = dimker 4 + rank A.

7.6 Examples of computation of [I]
1 ide L(V,V).
lid]y = [[éd (01)] s [id (v7)] s o id (0] ] =
=[[v']y e V7] s 7)) = [Ehs o€l s en] = T
2.0e L(V,U).

3. lo € L(V,V), with w € F.

]y = [[a- vl]v e [ vﬂv s [a "] ] = [ [vl]v R [vj]v s "] =

el L a-el

ni —
n,...,a-en] =a-I,.

4. 14 € L(R™,R™), with A € M (m,n).

[la] = [A-e,lz,...,A-eZ'L,...,A-eZ] =A- [el el e"} =A-I,=A.

ny o Cny- €

5. (projection function) proj,ikn, € £ (R"+k,R”) , Projntkn : (xi)?jlk — (2;);_, - Defined
DPTrOJn+k,n := P, We have

[p] = [p (e}LJrk) oD (eZJrk) ) (eZLi) ey P (621:)] = [6711, vyl 0,y 0] = [I,,]0],
where 0 € M (n, k).
6. (immersion function) iy .4 € £ (R™,R"TF), btk t (2)iey — ()1, ,0) with
0 € R*.Defined Itk 1= % We have
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where 0 € M (k, n).

Remark 294 Point 4. above implies that if | : R™ — R™, x> Az, then [[| = A. In other words,
to compute [l] you do not have to take the image of each element in the canonical basis; the first
line of [1] is the vector of the coefficient of the first component function of I and so on. For example,
if | : R? — R3,
anT1 +  a1222
T a1+ a2r2
az1r1  +  a3ex2

then
a1 a2
=1 a2z a2
azi1 as2

7.7 Exercises

Problem sets: 15,16,17,18,19,21,22.
From Lipschutz (1991), starting from page 352:
10.1 — 10.9, 10.29 — 10.33.

7.8 Appendices.

7.8.1 The dual and double dual space of a vector space
The dual space of a vector space

Definition 295 The® dual space of a vector space V is
V= L(V,R).
Remark 296 From Proposition 278, we have that if dim 'V is finite, then dim V* = dim V.
Definition 297 The Kronecker delta is a function defined as follows
1 if i=j

§:N*—={0,1},  (i,j) = 6 =
0 otherwise.

Proposition 298 Let V be a finite dimensional vector space over a field Fand let V = {vi}?zl be
a basis for V.Then,

1. there exists a unique basis V* = {l;};—, for V* such that Vi,j € {1,...,n}, l; (v7) = §;;, i.e.,
(l (v) 1=y = €hs

2.

n

VieVv s f=3".f (”l) iy dee, [flype = (f (vi))izl’

i.e., the coordinates of f with respect to V*are the images via f of the elements of the basis V, and
3.

Vv € ‘/7 v = Z?:l lz (U) ’ /Ui7 (R [U]V = (lz (’U))?:p

i.e., the coordinates of v with respect to V are the images of v via the elements of the basis V.

3Here I follow pages 98 and 99 in Hoffman and Kunze (1971).
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Proof. 1. From Proposition 257, we have that given a basis V = {U } for V,
Vie{l,...,n}, 311, € V* such that Vj € {1,....,n}, I (vj) = dij.

We are left with showing that {l;}]_, is a linearly independent and the therefore a basis of the
n dimensional vector space V*. We want to show that if >°"" | a;l; = 0, then (o), = 0, i.e., if
Yo € V, Y ail; (v) = 0, then (o;)!; = 0. Then, Vj € {1,...,n}, 0 = 31", o;l; (v7) = a, as
desired.

2. Take f € V*; then , since V* = {[;},_; is a basis for V*, 3 (3;)i.; € R" such that
f = Z:’l:l B@lz Then,

Yol €V, f(vf) Zﬁl

as desired.
3. Take v € V; then , since V = {v'} _ is abasis for V, 3 (v,)i_; € R" such that v = 31" | 7,0’
Then,

eV, (v th =
as desired. m

Definition 299 Let a basis V = {U } for V' be gwen. The unique basis V* = {l;}.—_, for V*
such that Vi,j € {1,...,n}, ; ( ) = 04515 called the dual basis of V.

Corollary 300 IfV* is the unique dual basis of V = {vi}:zl, defined 1 : V — R"™, v (I; (v))i_; ,
we have that
N5 =1eM(n,n).
Proof. [I|5 == [l (v!),...l(v")] =1. m
The double dual space of a vector space

Question. Take! a basis V*of V*. Is V*the dual basis of some basis V of V? Corollary 306 below
will answer positively to that question.

Definition 301 The double dual V**of V is the dual space of V* i.e.,
V= (V" =L (V5 R).
Remark 302 IfV has finite dimension, then
dimV =dim V* = dim V**.
Proposition 303 For any v € V, the function
L,:V* =R, fr ()
is linear, i.e., L, € V**.
Proof. For any o, 5 € I, f1, fo € V*,
Ly (afy + Bf2) = (afi + Bf2) (v) = afi (v) + Bf2 (v) = Ly, + Ly,
|
Proposition 304 Let V be a finite dimensional vector space. Then
p: V=V v L,

s an isomorphism.

4Here I follow pages 107 and 108 in Hoffman and Kunze (1971).
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Proof. Step 1. ¢ is linear.
For any «, 8 € F, v1,v2 € V,by definition of ¢,

4 (Owl + ﬁ'UQ) = Lam—i—ﬁvzv

and
ap (v1) + B (v2) = aLy, + BLy,.
Moreover, Vf € V*,

Laws 460, (f) = f (avr + Bva) "€ af (01) + BF (v2) =5 Ly, + BLy,.

Step 2. ¢ is nonsingular.

We want to show that kerp = {0}, i.e,, (v #0= ¢ (v):=L, #0), i.e,, Yo # 0, If € V*
such that f(v) # 0.Take a basis V = {v,vi}Z;Qof V. The existence of such a basis is insured
by Proposition 191 . Then, from Proposition 298, there exists a unique dual basis V* = (I;);_,
associated with V; and I (v) =1 # 0.

Step 3. Desired result.

From Remark 296, n = dimV = dimV™* = dim V**. Then, from Proposition ??? 281 77 my
EUI notes, since ¢ is nonsingular, it is invertible and therefore an isomorphism. m

Corollary 305 Let V' be a finite dimensional vector space over a field F. If L € V**, then 3|
v eV such thatVf e V*, L(f) = f (v).

Proof. Such v is just ¢ (L). m

Corollary 306 Let V' be a finite dimensional vector space over a field F. Any basis of V* is the
unique dual basis of some basis of V.

Proof. Take a basis {l;}.—_; of V*. From Proposition 298, there exists a unique basis {L;}._,
of V**such that

Then, from the previous Corollary,
Vi€ {1,...,n},3 W' € V such that Vf € V*, L;(f) = f (v;). (7.14)

Now, from the definition of L,:, we have

VeV Lu(f)=7f(v). (7.15)
Then, from (7.14) and (7.15) ,we get
Li = L. (7.16)
Then,
_ (7.16) _ i
e (Li) =7 o (L) = 0,
where the last equality follows from Proposition 304. Since {Li}?zl is a basis of V** and
¢ is an isomorphism, then from Proposition 252, {vi}z;l is a basis of V.Moreover, from (7.14),
fi (v = Li (f))) (7.13) 8;j, and then, by definition , {l;}!_, is the unique dual basis associated with
{viti,. =
A sometimes useful result is presented below.

Proposition 307 If V is a vector space of dimension bigger than n, for any i € {1,..,n}, l; €
L(V,R) > and {l;};—, is a linearly independent set, then 1 : V — R™ v (l; (v))i_, is onto.

Proof. Take an n dimensional vector subspace V' of V. From Corollary 306, there exists a
basis V = {0’} of V’ such that {l;};, is its unique associated dual basis. Then, by definition
of dual basis, for any i € {1,...,n}, | (v') = €. Therefore, for any z € R",

n n
il _ i _
l E 0t | = E xie;, =,
i=1 i=1

as desired. m

5L (V,R) is the vector space of linear functions from V to R.
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7.8.2 Vector spaces as Images or Kernels of well chosen linear functions
This section is preliminary and incomplete.
Proposition 308 If L is a vector subspace of RS of dimension A, then

1. a. Ay €L (RS,Rsz) such that kerly = L;
b. 3o € ¥ and IE € M (S — A, A) such that

(W] = [Ig—a|lE]- P, e M(S —A,S);
c. E=1, (L) where ¢, is a chart of an atlas of Gs, a.

2. a. Jly € L (R, R5) such that Imly = L;
b. 0

and, therefore, if o = id,

—-F
= | 77 |
Ta Jgxa
3.
-F
L =[Is_4|E)- P, = ImP, { }
Taxa
Moreover,

4. Let M, M’ € M7 (S —A,S) be given. Then
ker M = ker M’ < there exists B € M/ (S — A, S — A) such that M’ = BM.

5. Let Y,Y' € M/ (S, A) be given. Then
ImY =ImY’ & there exists a unique C € MY (A, A) such that Y' =Y C.

Proof. 1.
Take a basis {I!,..I*} C RS of L. Define

ll
cC=1 .. ,
lA
SxA
where the vectors are taken to be row vectors. By definition of basis, rank C' = A. From the
Dimension Theorem, dim RS = dim Imlc+dimker o and S = A+dimker ¢, or dimkerlc = S—A.
Let {k',...,k5~4} C RS be a basis of kerlc. Then, Vs € {4,...,5 — A}, Ck* =0, and

Vael,.. , AVse{l,..,.5—A}, 1" k° =0,

i.e.,

L= (kerlc) . (7.17)
Define 1
M =
kA (S—A)xS

6Recall that Vo € &,
P _1 =P =PI

"We are using the obvious fact that:
Two vector spaces V and W are orthogonal iff each each element in a basis of V' is orthogonal to each element in

a basis of W.
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By definition of basis, rank M = .S — A. Moreover, from the fact that {k:l, e k:S_A} C R® be
a basis of ker ¢ and from (7.17), we have that
L={zeR%:Vse{l,..,S— A}, k* 2 =0} ={z e RY: M -2 =0} =kerly.

2.
a. Let {11“}2‘:1 be a basis of L C R, Take l; € £ (R4, R¥) such that

Va € {1,..., A} 15 (e%) = v,

where €9 is the a—th element in the canonical basis in R#. From a standard Proposition in
linear algebra®, such function does exists and, in fact, it is unique. Then, from the (linear algebra)
dimension theorem

dimImly = A — dimkerily < A.

Moreover, L = span {v“}f:1 C Iml, and dim L = A. Therefore dimImils = A,and L = Imls, as
desired.
b. From Step 2a above, and by definition of [l3], we have that

[l2] = [vl, T ...,UA] e M(S,A),

where {U“}f:1 is a basis of L and the vectors v® are written as column vectors. Therefore, we
are left with finding a basis of L = ker [Ig_4|E] - P,, which we claim is given by the A column
vectors of

—-F
Py ;
' [ Taxa }
a fact which is proved below:

i. The vectors belong to ker [Is_4|E] - P,:

[I|E]-P, P, { _IE ] = [I|E]- { _IE ] =0.

ii. the vectors are linearly independent:

rankP_ 1 [ _IE } O rank [ _IE } = A,

where (1) follows from Corollary 7, page 10 in the 4-author book.

3.

It is an immediate consequence of 2. and 3. above.

4.

See Villanacci and others (2002), Proposition 39, page 388, or observe what follows
(=]

From, say, Theorem on page 41, in Ostaszewski (1990)?, we have that
(ker Y)* =ImY 7,

(this result is proved, along other things, in my handwritten file some-facts-on-Stiefel-
manifolds-2011-10-12.pdf
and therefore, using the assumption

ker YT = (ImY)* = (ImY”)" = ker(Y")”.
Then, from part 3 in the present Proposition,

there exists B € MY (A, A) such that Y7 = BYT.

8Let V and U be finite dimensional vectors spaces such that S = {vl,...,v”} is a basis of V and {ul, ,u"}

is a set of arbitrary vectors in U. Then there exists a unique linear function ! : V' — U such that Vi € {1,...,n},
l (v’) = u® - see my math class notes, Proposition 273, page 82.

9Ostaszewski, A., (1990), Advanced mathematical methods, London School of Economics Mathematics Series,
Cambridge University Press, Cambridge, UK
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and , R
Y =YBT,

and it is then enough to take C = B7.

(<]

ImY CImY’ : w € ImY = 3z € R® such that w =Yz = Y'Cz = 32/ = Cz € R4 such that
w=Y"72 < weImY'

ImY’ C ImY : w' € ImY’ = 32/ € R4 such that w’ = Y'2 = Y'CC~ 12 = YC 12 = 3z =
C~1z € R4 such that w’ = Yz < w' € ImY.

Uniqueness. Since Y € M/ (S, A), there exists ¢ € ¥ (S) such that P,Y = {

*

? :|, with

Y/*
Y* € M7 (A, A). Define also P,Y' = [ v ] Then, premultiplying Y’ = YC by P,, we get

Y*=Y*Cand C =Y* 1Y m
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Chapter 8

Solutions to systems of linear
equations

8.1 Some preliminary basic facts
Let’s recall some basic definition from Section 1.6.
Definition 309 Consider the following linear system with m equations and n unknowns

anxi + -+ a1pTn = by

Am1%1 + -+ A @p = bm

which can be rewritten as
Az =D

Apxn 18 called matriz of the coefficients (or coefficient matriz) associated with the system and
Myx(nt1) = [ A | b ] 18 called augmented matriz associated with the system.

Recall the following definition.
Definition 310 Two linear system are said to be equivalent if they have the same solutions.
Let’s recall some basic facts we discussed in previous chapters.

Remark 311 It is well known that the following operations applied to a system of linear equations
lead to an equivalent system:
I) interchange two equations;
II) multiply both sides of an equation by a nonzero real number;
III) add left and right hand side of an equation to the left and right hand side of another equation;
IV) change the place of the unknowns.
The transformations 1), I1), III) and IV) are said elementary transformations, and, as it is well
known, they do not change the solution set of the system they are applied to.
Those transformations correspond to elementary operations on rows of M or columns of A in
the way described below
I) interchange two rows of M ;
IT) multiply a row of M by a nonzero real number;
III) sum a row of M to another row of M ;
1V) interchange two columns of A.
The above described operations do not change the rank of A and they do not change the rank of
M - see Proposition 220.

Homogenous linear system.

101
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Definition 312 A linear system for which b =0, i.e., of the type
Az =0
with A € M (m,n), is called homogenous system.

Remark 313 Obviously, 0 is a solution of the homogenous system. The set of solution of a homo-
geneous system s kerla. From Remark 293,

dimkerly = n —rank A.

8.2 A solution method: Rouché-Capelli’s and Cramer’s the-
orems
The solution method presented in this section is based on two basic theorems.
1. Roucheé-Capelli’s Theorem, which gives necessary and sufficient condition for the existence of
solutions;
2. Cramer’s Theorem, which gives a method to compute solutions - if they exist.

Theorem 314 (Rouché — Capelli) A system with m equations and n unknowns

Ansxnt =0 (8.1)
has solutions
<~
rank A=rank [ A | b |
Proof. [=]

Let x* be a solution to 8.1. Then, b is a linear combination, via the solution z* of the columns
of A. Then, from Proposition 220,

rank [ A | b]=rank [A | 0 ]=rank [ A ].

(<]
1st proof.
We want to show that

Jz € R” such that Az* = b, i.e., b= Zx; -C7 (A).
j=1

By assumption, rank A = rank [ A | b ] := r. Since rank A = r, there are r linearly
independent column vectors of A, say {CJ (A)}jeR’ where R C {1,...,n} and #R =r.

Since rank [ A | b ]| =7, {C (A)}jeR U {b} is a linearly dependent set and from Lemma
196, b is a linear combinations of the vectors in {C7 (4)} i.e, 3(zj)cpsuch that b=3"  px;-
C7 (A) and

JjER’

b= z;-CT(A)+ > 0-Cy(A).

jeR Jefl, n}\R
Then, z* = (:1:;)2;1 such that
ZL’j Zf ] €R
0 if jef{l,..n}\R

is a solution to Az = b.
Second proof.
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Since rank A :=r < min{m,n}, by definition of rank, there exists a rank r square submatrix
A* of A. From Remark 311, reordering columns of A and rows of [ A | b | does not change the
rank of A or [ A | b ] and leads to the following system, which is equivalent to Az = b:

A* A12 .’El o bl
A21 A22 3?2 - b// )
where A1 € M (r,n —71),A21 € M(m —r,7),A2s € M(m —r,n—7), 21 e R", 22 e R*" "V €
R”’7 b// G Rm7T7

(ml,xQ) has been obtained from x performing on it the same permutations performed on the

columns of A,
(b, b") has been obtained from b performing on it the same permutations performed on the rows
of A.
Since
rank[ A* A U ] =rank A* =,

the r rows of [ A A ] are linearly independent. Since

* /
rank{ AT A b }:r,

Axp Ay V'

the rows of that matrix are linearly dependent and from Lemma 196, the last m — r rows of
[A]b] are linear combinations of the first r rows. Therefore, using again Remark 311, we have that
Ax = b is equivalent to

* zt /
A Alg}[xz}_b
or, using Remark 74.2,
A*.’El + A12£L'2 = bl

and
CL’l = (A*>71 (bl — A12£L'2) eR"

while x5 can be chosen arbitrarily; more precisely
{(ml, acZ) ER": 2y = (A*)fl (v — A12x2) €R" and z, € ]R"_T}
is the nonempty set of solution to the system Az =b. m
Theorem 315 (Cramer) A system with n equations and n unknowns
A,xnxz=0>

with det A # 0, has a unique solution x = (x1, ..., T4, ..., L) where fori € {1,...,n},

= detAZ
T detA

and A; is the matrix obtained from A substituting the column vector b in the place of the i —
th column.

Proof. since det A # 0, A~ exists and it is unique. Moreover, from Az = b, we get A~!Ax =
A~1b and

r=A"1D
Moreover 1
A7 = mAdj A-b
It is then enough to verify that
det A;

Adj A-b= | detA4;

det A,
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which we omit (see Exercise 7.34, page 268, in Lipschutz (1991). m
The combinations of Rouche-Capelli and Cramer’s Theorem allow to give a method to solve any
linear system - apart from computational difficulties.

Remark 316 Rouche’-Capelli and Cramer’s Theorem based method.
Let the following system with m equations and n unknowns be given:

Apxnz =b.

0. Simplify the system using elementary row operations on [ A | b ] and elementary column
operations on A. Those operation do not change rank A, rank B, set of soluton to system Ax = b.
1. Compute rank A and rank [ A | b ]
i. If
rank A#rank [ A | b ],

then the system has no solution.
i If
rank A=rank [ A | b ]:=r,
then the system has solutions which can be computed as follows.

2. Eztract a square r-dimensional invertible submatrixz A, from A.

1. Discard the equations, if any, whose corresponding rows are not part of A,.

1. In the remaining equations, bring on the right hand side the terms containing unknowns
whose coefficients are not part of the matrix A,, if any.

1. You then get a system to which Cramer’s Theorem can be applied, treating as constant the
expressions on the right hand side and which contain n — r unknowns. Those unknowns can be
chosen arbitrarily. Sometimes it is said that then the system has “c0™™ "7 solutions or that the
system admits n — r degrees of freedom. More formally, we can say what follows.

Definition 317 Given S, T C R", we define the sum of the sets S and T, denoted by S+ T, as
follows

{zr € R" :3s € S,3t € T such that x = s+ t}.

Proposition 318 Assume that the set S of solutions to the system Ax = b is nonempty and let
x* € S. Then

S={a*} +kerly = {z € R" : 3a° € kerla such that v = z* +2°}

Proof. [C]
Take z € S. We want to find 2° € ker A such that z = 2* + 2°. Take 2° = z — z*. Clearly
x =2a* + (z — z*). Moreover,
Arg=Az—2)Lbo_b=0 (8.2)
where (1) follows from the fact that z,z* € S.
2]
Take z = z* + 2° with 2* € S and 2° € ker A. Then

Ax = Az* + Azg=b+0=0b.
| ]

Remark 319 The above proposition implies that a linear system either has no solutions, or has a
unique solution, or has infinite solutions.

Definition 320 V is an affine subspace of R™ if there exists a vector subspace W of R™ and a
vector x € R™ such that
V={«}+W
We say that the! dimension of the affine subspace V is dim W.
'If W’ and W' are vector subspaces of R?, € R” and V := {2} + W' = {2} + W, then W’/ = W".

Take w € W’ , then z +w € V = {z} + W”. Then there exists € {z} and @ € W such that z + w = =z + @.
Then w =@ € W"”, and W/ C W', Similar proof applies for the opposite inclusion.
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Remark 321 Let a € R be given. First of all observe that
{(z,y) € R?:y = az} = kerl,

where l € L (R2, R) and I (z,y) = ax —y. Let’s present a geometric description of Proposition 318.
We want to verify that the following two sets are equal.

S = {(z0,y0)} + {(z,y) €eR* : y = az},

T:={(z,y) eER*:y=a(z—=20)+yo}.
In words, we want to verify that the affine space “{(xo,yo)} plus kerl” is nothing but the set of
points belonging to the line with slope a and going trrough the point (xo,yo)-
S CT. Take (z',y’) € S; then z” € R such that v’ = xo + " and y' = yo + ax’’. We have tho
check that y' = a (2’ — x0) + yo.Indeed, a (¢’ — o) + yo = a (xg + 2" — 20 + y) = az” + yo.
T CS. Take (2',y') such that y' = a (2’ — xg) + yo. Take "’ =z’ + xo.Then ' = xo + 2" and
Yy =yo +ax”, as desired.

Remark 322 Since dimkerls = n —rank A, the above Proposition and Definition say that if a

nonhomogeneous systems has solutions, then the set of solutions is an affine space of dimension
n —rank A.

Ezxercise 323 Apply the algorithm described in Remark 316 to solve the following linear system.

x1 +2x9+3x3 =1
41 + Sxo + 623 = 2
5x1 + Txo + 923 =3

The associated matric [ A | b ] 18
1 2 3 |1
4 5 6 | 2
5 7 9 | 3
1. Since the third row of the matriz [ A | b } 1s equal to the sum of the first two rows, and
since
1 2

we have that
rank A=rank [ A | b]=2,

and the system has solutions.

2. Define
1 2
=4 7]

1. Discarding the equations, whose corresponding rows are not part of Asand, in the remaining
equations, bringing on the right hand side the terms containing unknowns whose coefficients are not
part of the matriz As, we get

x1 +2x9 =1—3x3
41 + Srg = 2 — 623
5x1 + Txo = 3 — 9x3

1. Then, using Cramer’s Theorem, recalling that det As = —3,we get
1—-3z3 2
det [ 2 6r3 5 ] 1
T = 3 =3 — 57
11— 3z,
det [ 4 2 6ay ] 2
To = _3 = g — 21’3,

and the solution set is

. 1 2
{($1,$27$3) ER® iz =25 — 32 =73 2503}-
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Remark 324 How to find a basis of ker.
Let A € M(m,n) be given and rankA = r < min{m,n}. Then, from the second proof of
Rouche’-Capelli’s Theorem, we have that system

Az =0

admits the following set of solutions
{(ml,x2) ER X Rzl = (A")7! (—A12 x2)} (8.3)

Observe that dimkerly =n —r:=p. Then, a basis of kerly is

o[ e e e )

P
p ep

To check the above statement, we check that 1. B C kerly, and 2. B is linearly independent®.
1. 1t follows from (8.3);
2. It follows from the fact that det [e}), ...,eg] =detl =1.

Example 325
1+ 2o+ 23+ 224 =0
1 —To+x3+ 224 =0

Defined
« |1 1 12
c=[V AL me[r ]
the starting system can be rewritten as
e ] [1 1771 2]
T o 1 -1 1 2 Ty ’

Then a basis of ker is

An algorithm to find eigenvalues and eigenvectors of A,, and to show if A is
diagonalizable.
Step 1. Find the characteristic polynomial A (t) of A.
Step 2. Find the roots of A (t) to obtain the eigenvalues of A.
Step 3. Repeat (a) and (b) below for each eigenvalue A of A:
(a) Form M = A — \I;
(b) Find a basis of ker M. These basis vectors are linearly independent eigenvectors of
A belonging to .
Step 4. Consider the set S = {v1,v2,..., v, } of all eigenvectors obtained in Step 3:
(a) if m # n, then A is not diagonalizable.
(b) If m = n, let P be the matrix whose columns are the eigenvectors {vy,va, ..., U }.
Then,
D = P7'AP = diag (\;)',

where for i € {1,...,n}, )\; is the eigenvalue corresponding to the eigenvector v'.

2Qbserve that B is made up by p vectors and dimkerls = p.
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Example 326 Apply the above algorithm to

A:{;g}

t—1 —4

det[tl—A]:det{ 9 4_3

]:t2—4t—5.

2. 12 — 4t — 5 =0 has solutions \; = —1, Ay = 5.

3 A =-1
(a)
-1-1 —4 -2 —4
M:{ -2 —1—3]:{—2 —4}
(b) ker A = {(z,y) eR?* : 2z = —Jy} = {(x,y) € R?: 2z = —y}. Therefore a basis of that one
dimensional space is {(2,—1)}.

3. Ay = 5.
(a)
5—1 —4 4 -4
w75 - Y
(b) ker A= {(x,y) € R* : @ = y}. Therefore a basis of that one dimensional space is {(1,1)}.

4. A is diagonalizable.
po| 2 1] pa_ —1
I N O R 2

roar(§ P15 (R 8

Example 327 Discuss the following system (i.e., say if admits solutions).

ol

and

T 4+ z2 4+ x3 = 4
X + T2 + 21’3 = 8
201 + 2x9 4+ 3x3 = 12
The augmented matriz [Alb] is:
111 | 4
11 2 | 8
2 2 3 | 12
111 | 4
rank [Ajp) =rank | 1 1 2 | 8 | =2=rank 4
000 | O
From Step 2 of Rouche’-Capelli and Cramer’s method, we can consider the system
T2 + 23 = 4-um
To + 2x3 = 88—

Therefore, x1 can be chosen arbitrarily and since det [ 1 ; ] =1,

o 4—$1 1 o
1‘2—d€t|: 8—1’1 D) :| = =2

_ 1 4—.’131 _
mg—det[ 18—y ] =4

Therefore, the set of solution is

{(1’1,1’2,1’3) ER3:xy = —11, 23 :4}
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Example 328 Discuss the following system

r1 + Xy =
1‘1*ZE2:0

[\

The augmented matriz [Alb] is:

Sincedet A=—-1—-1=-2+#0,
rank [A|b] = rankA = 2

and the system has a unique solution:

= =— =1
1 = 9
1 2
_det{IO}_—Q_l
ne T TS

Therefore, the set of solution is

Example 329 Discuss the following system

r1 + X2
1‘1+ZE2:0

{

1
1
Since det A=1—-1=0, and det [ 1 } = —2# 0, we have that

I
b

The augmented matrixz [A|b] is
| 2
0

—_ =

rank [A[b] = 2 # 1 = rankA
and the system has no solutions. Therefore, the set of solution is &.

Example 330 Discuss the following system

X + T2 =
27 + 2z9 4

[\

The augmented matriz [Alb] is

[N
=N
[

From rank properties,

11 1 1
mnk{2 2]—rank[0 0]—1
1 1 2 1 1 2
rank{224]:rank[ooo}:1

Recall that elementary operations of rows on the augmented matriz do not change the rank of
either the augmented or coefficient matrices.
Therefore
rank [A]b] = 1 = rankA

and the system has infinite solutions. More precisely, the set of solutions is

{(:El,LEQ) c RQ 1 = 2*1‘2}
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Example 331 Say for which value of the parameter k € R the following system has one, infinite
or no solutions:

(k—1Dz+(k+2)y=1

—r+ky=1
r—2y=1
k=1 k+2 1
[Ap]=1] -1 k& | 1
1 -2 | 1
k-1 k+2 1
det [A]b] = det -1 k 1 | = det -1 k —det k—1 k42 det E—1 k42
1 -2 1 -2 1 -2 1k

(2-k)—(2k+2-k—-2)+ (K —k+k+2)=2—k+2k+k+k +2=2kk+k*+4

A = —1—17 < 0. Therefore, the determinant is never equal to zero and rank [A|b] = 3. Since rank
Asxo < 2, the solution set of the system is empty of each value of k.

Remark 332 To solve a parametric linear system Ax = b, where A € M (m,n)\ {0}, it is conve-
nient to proceed as follows.

1. Perform “easy” row operations on [A|b];

2. Compute min {m,n + 1} := k and consider the k x k submatrices of the matriz [A|b].
There are two possibilities.

Case 1. There exists a k X k submatriz whose determinant is different from zero for some
values of the parameters;

Case 2. All k x k submatrices have zero determinant for each value of the parameters.
If Case 2 occurs, then at least one row of [Alb] is a linear combinations of other rows; therefore

you can eliminate it. We can therefore assume that we are in Case 1. In that case, proceed
as described below.

3. among those kx k submatrices, choose a matriz A* which is a submatriz of A, if possible; if you
have more than one matriz to choose among, choose “the easiest one” from a computational
viewpoint, i.e., that one with highest number of zeros, the lowest number of times a parameters
appear, ... ;

4. compute det A*, a function of the parameter;

5. analyze the cases det A* # 0 and possibly det A* = 0.

Example 333 Say for which value of the parameter a € R the following system has one, infinite
or no solutions:

2

0

ari +x2+x3 =
1 — axs =

Example 334 Say for which value of the parameter a € R the following system has one, infinite
or no solutions:

ary +xro+x3 = 2

T — Ao = 0

2ax1 + axs = 4

a 1 2

[A]b] = 1 —a 0 0
2a a 0 4

a 1 1
det| 1 —a 0| =a+2a*>=0 if a=0,—=
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Therefore, if a # 0, —%,
rank [A]b] = rangoA =3

and the system has a unique solution.

Ifa =0,
01 1 2
[Ajfj]=] 1 0 0 O
0 0 0 4
. 0 1
Since det{l 0}—1, rank A = 2. On the other hand,

0 1 2 1 92
det| 1 0 O :—1det{0 4}:—47&0
0 0 4

and therefore rank [A|b] = 3, and
rank [A]b] = 3 # 2 = rangoA

and the system has no solutions.

Ifa/:_%v
-1 1 1 2
[Apj=1] 1 3 0 0
| -1 —3 0 4
Since )
1 1
det ]——,
3 0 2
rangoA = 2.
Since )
-3 1 2 1 92
det 1 0 0| =—det 0 4 =—4
1 0 4
and therefore
rank [A[b] = 3,

rank [A]b] = 3 # 2 = rangoA
and the system has no solutions.

Example 335 Say for which value of the parameter a € R the following system has one, infinite
or no solutions:

(a+Dx1 + (=2)x2 + 2azs3 = a
axy + (—a)xs + 3 = -2
2 + (2a—4)z2 + (a—-2)zz = 2a+4
Then,
a+1 -2 2a | a
[A]p) = | a —a 1 -2
2 2a — 4 da—-2 | 2a+4

It is easy to see that we are in Case 2 described in Remark 332: all 3 x 3 submatrices of [A|b] have
determinant equal to zero - indeed, the last row is equal to 2 times the first row plus (—2) times the
second row. We can then erase the third equation/row to get the following system and matriz.

(a+Dx1 + (=2)xz2 + 2ax3 = a
axy + (—a)xzs + a3 = -2

[A|b]:{a+1 -2 2¢ | a
a
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-2 2a
—a 1

whose solutions are —1,1. Therefore, if a € R\ {—1,1},
rank [A]b] = 2 = rangoA

det[ }:2&—2:0,

and the system has infinite solutions. Let’s study the system for a € {—1,1}.
If a = —1, we get

e T

1 1 | —2
and since

0 -2
det[ 11 ]—27&0

we have again

rank [A]b] = 2 = rangoA
If a = 1,we have

2 -2 2 1
[Ab]:[1 -1 1 | —2}
and
rank [A|b] =2 > 1 = rangoA
and the system has no solution..

Example 336 Say for which value of the parameter a € R the following system has one, infinite
or no solutions:

ary, + X2 =1
xr1 + X2 = a
261 + xo = 3a
3r1 + 2x9 = a
a 1 | 1
11 ] a
[Alb] = 2 1 | 3a
3 2 | a

Observe that
rank Aszyxs < 2.

1 1 a
det | 2 1 3a | =3a=0 if a=0.
3 2 a

Therefore, if a € R\ {0},
rank [A|b] =3 > 2 > rank Asxa

If a =0,

[Alb] =

OO O =

w N = O
R

and since

o
— =
O =
I
|
—

det | 1

the system has mo solution for a = 0.
Summarizing, Va € R, the system has no solutions.
8.3 Exercises

Problem sets: 20,23,24.
From Lipschutz (1991), page 179: 5.56; starting from page 263, 7.17 — 7.20.
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Some topology in metric spaces
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Chapter 9

Metric spaces

9.1 Definitions and examples

Definition 337 Let X be a nonempty set. A metric or distance on X is a functiond : X x X — R
such that Vx,y,z € X
1. (a.) d(z,y) >0, and (b.) d(z,y) =0z =y,

2. d(z,y) = d(y, ),
3. d(z,z) <d(x,y) +d(y,z) (Triangle inequality).
(X,d) is called a metric space.

Remark 338 Observe that the definition requires that Va,y € X, it must be the case that d(x,y) €
R.

Example 339 n-dimensional Fuclidean space with Euclidean metric.
Given n € N, take X =R", and

1

n 2
o i R"XR" SR, (z,y) (Z (i — yz-)Q) :

=1

(X, dan) was shown to be a metric space in Proposition 58, Section 2.3. da, is called the Euclidean
distance in R™. In what follows, unless needed, we write simply do in the place of da .

Proposition 340 (Discrete metric space) Given a nonempty set X and the function
0 if z=y

1 if z#y,

d:X? =R, d(z,y) =

(X, d) is a metric space, called discrete metric space.

Proof. 1a. 0,1 > 0.

1b. From the definition, d (z,y) =0 < z = y.

2. Tt follows from the fact that r =y < y =z and z #y < y # x.

3. If x = z, the result follows. If x # z, then it cannot be x = y and y = z, and again the result
follows. m

Proposition 341 Givenn € N,p € [1,400), X =R",

1
P

n
d:R"xR" =R, (m,y)'—><zzi%p> )
i=1

(X,d) is a metric space.

115
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Proof. 1la. It follows from the definition of absolute value.
1b. [«]Obvious.

1 . )
=] Ol —wl))P =0 30 |z —wl? = 0= for any ¢ , |z; —y;| = 0 =for any 7 ,
Ty —Yi = 0.
2. Tt follows from the fact |z; — y;| = |y: — x4

3. First of all observe that
z) = (Z [(zi —yi) + (vi — Zi)|p>
i=1

Then, it is enough to show that

Sl=

1

<Z (@i — i) + (v — Zz‘)|p> < (Z |lz; — yi|p> + <Z |(yi — Zz')|p>

which is a consequence of Proposition 342 below. m

Bl=

Proposition 342 Takenn € N,p € [1,4+00),X =R",a,b € R"

() < (o) (o)
i=1 =1 =1

Proof. It follows from the proof of the Proposition 345 below. m
Definition 343 Let R be the set of sequences in R.

Definition 344 For any p € [1,+00), define!

S {(xn nen € R Z |zal” < +OO}

i.e., roughly speaking, [P is the set of sequences whose associated series are absolutely convergent.

Proposition 345 (Minkowski inequality). ¥ (zn),cn s (Yn)pen € 17, VP € [1,+00),

N 1 n 1 n 1
(zxn+yn|p) s(zw) +(zyn|p) | 1)
n=1 n=1 n=1

Proof. If either (z,),cy OF (Yn),cy are such that ¥n € N, z, = 0 or Vn € N, y,, = 0, i.e., if
either sequence is the constant sequence of zeros, then (9.1) is trivially true.
Then, we can consider the case in which

1

1 1
Ja, 5 € Ry such that ( roe |xn|p> " = o and ( oo |yn|p> "= (9:2)

=~ |70 P ~ Y| !
VneN, #,= (2 a g, = (20 9.3
n z ( " and @ 5 (9.3)

+oo +oo
> =) Gu=1 (9.4)
n=1 n=1

For any n € N, from the triangle inequality for the absolute value, we have

Define

Then

|=’17n + yn| < |$n| + |yn| 5

IFor basic results on series, see, for example, Section 10.5 in Apostol (1967).
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since Vp € [1,4+00), fp : Ry — R, f, (t) = t? is an increasing function, we have
|20+ ynl” < (lza] + [ynl)” (9.5)

Moreover, from (9.3),

1 1\P 1 1\ P
(ol + ol = (a2l +81301)" = @ +87 (55181 + 5l ) ). 00

Since Vp € [1,+00), f, is convex (just observe that f (t) = p(p —1)t?~2 > 0), we get

(% ﬁ P « ~ B ~
(555 6l + 25 10) < 225 60l + 225 oy

From (9.5),(9.6) and (9.7), we get

|xn+yn|p<(a+ﬁ).( wn“FLlﬂn)

a
a+ 6 a+ 6

From the above inequalities and basic properties of the series, we then get

+oo
S a4 yal” < (a+5) (MZHH Z| )wf}“*ﬁ)p<aiﬁ+aﬁﬁ>:(“+ﬁ)p'
n=1

Therefore, using (9.2), we get

=

+oo +oo +oo % P

S o 1l < (z w) N (z w) ,
n=1 n=1 n=1

and therefore the desired result. m

Proposition 346 (I?,d,) with

=

+oo
dp PP — Ra dp ((xn)neN ’ (yn)neN) = (Z |$n - yn|p>

n=1

18 a metric space.

B

Proof. We first of all have to check that d, (z,y) € R, i.e., that (Z:ﬁ |z, — yn|p) converges.

1 1 1
+o0 P +oo +oo P
(zm-w) :(Dxn ) ) (zw) (zw) < +o0,
n=1 n=1 n=1

where the first inequality follows from Minkowski inequality and the second inequality from the
assumption that we are considering sequences in [P.

Properties 1 and 2 of the distance follow easily from the definition. Property 3 is again a
consequence of Minkowski inequality:

+oo % +oo » »
= (Z [(@n = yn) + (yn — Zn)|p> < (Z |2y — ) (Z |(yn — 2n) ) 1= dp (z,y)+dp (y,

n=1
|
Definition 347 Let T be a non empty set. B(T) is the set of all bounded real functions defined on

T, i.e.,
B(T)={f:T—R : sup{|f(z):xze€T}<+o0},
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G/ﬂdz
doo : B(T) X B(T) = R, do (f,9) =sup{|f (z) —g(2)| : z € T}

Definition 349
1° = {(zn) ey € R :sup {|z,| : n € N} < +00}

18 called the set of bounded real sequences, and, still using the symbol of the previous definition,
doo 1 1° X 1% =5 R, doo (T0)en > Wn)nen) = sup {|zn — yn| : n € N}
Proposition 350 (B(T),dw)and (I1°°,ds) are metric spaces, and d, is called the sup metric.

Proof. We show that (B (T),d) is a metric space. As usual, the difficult part is to show
property 3 of d,, which is done below.
Vf,g,h e B(T),Vx €T,

[f (@) —g @) < [f(z) = h(@)|+ [h(x)—g(2) <
<sup{|f(z) —h(z) ;2 €T} +sup{lh(z) —g ()] :z €T} =

Then,Vz € T,
doo (f,9) =sup |f (z) — g (z)| < d (f,9) + doo (h, g) -

Exercise 351 If (X,d) is a metric space, then
d
X
( "1+ d>

Proposition 352 Given a metric space (X,d) and a setY such that @ #Y C X, then (Y, d‘yxy)
18 a metric space.

1S a metric space.

Proof. By definition. m

Definition 353 Given a metric space (X,d) and a setY such that @ #Y C X, then (Y, d‘yxy),
or simply, (Y,d) is called a metric subspace of X.

Example 354 1. Given R with the (Euclidean) distance ds 1, ([0,1),d2,1) is a metric subspace of
(R,d21).
2. Given R? with the (Buclidean) distance da2, ({0} x R, da,2) is a metric subspace of (R?,da2).

Exercise 355 Let C ([0,1]) be the set of continuous functions from [0,1] to R. Show that a metric
on that set is defined by

d(f,g>—/0 1 (@) = g(@)| da,
where f,g € C([0,1]).

Example 356 Let X be the set of continuous functions from R to R, and consider d(f,g) =
sup,er |f (@) — g (z)|. (X,d) is not a metric space because d is not a function from X? to R: it

can be sup,eg |f (2) — g (z)| = +oo.

2

Definition 348 Observe that doo (f,9) € R :

doo (f,9) :=sup{|f (z) — g (2)[ : 2z € T} <sup{[f ()| : € T} +sup{|g (z)] : @ € T} < +oo0.
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Example 357 Let X = {a,b,c} and d: X?> — R such that
d(a,b) =d(b,a) =2
d(a,c) =d(c,a) =0
d(b,c) =d(c,b) =1.
Since d(a,b) =2>0+1=d(a,c)+d(b,c), then (X,d) is not a metric space.

Example 358 Givenn € N;p € (0,1), X = R?, define

2 P
d:R? XR2—>R, (x,y) — (in—yip> )

=1

(X,d) is not a metric space, as shown below. Take x = (0,1),y = (1,0) and z = (0,0). Then
d(z,y) =17+ 1p)% =27,
d(z,z) = (0P + 11’)% =1
d(z,y)=1.

Then, d(z,y) — (d(z,2) + d(z,9)) = 25 —2> 0.

9.2 Open and closed sets

Definition 359 Let (X, d) be a metric space. Yrg € X and ¥r € Ry, the open r-ball of xo in
(X,d) is the set
Bix.ay (zo,7) = {r € X : d(2,20) <7}.

If there is no ambiguity about the metric space (X,d) we are considering, we use the lighter
notation B (xg,r) in the place of B(x q) (zo,1).

Example 360 1.
Bw,dy) (To,7) = (o — 1,70 +7)

is the open interval of radius r centered in x.
2.

B(dez) (Z’O,'I") = {(1’1,1’2) S R2 : \/(1'1 — 1'01)2 + (.’EQ — 1'02)2 < 7’}

is the open disk of radius v centered in xg.
3. In R? with the metric d given by

d((z1,22), (y1,y2)) = max {|x1 — y1, |2 — y2||}

the open ball B (0,1) can be pictured as done below:
a square around zero.

Definition 361 Let (X, d) be a metric space. x is an interior point of S C X if
there exists an open ball centered in x and contained in S, i.e.,
Ir e Ryt such that B(xz,r) C S.

Definition 362 The set of all interior points of S is called the Interior of S and it is denoted by
Int x4y S or simply by Int S.
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Remark 363 Int S C S, simply because x € Int S = x € B(x,r) C S, where the first inclusion
follows from the definition of open ball and the second one from the definition of Interior. In other
words, to find interior points of S, we can limit our search to points belonging to S.

It is not true that VS C X, S C Int S, as shown below. We want to prove that

~(VSC X, Ve eSS, z€8=zxclIntl),

i.e.,

(3S C X and xz € S such that x ¢ Int S).

Take (X,d) = (R,d2), S = {1} and x = 1. Then, clearly 1 € {1}, but 1 ¢ Int S : Vr € Ry,
(1—-r14r) ¢ {1}.

Remark 364 To understand the following example, recall that Va,b € R such that a < b, 3¢ € Q
and d € R\Q such that c¢,d € (a,b) - see, for example, Apostol (1967).

Example 365 Let (R,dy) be given.
1. Int N=Int Q =92.
2. VYa,b € R, a < b, Int [a,b] = Int [a,b) = Int (a,b] = Int (a,b) = (a,b).
3. Int R=R.
4. Int & =0.

Definition 366 Let (X,d) be a metric space. A set S C X is open in (X, d), or (X,d)-open, or
open with respect to the metric space (X,d), if S C Int S, i.e., S =1Int S, i.e.,

Vz € S, Ir € Ry, such that Bix gy (z,7) :={y € X :d(y,) <r} CS.

Remark 367 Let (R, ds) be given. From Ezample 365, it follows that

N, Q, [a,b],[a,b), (a,b] are not open sets, and (a,b),R and & are open sets. In particular, open
interval are open sets, but there are open sets which are not open interval. Take for example
S=(0,1)U(2,3).

Exercise 368 Vn € N,Vi € {1,...,n},Va;,b; € R with a; < b;,
Xy (@i, bs)
is (R™,dy) open.
Proposition 369 Let (X, d) be a metric space. An open ball is an open set.
Proof. Take y € B (zg,r). Define
0=r—d(zg,y). (9.8)

First of all, observe that, since y € B (zg,r), d(zo,y) < r and then 6 € Ry . It is then enough
to show that B (y,d) C B (zo,), i.e., we assume that

d(z,y) <§ (9.9)
and we want to show that d (z,x¢) < r. From the triangle inequality

(9.9),(9.8)
d(Z,$0)Sd(Z,y)+d(y,$0) < <5+(T76):Ta

as desired. m

Example 370 In a discrete metric space (X,d), Vx € X,Vr € (0,1], B(z,7) :={y € X : d(z,y) <r} =
{z} and¥r > 1, B(z,r):={y € X :d(x,y) <r} = X. Then, it is easy to show that any subset of

a discrete metric space is open, as verified below. Let (X,d) be a discrete metric space and S C X.

For any x € S, take € = §; then B (z,4) = {z} C S.
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Definition 371 Let a metric space (X,d) be given. A set T C X is (X,d) closed or closed in
(X,d) if its complement in X, i.e., X\T is open in (X,d).

If no ambiguity arises, we simply say that T is closed in X, or even, T is closed; we also write
TC in the place of X\T.

Remark 372 S is open < S€ is closed, simply because SC closed < (SC)C =S is open.
Example 373 The following sets are closed in (R,ds): R;N; &;Va,b € R, a < b, {a} and [a,].
Remark 374 It is false that:

S is not open = S is closed

(and therefore that S is not closed = S is open), i.e., there exist sets which are not open and
not closed, for example (0,1] in (R,ds). There are also two sets which are both open and closed: &
and R™ in (R™,ds).

Proposition 375 Let a metric space (X,d) be given.
1. @ and X are open sets.
2. The union of any (finite or infinite) collection of open sets is an open set.
3. The intersection of any finite collection of open sets is an open set.

Proof. 1.

Ve e X, Vr e Ry4, B(x,r) C X. & is open because it contains no elements.

2.

Let Z be a collection of open sets and S = UgczA. Assume that x € S. Then there exists A € 7
such that x € A. Then, for some r € R4

x€B(x,r)CACS

where the first inclusion follows from fact that A is open and the second one from the definition of
S.

3.

Let F be a collection of open sets, i.e., 7 = {A,},cy, where N C N, #N is finite and Vn € N,
A, is an open set. Take S = N,enA,. If S = I, we are done. Assume that S # & and that z € S.
Then from the fact that each set A is open and from the definition of S as the intersection of sets

VYn € N,3r, € Ry, such that z € B (z,r,) C A,
Since N is a finite set, there exists a positive r* = min {r,, : n € N} > 0. Then
Vn € N,z € B(z,r*) C B(x,r,) C A,
and from the very definition of intersections
x € B(z,7*) C NpenB(x,7) C NpenvAn = S.
|

Remark 376 The assumption that #N is finite cannot be dispensed with:

1 11
e (07) =i (5) =

)
n'n
18 not open.

Remark 377 A generalization of metric spaces is the concept of topological spaces. In fact, we
have the following definition which “ assumes the previous Proposition”.

Let X be a nonempty set. A collection T of subsets of X is said to be a topology on X if

1. @ and X belong to T,

2. The union of any (finite or infinite) collection of sets in T belongs to T,

8. The intersection of any finite collection of sets in T belongs to T .

(X,T) is called a topological space.

The members of T are said to be open set with respect to the topology T, or (X,T) open.
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Proposition 378 Let a metric space (X,d) be given.
1. @ and X are closed sets.
2. The intersection of any (finite or infinite) collection of closed sets is a closed set.
8. The union of any finite collection of closed sets is a closed set.

Proof. 1

It follows from the definition of closed set, the fact that @¢ = X, X¢ = @ and Proposition 375.
2.

Let Z be a collection of closed sets and S = NpezB. Then, from de Morgan’s laws,
S¢ = (QBGIB)C = UB(:—IBC

Then from Remark 372, VB € Z, B® is open and from Proposition 375.1, Upcz B¢ is open as
well.

2.

Let F be a collection of closed sets, i.e., F = {By}, ¢y, where N C N, #N is finite and Vn € N,
B,, is an open set. Take S = UpecnB,. Then, from de Morgan’s laws,

SC = (UnENBn)C = ﬂneNBg

Then from Remark 372, Vn € N, B is open and from Proposition 375.2, Npcz BC is open as well.
]

Remark 379 The assumption that #N 1is finite cannot be dispensed with:

(m+3013 (o i))c U B (0 i)c Ut ((_oo = } U [1 —i—oo)) R\ {0}.
"= ‘n "= ‘n "= on’ n’

is not closed.
Definition 380 If S is both closed and open in (X, d), S is called clopen in (X,d).
Remark 381 In any metric space (X,d), X and & are clopen.

Proposition 382 In any metric space (X,d), {x} is closed.

Proof. We want to show that X\ {z} is open. If X = {z}, then X\ {z} = &, and we are done.
If X # {z}, take y € X, where y # x. Taken

r=d(y,x) (9.10)
with r > 0, because z # y. We are left with showing that B (y,r) C X\ {z}, which is true
because of the following argument. Suppose otherwise; then = € B (y,r), i.e., (5.10) d(y,x) <r,a

contradiction. m

Remark 383 From Example 370, any set in any discrete metric space is open. Therefore, the
complement of each set is open, and therefore each set is then clopen.

Definition 384 Let a metric space (X,d) and a set S C X be given. x is an boundary point of S
if
any open ball centered in x intersects both S and its complement in X, i.e.,

VreRyy, B(z,r)NS#Q A B(z,r)N S +# @.

Definition 385 The set of all boundary points of S is called the Boundary of S and it is denoted
by F (S).

Exercise 386 F (S) = F (59).

Exercise 387 F (S) is a closed set.
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Definition 388 The closure of S, denoted by Cl (S) is the intersection of all closed sets containing
S, d.e., Cl (S) =NgresS" where S :={5" C X : 5 is closed and S’ 2 S}.

Proposition 389 1. Cl (S)is a closed set;
2. S is closed < S =Cl (95).

Proof. 1.

It follows from the definition and Proposition 378.

2.

[«<]

It follows from 1. above.

(=]

Since S is closed, then S € S. Therefore, Cl (S) =S5SN (NgresS’)=5. m

Definition 390 z € X is an accumulation point for S C X if any open ball centered at x contains
points of S different from x, i.e., if

Vr € Ryy, (S\{z})NB(z,r)#20
The set of accumulation points of S is denoted by D (S) and it is called the Derived set of S.

Definition 391 = € X is an isolated point for S C X if x € S and it is not an accumulation point
for S, i.e.,
z €S and 3r € Ryy such that (S\{z})NB(z,r) =2,

or
Ir € Ry such that SN B (z,r) ={z}.

The set of isolated points of S is denoted by Is (S).
Proposition 392 D (S)={z € R": Vre R ., SNDB(x,r) has an infinite cardinality}.

Proof. [C]

Suppose otherwise, i.e., z is an accumulation point of S and 3r € Ry such that SN B (x,r) =
{21, ...,z }.Then defined ¢ := min {d (z,2;) : i € {1,..,n}}, (S\{z}) N B (z,$) = @, a contradic-
tion.

2]

Since SN B (x,r) has an infinite cardinality, then (S\ {z}) N B (z,r) # <. =

9.2.1 Sets which are open or closed in metric subspaces.

Remark 393 1. [0,1) is ([0,1),d2) open.
2. [0,1) is not (R,dz) open. We want to show

= (Vzo €[0,1),3r € Ry such that B, 4,) (z0,7)) = (zo — 1,30 + 1) € [0,1), (9.11)
i.e.,
Jzg € [0,1) such that Vr € Ry, 32’ € R such that 2’ € (xo —r,20+7) and 2’ ¢ [0,1).
It is enough to take xo = 0 and ' = —35.
3. Let ([0,400),ds2) be given. [0,1) is open, as shown below. By definition of open set, - go
back to Definition 366 and read it again - we have that, given the metric space ((0,400),ds), [0,1)
is open if

Vao € 10,1), 3r € Ry such that B((o 4+o0),dy) (T0,7) 1= {x € [0,400) : d (g, ) < r} C (]0,1)).

If xg € (0,1), then take r = min {zg,1 — 2o} > 0.
If zo = 0, then take r = % Therefore, we have B, 4,) (0, %) = {x ER;: |z —-0| < %} =
[0,3) € [0,1).
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Remark 394 1. (0,1) is ((0,1),d3) closed.
2. (0,1] is ((0,+00),dg) closed, simply because (1,+00) is open.

Proposition 395 Let a metric space (X,d), a metric subspace (Y,d) of (X,d) and a set S CY be
given.

S is open in (Y, d) < there exists a set O open in (X,d) such that S =Y NO.
Proof. Preliminary remark.

Vmo S KVT S R++,

By,ay (o,7) :={x €Y :d(zo,2) <r} =Y N{r € X : d(z0,7) <7} =Y N Bx,q (To,7).
(9.12)

(=]

Taken x¢ € S, by assumption Jr,, € Ry, such that B(y,q) (zo,7) €S C Y. Then

(9.12) distributive laws
= = Y

S = UgzgesBy,q) (w0, 7) Uzoes (Y N Bx,a) (z0,7)) UzoesB(x,a) (20,7))

and the it is enough to take O = Uy esB(x,q) (zo,7) to get the desired result.

[«]

Take zg € S. then, zg € O, and, since, by assumption, O is open in (X, d), Ir € Ry such that
B(X,d) (I’O, 7’) - O. Then

9.12
By,aq) (zo,7) “yn Bix,ay (zo,7) CONY =6,

where the last equality follows from the assumption. Summarizing, Vzy € S,3r € R4 such that
Biy,a) (zo,7) € S, as desired. m

Corollary 396 Let a metric space (X,d), a metric subspace (Y,d) of (X,d) and a set S CY be
given.
1.

(S closed in (Y,d)) < (there exists a set C closed in (X,d) such that S=Y NC.).

(S open (respectively, closed) in (X,d)) z (S open (respectively, closed) in (Y,d)) .

3. If Y is open (respectively, closed) in X,
(S open (respectively, closed) in (X,d)) < (S open (respectively, closed) in (Y,d)).
i.e., “the implication < in the above statement 2. does hold true”.

Proof. 1. .

(S closed in (Y, d)) g (Y'\S open in (Y,d)) Props 395

< (there exists an open set S” in (X,d) such that Y\S=5"NY) <
< (there exists a closed set S’ in (X, d) such that S =5 NY),
where the last equivalence is proved below;

[«<]

Take S” = X\S’, open in (X, d) by definition. We want to show that
it " =X\S,S=5NYand Y C X, then Y\S=5"NnY:

zeY\S iff z€Y Azxz¢S
€Y A (z¢ S NY)
zeY A= (xeS'NY))
z€Y A (zeS AzeY))
zeY AN({(z¢S'VzgY))
(zeY ANz ¢S) V((zeYAx¢Y))
xeY Nz ¢S
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zesS"NY iff ze€eY AN zxzeS”
€Y AN(zeXAnx¢gs)
(reY NzeX)hx¢s
zreYANx ¢S
(=]
Take S = X\S.Then S’ is closed in (X, d). We want to show that
if 7" = X\S”, Y\S=S"NY,Y C X, then S= S’ NY.
Observe that we want to show that Y\S = Y\ (S’ NY),or from the assumptions, we want to
show that
S"NY =Y\ (X\S")nY).
zeY\(X\S")NY) iff z€Y A (m(zeX\S"Az€Y))
€Y AN (z¢ X\S"Vz¢Y)
z€Y A@xeS'VvzeY)
(xeYAzeS) VeeYAzé¢Y)
reYAxel”
zesS' Ny

2. and 3.
Exercises. m

9.3 Sequences
Unless otherwise specified, up to the end of the chapter, we assume that
X is a metric space with metric d,

and
R™ is the metric space with Euclidean metric.

Definition 397 A sequence in X is a function x : N — X.

Usually, for any n € N, the value z (n) is denoted by x,,which is called the n-th term of the

sequence; the sequence is denoted by (2,),,cy-

Definition 398 Given a nonempty set X, X*° is the set of sequences (vy,), cy such that ¥n € N,
z, € X.

Definition 399 A strictly increasing sequence of natural numbers is a sequence (kn), oy i N such
1<k <k < .. <k,< ..

Definition 400 A subsequence of a sequence (), cy 5 a sequence (Yn),cy Such that there evists
a strictly increasing sequence (ky ),y of natural numbers such that Vn € N, y, = xy,, .

Definition 401 A sequence (x,),, oy € X is said to be (X, d) convergent to xg € X (or convergent
to xo € X with respect to the metric space (X,d) ) if

Ve > 0,3ng € N such that Vn > ng, d(zn, %) <€ (9.13)
xo is called the limit of the sequence (), y and we write
limy,— g oo Tn = To, O Tp — Xo. (9.14)

(Tn) ey 0 a metric space (X, d) is convergent if there evist xg € X such that (9.13) holds. In
that case, we say that the sequence converges to xo and o is the limit of the sequence.’

Remark 402 A more precise, and heavy, notation for (9.14) would be

. n
lim, s 4te0o®n =20 or T, — X
(X,d) X,d)

3For the last sentence in the Definition, see, for example, Morris (2007), page 121.
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Remark 403 Observe that (%)n converges with respect to (R, ds) and it does not converge with

respect to (Ry4,ds) .

eN,

Proposition 404 lim,,_, =, = 2o < lim, 1o d(2n, x9) = 0.

Proof. Observe that we can define the sequence (d (2, %0)), ¢y in R. Then from definition 401,
we have that lim,, o d (2, 9) = 0 means that

Ve > 0,3ng € N such that Vn > ng, |d(zn,z0) — 0] <e.
|

Remark 405 Since (d(xn,20)),,cy 5 a sequence in R, all well known results hold for that sequence.
Some of those results are listed below.

Proposition 406 (Some properties of sequences in R).

All the following statements concern sequences in R.

1. FEvery convergent sequence is bounded.

2. FEvery increasing (decreasing) sequence that is bounded above (below) converges to its sup
(inf ).

8. Fvery sequence has a monotone subsequence.

4. (Bolzano-Weierstrass 1) Every bounded sequence has a convergent subsequence.

5. (Bolzano- Weierstrass 2) Every sequence contained in a closed and bounded set has a conver-
gent subsequence in the set.

Moreover, suppose that (x,),cn and (Yn),cn are sequences in R and lim, ..oz, = 2o and
limy,— 400 Yn = Yo. Then

6. limy, 1 oo (mn + yn) = Zo + Yo;

7. limy oo Tn * Yn = To * Yo;

8. ifVneN, x, #0 and xg # 0, lim,,_, 4 o % = %;

9. ifVn €N, z, <y, then zg < yo;

10. Let (Z”)neN be a sequence such that Vn € N, z,, < z, < yn, and assume that xo = yo. Then
limy,— 400 2n = o-

Proof. See Villanacci, (2015), Basic Facts on sequences and series in R, mimeo. m

Proposition 407 If (), oy converges to xo and (yn),,cy is a subsequence of (n),cn, then (Yn), cx
converges to x.

Proof. By definition of subsequence, there exists a strictly increasing sequence (k, ),y of
natural numbers, i.e., 1 <k <ky < ... <k, < .., suchthat Vn e N, y, = 2y, .
If n — +o0, then k,, — +o00. Moreover, Vn, 3k, such that

d(zo,zx,) =d (330’ Yn)
Taking limits of both sides for n — +o00, we get the desired result. m
Proposition 408 A sequence in (X, d) converges at most to one element in X.

Proof. Assume that x, — p and x, — ¢; we want to show that p = ¢. From the Triangle
inequality,
Vn €N, 0<d(p,q) <d(p,zn) +d(2s,9) (9.15)

Since d (p, z,) — 0 and d (2, q) — 0, Proposition 406.10 and (9.15) imply that d (p,q) = 0 and
therefore p=¢. m

Proposition 409 Given a sequence (), cny = ((a:il)fﬂ)neNm R¥,

((zn),en converges to x) < <Vi e{l,...,k}, (m;)neN converges to :E’> ,
and

n
lim z,=| lm z
n—-+oo n—-4oo i=1
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Proof. [=]
Observe that

|2l — 2| =/ (z}, — 2)? < d (zn2) .

Then, the result follows.
[<]

By assumption, Ve > 0 and Vi € {1,...,k}, there exists ng such that Vn > ng, we have

|xﬁl—x1| < ﬁ Then Vn > nyg,
1 1
2\ 2 o\ ®
—(2N"1) -

Proposition 410 Suppose that (z,),cn and (Yn),cn are sequences in R* and limy, o0 T, = Zo
and limy, oo Y, = yo. Then

D=

k k
d(zpx) = <Z|x; —xi’2> < (Z %
|

1. limy s qoo (T + Yn) = To + Yo;

2. Ve eR, lim, 400 C Ty =cC-2p;

3. limy, o0 Tny Y = T - Yo-

Proof. It follows from Propositions 406 and 409. m

Example 411 In Proposition 350 , we have seen that (B([0,1]),d~) is a metric space. Observe
that defined Vn € N,

o0, =R, t— 7,

we have that (fy,), € B([0,1])>. Moreover, ¥Vt € [0,1], (fn (f))neN € R and it converges in
(R,ds). In fact,

Define
0 if te]o,1)

1 if t=1.

057

We want to check that it is false that

f"l f?

N
(B([0,1]),doo)

i.e., it is false that deo (fm, f) — 0. Then, we have to check

ﬁ< Ve >0 3IN. € N such that Yn > N, doo (fn, f) <€ >7
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i.e.,

Je >0 such that VN. € N, 3n > N. such that deo (fn, f) > € .

Then, taken ¢ = %, it suffice to show that
( Vm €N, 3t € (0,1) such that |fn (}) — f ()] = 1 ).
It is then enough to take t = (%)m

Exercise 412 For any metric space (X,d) and (z,),cy € X,

<xn—>x>@ T, — T).
(X.d) (X, 115)

9.4 Sequential characterization of closed sets
Proposition 413 Let (X, d) be a metric space and S C X.*
( Sisclosed ) < ( any (X,d) convergent sequence (&), oy € S converges to an element of S ).

Proof. We want to show that

S is closed &

- << (#n),cy is such that 1. Vn € N,z, € S, and > 3 m e S> .

2. x, — xo

(=]

We are going to show that if S is closed, 2. and not 3. hold, then 1. does not hold. Taken a
sequence converging to zo € X'\ S. Since S is closed, X\S is open and therefore Ir € R, ; such that
B (z9,r) C X\S. Since x,, — 9, IM € N such that ¥n > M, z,, € B (xo,7) C X\S, contradicting
Assumption 1 above.

[<]

Suppose otherwise, i.e., S is not closed. Then, X\S is not open. Then, 3 T € X\S such that
Vn € N, 3z, € X such that z,, € B (T, %) ns,ie.,

i. zeX\S

ii. VvneN, z,, € S,

iii. d(2,,,7) < L, and therefore z,, — T,

and i., ii. and iii. contradict the assumption. m

Remark 414 The Appendix to this chapter contains some other characterizations of closed sets
and summarizes all the presented characterizations of open and closed sets.

9.5 Compactness

Definition 415 Let (X,d) be a metric space, S a subset of X, and T be a set of arbitrary cardi-
nality. A family S = {S’Y}wer such that Vy € T, Sy is (X,d) open, is said to be an open cover of
S if S C UyerS,.

A subfamily 8" of S is called a subcover of S if S C Ugres'S”.

Definition 416 A metric space (X, d) is compact if every open cover of X has a finite subcover.
A set S C X is compact in X if every open cover of S has a finite subcover of S.

Example 417 Any finite set in any metric space is compact.
Take S = {z;};—, in (X,d) and an open cover S of S. For any i € {1,...,n}, take an open set
in S which contains x;; call it S;. Then &' = {S; :i € {1,...,n}} is the desired open subcover of S.

4Proposition 475 in Appendix 9.8.1 presents a different proof of the result below.
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Example 418 1. (0,1) is not compact in (R,ds).
We want to show that the following statement is true:

- (VS such that Uses S 2 (0,1), 38" C S such that #8’ is finite and Ugses S 2 (0,1)),
i.e.,
38 such that Uses S 2 (0,1) and VS' C S either #S’ is infinite or Uges S 2 (0,1).

Take S = ((%, 1))neN\{0,1}
that S’ = ((%,1))71 Take n* = max{n € N}. Then, Uses'S = Unen (%,1) = (n—l*,l) and
(1) 2(0,1).

2. (0,1] is not compact in (R,dy). Take S = ((%, 2))nEN and 8" any finite subcover of S.Then
there exists a finite set N such that 8’ = ((%,2))%]\,. Take n* = max{n € N}. Then, Uges' S =

Unen (£,2) = (7.2) and (,2) 3 (0.1]

and 8" any finite subcover of S.Then there exists a finite set N such

EN’

Proposition 419 Let (X, d) be a metric space.
X compact and C C X closed = (C compact) .

Proof. Take an open cover S of C. Then S U (X\C) is an open cover of X. Since X is
compact, then there exists an open covers S’of S U (X\C) which cover X. Then S\ {X\C} is a
finite subcover of S which covers C. m

9.5.1 Compactness and bounded, closed sets

Definition 420 Let (X,d) be a metric space and a nonempty subset S of X. S is bounded in (X, d)
if Ir € Ryy such that Va,y € S, d(z,y) <.

Proposition 421 Given a metric space (X,d) and a nonempty subset S of X, then
S is bounded < FIr* € Ryt and 3z € X such that S C B (Z,1%).

Proof. [=] Take 7* = r and an arbitrary point Z in S C X.
[=] Take z,y € S. Then
d(z,y) <d(z,Z)+d(Z,y) < 2r

Then it is enough to take r* =2r. m
Proposition 422 The finite union of bounded set is bounded.

Proof. Take n € N and {S;}!"_, such that Vi € {1,...,n}, S; is bounded. Then, Vi € {1,...,n},
Ir € Ry such that S; C B (z,7;). Take r = max {r;};_,. Then U ,S; CU~,B(z,r;) C B(z,r).
|
Proposition 423 Let (X,d) be a metric space and S a subset of X.

S compact = S bounded.

Proof. If S = &, we are done. Assume then that S # @, and takeT € S and B = {B (T,n)},,cy-
B is an open cover of X and therefore of S. Then, there exists B’ C B such that

B = {B (=7, ni)}iGN’

where N is a finite set and B’ covers S.
Then takes n* = max;cn n;, we get S C B (T, n*) as desired. m

Proposition 424 Let (X, d) be a metric space and S a subset of X.

S compact = S closed.
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Proof. If S = X, we are done by Proposition 378. Assume that S # X: we want to show that
X\S is open. Take y € S and x € X\S. Then, taken 7, € R such that

1
0<ry < §d($,y),
we have
B (y,ry) N B (z,ry) = @.

Now, § = {B (y,ry) : y € S} is an open cover of S, and since S is compact, there exists a finite
subcover S’ of S which covers S, say

S/ = {B (ynvrn)}neNv
such that NV is a finite set. Take

r* = minr,,
nenN

and therefore * > 0. Then Vn € N,
B (yn,mn) N B(x,1) = D,

B (ynarn) nB (ZL‘,’I’*) =4,

and
(Unen B (Yn, 1)) N B (z,1") = @.

Since {B (Yn,7n)},cn covers S, we then have
SNB(z,r") =0,

or
B (z,r*) C X\S.

Therefore, we have shown that
Vo € X\S,3r* € Ry, such that B (z,r") C X\S,
i.e., X\S is open and S is closed. m

Remark 425 Summarizing, we have seen that in any metric space
S compact = S bounded and closed.

The opposite implication is false. In fact, the following sets are bounded, closed and not compact.

1. Let the metric space ((0,400),ds). (0,1] is closed from Remark 394, it is clearly bounded
and it is not compact from Example 418.2 .

2. (X,d) where X is an infinite set and d is the discrete metric.

X is closed, from Remark 383 .

X is bounded: take x € X andr =2 .

X is not compact. Take S = {B (x,1)},.x. Then Yo € X there exists a unique element Sy in
S such that x € Sy. ®

Remark 426 In next section we are going to show that if (X,d) is an Euclidean space with the
Euclidean distance and S C X, then

S compact < S bounded and closed.

5For other examples, see among others, page 155, Ok (2007).
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9.5.2 Sequential compactness

Definition 427 Let a metric space (X, d) be given. S C X is sequentially compact if every sequence
of elements of S has a subsequence which converges to an element of S, i.e.,

{(Zn)pen is a sequence in S) = (3 a subsequence (yn),en Of (Tn),en Such that y, — x € S).

In what follows, we want to prove that in metric spaces, compactness is equivalent to sequential
compactness. To do that requires some work and the introduction of some, useful in itself, concepts.

Proposition 428 (Nested intervals) For everyn € N, define I, = [an,b,] C R such that I,11 C I,.
Then Npenl, # 9.

Proof. By assumption,
a1 <as<..<a,<.. (9.16)

and
by <bpo1 << by (9.17)

Then,
Ym,n €N, a,, <b,

simply because, if m > n, then a,, < b, < b,,where the first inequality follows from the
definition of interval I,,, and the second one from (9.17), and if m < n, then a,, < a, < b,,where
the first inequality follows from (9.16) and the second one from the definition of interval I,,.

Then A := {a, : n € N} is nonempty and bounded above by b,, for any n.Then sup A := s exists.

Since Vn € N, b, is an upper bound for A,

VneN, s<b,
and from the definition of sup,
YvneN, a,<s

Then
VneN, a,<s<b,

and
vneN, I,#@.

Remark 429 The statement in the above Proposition is false if instead of taking closed bounded
intervals we take either open or unbounded intervals. To see that consider I, = (O, %) and I, =
[n, +00].

Proposition 430 (Bolzano- Weirstrass) If S C R™ has infinite cardinality and is bounded, then S
admits at least an accumulation point, i.e., D (S) # &.

Proof. Step 1. n=1.
Since S is bounded, Jag,by € R such that S C [ag, by] := By.Divide By in two subinterval of
equal length:

[ao,ao—;bo] and {ao—;bo,bo]

Choose an interval which contains an infinite number of points in S. Call B; = [a1, b1] that
interval. Proceed as above for B;. We therefore obtain a family of intervals

ByD2B12...02B, D ..

Observe that lenght By := by — ag and

bo — ag

Vn € N, lenght B, = on
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Therefore, Ve > 0, 3 N € N such that Vn > N, lenght B,, < ¢.
From Proposition 428, it follows that

dx € ﬂZﬁ%Bn
We are now left with showing that z is an accumulation point for S
Vr € R4, B(x,r) contains an infinite number of points.

By construction, Vn € N, B,, contains an infinite number of points; it is therefore enough to
show that
Vr € Ry4,3n € N such that B (z,r) 2 B,.

Observe that
B(z,r) DB, < (x—r,x4+7) 2 an, by e —1r<a, <b, <z+r e max{r—an,b, —z} <r
Moreover, since x € [ay,, by,

bo — ao
27l

max {T — an, b, — x} < b, — a, = lenght B, =

Therefore, it suffices to show that

by —
Vr € Ry 4,3n € N such that oz_nao <r

i.e., n € Nand n > log, (by — ag).
Step 2. Omitted (See Ok (2007)). m

Remark 431 The above Proposition does mot say that there exists an accumulation point which
belongs to S. To see that, consider S = {% 'n € N}.

Proposition 432 Let a metric space (X,d) be given and consider the following statements.

1. S is compact set;

2. Every infinite subset of S has an accumulation point which belongs to S, i.e.,
(T'C S AN#T is infinite) = (D (T) NS # @),

3. S is sequentially compact

4. S is closed and bounded.

Then
l.2.<3=4.

If X =R", d = ds, then we also have that
3«4
Proof. (1) = (2)¢
Take an infinite subset T' C S and suppose otherwise. Then, no point in S is an accumulation
point of T, i.e., Vx € S Ir; > 0 such that
B(z,r,) NT\{z} = @.

Then”
B(xz,r,)NT C{x}. (9.19)

6Proofs of 1 = 2 and 2 = 3 are taken from Aliprantis and Burkinshaw (1990), pages 38-39.
"In general,
A\B=C = ACCUB, (9.18)

as shown below.
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Since
S C UzESB (ac,rx)

and S is compact, 3x1, ..., T, such that
S C U B (xi,r;)
Then, since T'C S,
T=SNT C(U;B(z,r:))NT =Uj—y (B(x;, ) NT) C{x1,..., 20}

where the last inclusion follows from (9.19). But then #7 < n, a contradiction.

2) = (3)

Take a sequence (2,),,cy of elements in S.

If #{z, : n € N} is finite, then 3z, such that «; = x,- for j in an infinite subset of N, and
(Tpxy ooy Ty ...) is the required convergent subsequence - converging to z,« € S.

If # {z,, : n € N} is infinite, then there exists a subsequence (y,),,cy Of (1), With an infinite
amount distinct values, i.e., such that Yn,m € N,n # m, we have y, # ym,. To construct the
subsequence (y")neN’ proceed as follows.

Y1 = 21 = Ty,

Y2 = Ty ¢ {xlﬁ}v

Y3 = Tkg §é {$k17$k2}7

Yn = Tk, ¢ {xkuxkz? "'zkn—l}’

Since T := {y, : n € N} is an infinite subset of S, by assumption it does have an accumulation
point z in S; moreover, we can redefine (yy,),cy in order to have Vn € N, y,, # %, as follows.
If 3k such that yx = =, take the (sub)sequence (Yri1,Yr+2,--) = (Yk+n)pen- With some abuse of
notation, call still (y,),cy the sequence so obtained. Now take a further subsequence as follows,
using the fact that = is an accumulation point of {y, : n € N} :=T,

Ym, € T such that d (ym1,2) < 1,

Ym, € T such that d (yme,z) < min{ (d (Ym, a:))mgml} ,

1
PR
Ymg € T such that d (yms,x) < min {%, (d (Ym, m»mﬁmg} ,

Ym, € T such that d (Y, , ) < min {%, (d (ymax))mgmn,l} ,

Observe that since ¥n, d (ym,, ,x) < min {(d (ym,m))mgmwl}, we have that Vn, m, > my,_1

and therefore (ym,, ),y is a subsequence of (yy,),, .y and therefore of () Finally, since

neN’

1
li d (Ym., » li —=0
n e @ W ) < L0
we also have that

lim =x
n—-+o00 Yma,

as desired.

Since A\B = AN BY, by assumption, we have
(AmBC) UB=CURB

Moreover,
(Ach)uB:(AUB)m<BCuB> =AUBDA

Observe that the inclusion in (9.18) can be strict, i.e., it can be
AAB=C NACCUB,;
just take A = {1} ,B = {2} and C = {1} :
AA\B={1}=C NA={1} cCUB={1,2};

8Below we need to have d (yn,x) > 0.
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(3) = (1)

It is the content of Proposition 441 below.

(1) = (4)

It is the content of Remark 425.

If X =R", (4) = (2)

Take an infinite subset 7' C S. Since S is bounded T is bounded as well. Then from Bolzano-
Weirestrass theorem, i.e., Proposition 430, D (T') # @. Since T' C S, from Proposition 467, D (T') C
D (S) and since S is closed, D(S) C S. Then, summarizing @ # D (T) C S and therefore
D(T)NS=D(T) # &, as desired. m

To complete the proof of the above Theorem it suffices to show sequential compactness implies
compactness, which is done below, and it requires some preliminary results.

Definition 433 Let (X,d) be a metric space and S a subset of X. S is totally bounded if Ve > 0,3
a finite set T C S such that S C Uzer B (z,¢€).

Proposition 434 Let (X,d) be a metric space and S a subset of X.
S totally bounded = S bounded.
Proof. It follows from the definition of totally bounded sets and from Proposition 422. m
Remark 435 In the previous Proposition, the opposite implication does not hold true.

Example 436 Take (X,d) where X is an infinite set and d is the discrete metric. Then, if ¢ = %,
a ball is needed to “take care of each element in X7 . Similar situation arises in the following
probably more interesting example.

Example 437 Consider the metric space (l2, d2) - see Proposition 346. Recall that
+oo
2 = {(:rn)neN e R>: Z |z,| < +oo}
n=1

and

D=

+oo
d2 : 12 X 12 — R+, ((xn)neN s (y")TLGN) — (Z |,’13n — yn|2>

n=1

Define em = (€mn), ey Such that

1 if n=m

Em,n =

0 if n#m,
and S = {e, : m € N}. In other words, S =
{(1,0,0,...,0,...),(0,1,0,...,0,...), (0,0, 1, ....0,...) , ..} .

Observe that Ym € N, ZIE em,n|2 =1 and therefore S C I2. We now want to check that S is
bounded, but not totally bounded. The main ingredient of the argument below is that

Vm,p € N such that m #p, d(em,ep) = V2. (9.20)

1
1. S is bounded. For any m € N, d(e1,em) = (Zzz |€1,n,6m7n‘2) * =21,
2. S is not totally bounded. We want to show that e > 0 such that for any finite subset T
of S there exists © € S such that x ¢ UzerB (x,¢). Take ¢ = land let T = {ey : k € N} with N
arbitrary finite subset of N. Then, for k' € N\N, exs € S and from (9.20), for any k' € N\N and

k€N, d(eg,ep) =+2>1. Therefore, for K € N\N, ex & UpenB (ex,1).

Remark 438 In (R",dz), S bounded = S totally bounded.
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Lemma 439 Let (X,d) be a metric space and S a subset of X.
S sequentially compact = S totally bounded.

Proof. Suppose otherwise, i.e., 3¢ > 0 such that for any finite set T C S, S g UzeT B (2,¢€).
We are now going to construct a sequence in S which does not admit any convergent subsequence,
contradicting sequential compactness.

Take an arbitrary

T € 8S.

Then, by assumption S € B (z1,£). Then take x5 € S\B (z1,¢), i.e.,
xo € S and d (z1,22) > €.
By assumption, S € B (z1,¢) U B (22,¢). Then, take 3 € S\ (B (z1,€) U B (z2,¢)), i.e.,
z3 € S and for i € {1,2}, d(x3,z;) >e.
By the axiom of choice, we get that
VneN, z,e€Sandforie{l,...,n—1}, d(z, z;)>e.
Therefore, we have constructed a sequence (), oy € S such that
Vi,j € N, if i # 4, then d (z;, ;) > €. (9.21)

But, then it is easy to check that (x,), .y does not have any convergent subsequence in S, as
verified below. Suppose otherwise, then (), .y would admit a subsequence (2, ),,cy € S such
that z,,, — 2 € S. But, by definition of convergence, 3N € N such that ¥Ym > N, d (2, ) < 5,
and therefore

d(Tmy Tmt1) < d(Tm, ) + d (X1, ) < &,

contradicting (9.21). m
Lemma 440 Let (X,d) be a metric space and S a subset of X.

S sequentially compact
S is an open cover of S

> = ( Je >0 such that Vo € S, 30, € S such that B (z,e) C O, ).
Proof. Suppose otherwise; then
1
Vn € Ny, 3z, € S such that VO € S, B (zn, E) Z 0. (9.22)

By sequential compactness, the sequence (), .y € S° admits a subsequence, without loss of
generality the sequence itself, (v,), .y € S such that z,, — x € S. Since S is an open cover of S,
3 O € S such that z € O and, since O is open, 3¢ > 0 such that

B(z,¢) CO. (9.23)

Since x, — z, IM € N such that{zp;1;,9 € N} C B (m, %) Now, take n > max {M, %} Then,

1
B <xn, —) C B(z,¢). (9.24)
n
ie., d(y,zn) <+ = d(y,z) < e, as shown below.

1
d(y,z) <d(y,zn) +d(2n,z) < E—i—% <e.

From (9.23) and (9.24), we get B (z,,2) C O € S, contradicting (9.22). m
Proposition 441 Let (X,d) be a metric space and S a subset of X.

S sequentially compact = S compact.
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Proof. Take an open cover S of S. Since S is sequentially compact, from Lemma 440,
3 > 0 such that Vo € S 30, € S such that B (x,g) C O,.

Moreover, from Lemma 439 and the definition of total boundedness, there exists a finite set
T C S such that S C Uper B (2,8) C UgerO,. But then {O, : x € T} is the required subcover of
S which covers S. =

We conclude our discussion on compactness with some results we hope will clarify the concept
of compactness in R™.

Proposition 442 Let X be a proper subset of R™, and C a subset of X.

C is bounded and (R™,dy) closed
1)
Cis (R",dy) compact
12
Cis (X,d2) compact
4 (not 1) 3
C is bounded and (X,dz2) closed

Proof. [1J]
It is the content of (Propositions 423, 424 and last part of) Proposition 432.
To show the other result, observe preliminarily that

(XN S.)U(XNSs) =XN(SaUSs)

2 U]
Take T := {Ta},c 4 such that Voo € A, T, is (X,d) open and C C UaeaTo. From Proposition
395,
Va € A, 385, such that S, is (R",d2) open and T, = X N S,.

Then
CC UaGATa C Uaea (X N Sa) =XnN (UQGASQ) .

We then have that

C g UaeASOM
ie., S :={Sa}aca is a (R", da) open cover of C' and since C' is (R",d) compact, then there exists
a finite subcover {S;},. of S such that

C C UienSi.
Since C C X , we then have

C C (UienSi) N X = Uien (8 N X) = UienT;,

i.e., {Ti},cn is a (X, d) open subcover of {T,},c 4 which covers C, as required.
ll%akt]é’ = {Sa}qca such that Vo € A, S, is (R",d2) open and C' C Uac4S,. From Proposition
. Vae A, T,:=XNS,is (X,d) open.
Since C C X , we then have
C C (UaeaSa) N X =Ugea (Sa NX) =UqecaTa.

Then, by assumption, there exists {T;},. 5 is an open subcover of {T,} ., which covers C, and
therefore there exists a set N with finite cardinality such that

C CUienT; = Uien (8i N X) = (UienSi) N X C (Uien Si)

i.e., {Si};cn is a (R, dz) open subcover of {S.},. 4 which covers C, as required.
3 V]
It is the content of Propositions 423, 424.
[3 not ]
See Remark 425.1. m
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Remark 443 The proof of part [2 J}] above can be used to show the following result.
Given a metric space (X,d), a metric subspace (Y,d) a set C CY, then

C is (Y,d) compact

)

Cis (X,d) compact

In other words, (X',d) compactness of C C X' C X is an intrinsic property of C: it does not
depend by the subspace X'you are considering. On the other hand, as we have seen, closedness and
openness are not an intrinsic property of the set.

Remark 444 Observe also that to define “anyway” compact sets as closed and bounded sets would
not be a good choice. The conclusion of the extreme value theorem (see Theorem 512) would not
hold in that case. That theorem basically says that a continuous real valued function on a compact
set admits a global mazximum. It is not the case that a continuous real valued function on a closed
and bounded set admits a global maximum: consider the continuous function

1
ot

[0 =R, f(z)=

The set (0, 1] is bounded and closed (in ((0,400),d3) and f has no maximum on (0, 1].

9.6 Completeness

9.6.1 Cauchy sequences
Definition 445 Let (X,d) be a metric space. A sequence (x,), oy € X™ is a Cauchy sequence if

Ve >0, IN €N such that Vi,m > N, d(z;,xm) < €.

Proposition 446 Let a metric space (X, d) and a sequence (x,),,cy € X be given.

~

Tn),en 18 convergent = (), ¢y i Cauchy, but not vice-versa;

- (
(@) pen 8 Cauchy = (xy,),,cy 15 bounded;

Lo o

Tp),cn 8 Cauchy and it has a subsequence converging to x € X = (), cy 5 convergent to
zeX.

Proof. 1.

[=] Since (x,),,cy is convergent, by definition, 3z € X such that x, — 2, 3N € N such that
Vl,?E”L T N, d(z,r;) < § and d (z,z,) < 5. But then d(z;,2,,) < d(x,2) +d(z,2m,) < §+5 =¢.

<

Take X = (0,1), d = absolute value, (z,,),,cy € (0,1)™ such that Vn € N, z,, = L.

(Tn),cy is Cauchy:

veso0, df(i )|ttt
l'm I m l m I m

where the last inequality is true if % < 5 and % < 5, de, if [ > % and m > % Then, it is
enough to take N > % and N € N, to get the desired result.
(Tn),cy is NOt convergent to any point in (0, 1):

take any T € (0,1). We want to show that
Je > 0 such that VN € N In > N such that d(z,,T) > ¢.

Take ¢ = Z > 0 and VN € N, take n* € N such that - < min {3, Z}. Then, n* > N, and

1 _ 1 >F T T
_—— = _— —_— —_——_ = = = c.
n* T Tt T 2T
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Take e = 1. Then IN € N such that VI,m > N, d(x;,2,) < 1. If N =1, we are done. If
N > 1, define
r=max{l,d(z1,zn),...,d(xN_1,ZN)} .
Then
{n:meN} C B(xn,T).
3.
Let (xp,),cyn be a convergent subsequence to x € X. Then,

d(zn,x) <d(zn,zn,) +d(Tn,, ).

Since d (2, Zn, ) — 0, because the sequence is Cauchy, and d (2, n, ) — 0, because the subse-
quence is convergent, the desired result follows. =

9.6.2 Complete metric spaces

Definition 447 A metric space (X, d) is complete if every Cauchy sequence is a convergent se-
quence.

Remark 448 If a metric space is complete, to show convergence you do not need to guess the limit
of the sequence: it is enough to show that the sequence is Cauchy.

Example 449 ((0,1), absolute value) is not a complete metric space; it is enough to consider
(%)
n/neN’

Example 450 Let (X,d) be a discrete metric space. Then, it is complete. Take a Cauchy sequence
(Tn),eny € X Then, we claim that 3N € N and T € X such that ¥n > N, x, = Z. Suppose
otherwise:

VN € N,3Im,m' > N such that 2, # T,

but then d (T, Ty ) = 1, contradicting the fact that the sequence is Cauchy.

Example 451 (Q,dz) is not a complete metric space. Since R\Q is dense in R, Vo € R\Q, we
can find (x,), cy € Q™ such that x, — x.

Proposition 452 (Rk,dg) is complete.

Proof. 1. (R,ds) is complete.

Take a Cauchy sequence (2,,),,cy € R*. Then, from Proposition 446.2, it is bounded. Then from
Bolzanol-Weierstrass Theorem (i.e., Proposition 406.4), (z,,),,cy does have a convergent subsequence
- ie., 3(Yn),en € R which is a subsequence of (z,,),cy and such that y, — a € R. Then from
Proposition 446.3.

2. For any k > 2, (Rk, dg) is complete.

Take a Cauchy sequence (z,,),,cy € (Rk)oo For i € {1, ..., k}, consider (wﬁl)neN € R*°. Then, for
any n,m € N,

|‘T2z - "Ezn| < Hxﬁ - $m” .
Then, Vi € {1,...,k}, (x;)neN € R is Cauchy and therefore from 1. above, Vi € {1,...,k},

(xn)n N is convergent. Finally, from Proposition 409, the desired result follows. m

Example 453 For any nonempty set T, (B (T),d) is a complete metric space.

Let (fn)nen € (B(T))™ be a Cauchy sequence. For any T € T, (fn (T)),en € R™ is a Cauchy
sequence, and since R is complete, it has a convergent subsequence, without loss of generality,
(fn (Z)) ey itself converging say to fz € R. Define

f:T—-R, 1T - f7

We are going to show that (i). f € B(T), and (i) f, — f.
(i). Since (fn),, is Cauchy,

Ve >0, IN €N such that Vi,m > N, doo (fi, fm) :=sup |fi (z) — fm (2)] < &.
zecT



9.6. COMPLETENESS 139

Then,
Ve eT, [fi(z)— fm(2)| < sup [fi (@) = fm (2)] = doo (f1, fm) <& (9.25)

Taking limits of both sides of (9.25) for | — 400, and using the continuity of the absolute value
function, we have that

Vo €T, lim |fi (@) = fm (2)| = [f (2) = fm (2)] <e. (9.26)

Since’
Ve eT,| |f@)|—=[fm@] [<|[f(z)-fm(z)]|<e,

and therefore,
Ve e T,|f(x)] < fm(x)+e.

Since fr € B(T), f € B(T) as well.
(ii) From (9.26), we also have that

Ve e T,[f (z) — fm (z)] <e,
and by definition of sup

doo (fm f) = sup | fm (x) = f (2)] <e,

zeT
ive., doo (fins ) = 0.

For future use, we also show the following result.
Proposition 454
BC(X):={f:X —R: f is bounded and continuous}
endowed with the metric d(f,g) = sup,ex |f () — g ()| is a complete metric space.

Proof. See Stokey and Lucas (1989), page 47. =

9.6.3 Completeness and closedness

Proposition 455 Let a metric space (X,d) and a metric subspace (Y,d) of (X,d) be given.

1. 'Y complete =Y closed;

2. 'Y complete <Y closed and X complete.

Proof. 1.

Take (z),cy € Y such that x, — 2. From Proposition 413, it is enough to show that z € Y.
Since (,),,cy is convergent in X, then it is Cauchy. Since Y is complete, by definition, z,, — z € Y.

2.

Take a Cauchy sequence (z,,),cy € Y>°. We want to show that x, — 2 € Y. Since Y C X,
(xn)neN is Cauchy in X, and since X is complete, x,, — z € X. But since Y is closed, z € Y. =

Remark 456 An example of a metric subspace (Y,d) of (X, d) which is closed and not complete is
the following one. (X,d) = (Ry4,d2), (Y,d) = ((0,1],d2) and (), cy = (%)HGN.

Corollary 457 Let a complete metric space (X, d) and a metric subspace (Y,d) of (X, d) be given.
Then,

Y complete < Y closed.

9See, for example, page 37 in Ok (2007).
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9.7 Fixed point theorem: contractions
Definition 458 Let (X, d) be a metric space. A function ¢ : X — X is said to be a contraction if
3k € (0,1) such thatVx,y € X, d(¢(z),0(y)) <k-d(z,y).
The inf of the set of k satisfying the above condition is called contraction coefficient of ¢.
Example 459 1. Given (R,dy),
fa:R—R, T ax

is a contraction iff |a| < 1; in that case |af is the contraction coefficient of f .
2. Let S be a nonempty open subset of R and f : S — S a differentiable function. If

sup | f' (z)] < 1,
zeS
then f is a contraction.

Definition 460 For any f,g € X C B(T), we say that f < g ifVe €T, f (z) < g(x).

Proposition 461 (Blackwell) Let the following objects be given:
1. a nonempty set T';
2. X is a nonempty subset of the set B(T) such thatVf € X,Va e R, f+a € X;
3. ¢: X — X isincreasing, i.e., f <g=¢(f) <o (9);
4. 36 € (0,1) such thatVf € X,Va e Ry, ¢ (f +a) <o (f)+ da.
Then ¢ is a contraction with contraction coefficient 6.

Proof. Vf,ge X,Vx €T
f@)—g@) <|f(z)—g(2)| < Slél;lf(x) —g (@) =dw (f,9)-
Therefore, f < g+ de (f, g), and from Assumption 3,

¢(f) <(g+dw(f9))

Then, from Assumption 4,
36 € (0,1) such that ¢ (9 + des (f,9)) < ¢(9) + dde (f,9)

and therefore

o (f) < o(9) +dd (f,9). (9.27)
Since the argument above is symmetric with respect to f and g, we also have
¢(9) <o (f) +dde (f,9).- (9.28)

From (9.27) and (9.28) and the definition of absolute value, we have
6(f) = ¢ (9)| < dds (f,9)
as desired. ®

Proposition 462 (Banach fized point theorem) Let (X, d) be a complete metric space. If ¢ : X —
X is a contraction with coefficient k, then

Al z* € X such that x* = ¢ (z*). (9.29)

and
Veg € X andVn e N,  d(¢" (xo),2") < k™ -d(zg,z"), (9.30)

1 2 n
where ¢" = (podo...o9).
Proof. (9.29) holds true.
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Take any xo € X and define the sequence
(Tn) ey € X°°, withVn € Nywpy = ¢ () -

We want to show that 1. that (v,),cy is Cauchy, 2. its limit is a fived point for ¢, and 3. that
fized point is unique.
1. First of all observe that

Vn € Nyd (Tn41,n) < k"d (21, 20), (9.31)

where k is the contraction coefficient of ¢, as shown by induction below.
Step 1: P (1) is true:

d(z2,21) = d(¢(x1), ¢ (x0)) < kd (1, 20)

from the definition of the chosen sequence and the assumption that ¢ is a contraction.

Step 2. P(n—1)=P(n):
d(xn+1,xn) = d(¢ (xn) N (xn—l)) < kd (xp, xn—l) <k"d (xlva)

from the definition of the chosen sequence, the assumption that ¢ is a contraction and the assumption
of the induction step.
Now, for any m,l € N with m > [,

d(@m,z1) < d(Tm, Tm-1) + d(Tm-1,Tm—2) + ... + d (@141, 21) <

< (R B2 4 kD) d (2, m0) < KMSETd (24, 20)

where the first inequality follows from the triangle inequality, the third one from the following

computation'® :

1—km!
e A Sy Uy S Y Y U klﬁ
Finally, since k € (0,1) ,we get

l
d(ZL'm,ZEl) < 1_

k_d(zl,LEo) . (932)

If x1 = xo, then for any m,l € N with m > l,d(xm,x;) = 0 and Vn € N, x,, = x¢ and the
sequence is converging and therefore it is Cauchy. Therefore, consider the case x1 # xo.From (9.32)
it follows that (xy),cy € X is Cauchy: Ye > 0 choose N € N such that%d(ml,xo) < e, ie.,

e(1—k)

N e(l1—k) log g 20y
kY < Ao wo) and N > logln .

2. Since (X,d) is a complete metric space, (Tn) ey € X does converge say to x* € X, and,
in fact, we want to show that ¢ (z*) = *. Then, Ve > 0,3IN € N such that ¥Vn > N,

d(¢(a*),2*) <d(¢(x*),Tny1) +d (a2 2*) <
<d(p(x*), ¢ (xn)) +d (2" 2*) < kd (2%, 2,) +d (2", 2%) <

£ 4 & —
§2+2_€7

10We are also using the basic facat used to study geometrical series. Define

sn=1+a+a’+..+a"

Multiply both sides of the above equality by(1 — a):
1-a)sn=(01-a) (1+a+a2+...+an)
(1—a)sn = (1+a+a2+,..+a") — (a+a2+,..+a"+1) =1—g"*t!
Divide both sides by (1 — a):
1—qnt! 1 antl

— 2 ny _ 2 n+1) _ — —
sn_(l-‘ra-‘,—a +...+a) (a+a +..4+a ) T4 T 1—a
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where the first equality comes from the triangle inequality, the second one from the construction
of the sequence (), .y € X, the third one from the assumption that ¢ is a contraction and the
last one from the fact that (x,),cy converges to x*. Since ¢ is arbitrary, d(¢(x*),x*) = 0, as
desired.

3. Suppose that T is another fized point for ¢ - beside x*. Then,

d(z,2") =d(¢(2),¢(z")) < kd (z,27)

and assuming T # x* would imply 1 < k, a contradiction of the fact that ¢ is a contraction with
contraction coefficient k.

(9.30) hods true.

We show the claim by induction on n € N.

P (1) is true.

d(¢(w0),2%) = d(¢(w0), ¢ (")) < k-d(zo,z"),
where the equality follows from the fact that x* is a fixed point for ¢, and the inequality by the
fact that ¢ is a contraction.
P (n—1) is true implies that P (n) is true.

<k-d(¢" " (x0),2*) <k k"L d(mg,2*) = k" - d (w9, 2").

9.8 Appendices.

9.8.1 Some characterizations of open and closed sets
Remark 463 From basic set theory, we have A N B = @ & B C A, as verified below.
~(Jz:z€ ANz eB)=(Vz:x€ AV-(z€B)) =

=WVz:-(zeB)Vzecl ) (Vex:xe B=ze€A),
where (x) follows from the fact that (p = q¢) = ((—p) V q).
Proposition 464 S is open < S NF (S) = 2.

Proof. [=]
Suppose otherwise, i.e., 3z € S NF (S). Since z € F(S), Vr e Ry, B(x,7)NSY # @. Then,
from Remark 463, Vr € R, ., it is false that B (x,r) C S, contradicting the assumption that S is

open.
[«<]
Suppose otherwise, i.e., 3z € S such that
Vr e Ry, ,B(z,r)NSC # & (9.33)
Moreover
r€B(z,r)NS #2 (9.34)

But (9.33) and (9.34) imply « € F (S). Since z € S, we would have S NF (S) # &, contradicting
the assumption. m

Proposition 465 S is closed & F (S) C S.
Proof.
S closed < S¢ opengsC NF (S9) — g & g NF(S) =o& F(S)CS

where

(1) follows from Proposition 464;
(2) follows from Remark 386

(3) follows Remark 463. m
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Proposition 466 S is closed < D (S) C S.

Proof. We are going to use Proposition 465, i.e., S is closed < F (S) C S.
(=]
Suppose otherwise, i.e.,
Jz ¢ S such that Vr e Ry, (S\{z})NB(z,r) # 2
and since z ¢ S, it is also true that
V’I"ER++, SﬂB(l‘,T) #@ (935)

and
VreRy,, S°NB(x,71)# o (9.36)

From (9.35) and (9.36), it follows that x € F(S), while z ¢ S, which from Proposition 465
contradicts the assumption that S is closed.
[<]
Suppose otherwise, i.e., using Proposition 465,
Jz € F(S) such that z ¢ S
Then, by definition of F (.5),
VreRyy, B(z,r)NS#£g.
Since x ¢ S, we also have
VreRiy,  B(z,r)n(S\{z}) # 7,
ie.,z € D(S)and z ¢ S, a contradiction. m
Proposition 467 VS, T C X, SCT = D(S) C D(T).
Proof. Take z € D (S). Then
Vr e Ry, (S\{z})NB(z,r)+#2. (9.37)
Since S C T, we also have
(T\{z}) N B (z,r) 2 (S\{z}) N B (z,7). (9.38)
From (9.37) and (9.38), we get x € D(T). m

Proposition 468 S U D (S) is a closed set.

Proof. Take z € (SUD (5)) ie., 2 ¢ S and z ¢ D (S). We want to show that
Ir € Ryy such that B (z,7)N(SUD(S)) =2,

i.e.,
Ir € Ry such that (B (z,r)NS)U (B (x,r)ND(S)) =2,

Since « ¢ D (S), Ir € Ry such that B (z,7) N (S\ {z}) = @. Since = ¢ S, we also have that

Jr € Ry such that SN B(z,r) =g. (9.39)

We are then left with showing that B (z,7)ND (S) = @. If y € B(x,r), then from (9.39), y ¢ S
and B (z,r) NS \{y} =2, ie,y ¢ D(S),ie, B(z,r)ND(S) =2, as desired. m

Proposition 469 Cl (S)=SUD(S).
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Proof. [D]
Since
S CCl (9) (9.40)
from Proposition 467,
D(S)C D(Cl (9)). (9.41)

Since Cl1 (5) is closed, from Proposition 466,

D(Cl1 (5)) CCl (9) (9.42)
From (9.40), and (9.41),(9.42), we get

SUD(S)CCl(5)

€]
Since, from Proposition 468, S U D (S) is closed and contains S, then by definition of Cl (S5),

Cl (S)C SUD(S).

|
To proceed in our analysis, we need the following result.

Lemma 470 For any metric space (X,d) and any S C X, we have that
1. X =1Int SUF(S)UlInt S¢, and
2. (Int SUF(S)° = Int S°.

Proof. If either S = @ or S = X, the results are trivial. Otherwise, observe that either x € S
orx e X\ S

1. If x € S;then

either 3r € Ry such that B (x,7) C S and then = € Int S,

orVr € Ry, B(z,r)NSY # @ and then x € F (5).

Similarly, if € X \ S,then

either 3’ € Ry such that B (z,7) C X \ S and then z € Int (X \ S),

or V' € Ryy, B(x,7)NS # & and then z € F (S).

2. By definition of Interior and Boundary of a set, (Int SUF (S))NInt S¢ = @.

Now, for arbitrary sets A, B C X such that AUB = X and AN B = &, we have what follow:

AUB=X & (AUB)Y = X% & A° N B® = @, and from Remark 463, B¢ C A4;

ANB=0& AN (B°) =@ = AC BC.

Therefore we can the desired result. m

Proposition 471 Cl (S) = Int SUF(S).
Proof. From Lemma 470, it is enough to show that
(C1 (9))° = Int S°.

=)
Take z € Int SC. Then, Ir € R, such that B (X,r) C S¢ and therefore B (z,7)NS = @ and,
since = ¢ S,
B(z,r)Nn(S\{z}) = @.
Then z ¢ S and = ¢ D (9), ie.,
x¢ SUD(S)=Cl (5)

where last equality follows from Proposition 469. In other words, z € (Cl (S))°.
<]

Take x € (Cl (S))C =(D(S)U S)C. Since x ¢ D (.5),

Ir € Ryy such that (S\{z})NB(z,r) =92 (9.43)
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Since x ¢ S,
Ir € Ryy such that SNB(z,r) =9 (9.44)

i.e.,

Jr € Ry, such that B (z,r) C S¢ (9.45)

and z € Int S¢. m
Definition 472 z € X is an adherent point for S if Vr e Ry, B(x,r) NS # & and
Ad(S) ={ze X :VreRyy,B(z,7r)NS # o}

Corollary 473 1. Cl (S) = Ad(S).
2. A set S is closed < Ad(S)=S.

Proof. 1.

(€]

x € Cl (S) = (x € IntS or F(S)) and in both cases the desired conclusion is insured.

2]

If z € S, then, by definition of closure, z € Cl (S5). If © ¢ S,then S = S\ {z} and, from the
assumption, Vr € Ryy, B (z,7) N (S\{z}) # @, i.e.,, x € D(S) which is contained in Cl (S)from
Proposition 469.

2. It follows from 1. above and Proposition 389.2. m

Proposition 474 x € Cl (S) < 3 (2y),,cy in S converging to x.

Proof. [=]

From Corollary 473, if z € Cl1 (S) then Vn € N, we can take z,, € B (z,2)NS. Then d (z,z,) <
% and lim,,—, 4 d (z, x,) = 0.

[«<]

By definition of convergence,

Ve > 0,3n. € N such that Vn > n., d(x,,z) <eor z, € B(z,¢)

or
Ve >0, B(xz,e)NS D {xy:n>n}

and
Ve >0, B(z,e)NS # @

e,z € Ad(S), and from the Corollary 473.1, the desired result follows. m

Proposition 475 S is closed < any convergent sequence (), oy with elements in S converges to
an element of S.

Proof. We are going to show that S is closed using Proposition 466, i.e., S is closed <
D (S) C S. We want to show that

(D(S)§S>@<< (%n),cy is such that 1. Vn € N,z, € S, and >:>x0€S>,

2. x, — xo

(=]
Suppose otherwise, i.e., there exists (gvn)neN such that 1. Vn € N, z,, € S. and 2.z,, — z¢, but
Zo ¢ S.

By definition of convergent sequence, we have
Ve > 0,3ng € N such that Vn > ng, d(z,,z0) <€
and, since Vn € N, x,, € 5,
{Zn :m>ng} C B(xg,e) N (S\ {z0})

Then,
Ve > 0, B (zg,e) N (S\ {x0}) # @
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and therefore xg € D (S) while g ¢ S, contradicting the fact that S is closed.

[«]

Suppose otherwise, i.e., 3 g € D(S) and 2o ¢ S. We are going to construct a convergent
sequence (), cy With elements in S which converges to xo (a point not belonging to S).

From the definition of accumulation point,

VneN, (S\{zo})NB (m %) £

Then, we can take x,, € (S\ {z}) B (z,+), and since d (z,,,z0) < <, we have that d (z,, z¢) —
0. m
Summarizing, the following statements are equivalent:

1. Sis open (i.e.,, S C Int S)

2. 8¢ is closed,

3. SNF(S) =2,

and the following statements are equivalent:
1. S'is closed,

2. 5S¢ is open,

3. F(S)CS,

4. S=C1(9).

5. D(S)CS,

6. Ad(S) =5,

7. any convergent sequence (a:n)neN with elements in S converges to an element of S.

9.8.2 Norms and metrics

In these notes, a field K can be either R or C.
Definition 476 A norm on a vector space E on a field K € {R,C} is a function
-1 E—R, x|z
which satisfies the following properties: Vx,y € ENA € K,
1. ||z|| > 0 (non negativity),
2. |l +yl| < |lz|| + |lyl| (triangle inequality),
3. ||Az|| = |\ - ||z|| (homogeneity), !
4. ||z|| =0= 2 =0 (separation).
Proposition 477 Given a norm ||-|| on E, Vz,y € E
1. 2=0=|lz||=0
2. ||z —yll = lly — =l
3 (=[] = [lyIDI < Mz =yl

Proof.
LITf X € R, || is the absolute value of \; if A = (a,b) € C, then |\| = Va2 + b2.
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1. Since E is a vector space, Vo € E, 0x = 0 (from Proposition 135 in Villanacci (2012)). Then

(a)
0]l = 1[0zl 2 Jo] - fla| & 0jla| = 0
where (a) follows from property 3 of norm and (b) from the definition of absolute value.
(o)
2l —yll =l -y +zll = Pl —y— (=)l = I(-Dy+ D(=2)l| = [[(-Dy —2)]| =
[ =10 [ly — 2l = lly — =l
where (c¢) follows from Proposition 135.4 in Villanacci (2012).

3. From the definition of absolute value, we want to show that

=l =yl <ll=ll = [lyll <[]z = yll.

Indeed,
2|l = llz =y +yll < [lz = yll +[lyl],
Le., [[z =yl = [l«|] = |ly]|, and
lyll =lly — 2+ |l < |ly — 2l + llzl| = |z = yl[ + [|=],
ie, —|lz —y|| <||z|| — llyl|, as desired.

Proposition 478 If properties 2. and 3. in Definition 476 hold true, then property 1. in the same
definition holds true.

Proof. We want to show that
Uz +yll < 2|l + [yl Al[Az]] = [A] - []]])

= (Vz € E,||z|| > 0)

Observe that if = 0, from Proposition 477.2 (which uses only property 3 of Definition 476) we
have ||z|| = 0. Then

<z —=z|| <|lz|| + || — || and therefore
>

—llzll = =1 = 1] - l|l=[| = —{|]-

Now, if ||z|| < 0, we would have a negative number strictly larger than a positive number, which is
a contradiction. m

Definition 479 The pair (E, || ||), where E is a vector space and ||-|| is a norm, is called a normed
vector space.

Remark 480 Normed spaces are, by definition, vector space.
Definition 481 A seminorm is a function satisfying properties 1, 2 and 3 in Definition 476.

Definition 482 Given a non-empty set X, a function d : X x X — R is called a metric or a
distance on X if Vx,y,z € X,

1. d(z,y) > 0 (non negativity),

2. d(z,y) =0< x =y (coincidence),

3. d(z,y) = d(y,x) (symmetry),

4. d(z,z) < d(z,y) + d(y, z) (triangle inequality),

(X, d) is called a metric space.

2%y € V (=1)v = —v and —(—v) = (=1)((=1)v) = ((-1)(-1)v=1-v = .
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Definition 483 Given a normed vector space (E,|| - ||), the metric
d: E* >R, (z,y) — ||z — |

is called the metric induced by the norm || - ||.

Proposition 484 Given a normed vector space (E, || -1]),
d: ExE—R, (2,y)— [z -yl

is a metric and (E,d) is a metric space.

Proof.

1. It follows from the fact that z,y € E = x — y € E and property 1 of the norm.

2. It follows from property 1 of the norm and Proposition 477.1.

3. It follows from Proposition 477.2.

4od(w,z) =|lz -zl =[x —y) + (y = 2l < [lz —yll + |ly — 2[| = d(z, y) + d(y, 2).
|
Proposition 485 If || - || is a norm on a vector space E and

d:ExXE—-R, (z,y) |lz—yl

thenVx,y,z € E.VA € K

a. d(z,0) = ||z||

b. d(x+ z,y + z) = d(x,y) (translation invariance)

c. d(Azx,  \y) = |M|d(z,y) (homogeneity).

Proof.

a. d(x,0) = [l — 0[] = |||

b d(z+z,y+2) =|(z+2) = (Y +2)| =l —yll = d(z,y)

c. d(Az, Ay) = [[Az = Ayl = [[Mz = y)l| = [Al - [le — yl| = [Nd(z,y).
|

Proposition 486 Let (E,d) be a metric space such that d satisfies translation invariance and
homogeneity. Then

n:E—R, x+— d(z0)
is a norm and Vx,y € E, n(y — z) = d(z,y).

Proof.

1. n(x) = d(x,0) > 0, where the inequality follows from property 1 in Definition 4,
2.
(e +y) = dx +9,0) 2 dle +y .0 y) = da, ) < d(z,0) +d(0, ~y) =
9 d(,0) + d(~y,0) L d(0,y) + d(0,) = nly) + n(),
where (a) follows from translation invariance, (b) from triangle inequality in Definition 482,
(¢) from symmetry in Definition 482 and (d) from homogeneity.

n(Az) = d(Az,0) = |Ald(z,0) = |A|n(z),
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n(z) =0=d(z,0) =0= 2 =0.
It follows that
n(y—z)=dly—2z,0)=dly —z+z,0+2z) =dy,z) =d(z,y).
|

Remark 487 The above Proposition suggests that the following statement is false:

Given a metric space (E,d), thenng: E — R,: z — d(z,0) is a norm on E.

The fact that the above statement is false is verified below. Take an arbitrary vector space E
with the discrete metric d,

0 if z=y

d:ExFE—R, d(m,y):{l if x4y

First of all, let’s verify that d does not satisfy (translation invariance and homogeneity), other-
wise from Proposition 486, we would contradict the desired result. Indeed homogeneity fails.
Take x # y and X\ = 2 then

dz,y) =1 and d(Az,\y) =1
Ald(z,y) =2 # 1.
Let’s now show that in the case of the discrete metric
n:E—R, z~d(z0)
is not a norm. Take x # 0 and A = 2 then
[|Az|| = d(A\x,0) =1
[Ald(z,0) = 2.

9.9 Exercises

Problem sets: 3,4,5,6.

From Lipschutz (1965), starting from page 54: 1, 18, 19, 20, 23, 28 (observe that Lipscutz uses
the word “range” in the place of “image”);

starting from page 120: 1, 3, 6, 7, 25, 29.
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Chapter 10

Functions

10.1 Limits of functions
In what follows we take for given metric spaces (X, d) and (X', d’) and sets S C X and T C X'.

Definition 488 Given xg € D (S) ,i.e., given an accumulation point xo for S, and f : S — T, we
write

lim f(z) =1
if
Ve > 0,30 > 0 such that x € (B(x,q) (0,6) N S) \{zo} = f(x) € Bxr,ar) (I,)
or

Ve > 0,36 > 0 such that{z € S A 0<d(z,z0) <d)=d (f(z),l)<e
Proposition 489 Given xg € D(S) and f: S — T,
(limg—z f () =1)

=
< for any sequence (x,), oy n S such that Vn € N, x, # o and lim,,_. 4 o0 T, =70, >

limy, oo f (zn) = L.
Proof. for the following proof see also Proposition 6.2.4, page 123 in Morris.
[=]
Take

a sequence (), .y in S such that ¥n € N, x,, # 2o and hI—E Ty = Xo.
n—-—+0oo

We want to show that lim,, .4 f (z,,) =1, i.e.,
Ve > 0,3ng € N such that Yn > ng, d(f(z,),l) <e.
Since limg ., f (2) =1,
Ve>0,30 >0suchthat x € S A 0<d(z,z0) <d=d(f(x),]) <e.

Since lim,, 400 Ty =

V6 > 0,3dng € N such that Yn > ng, 0 (2) d(xn,x0) <9,

where (%) follows from the fact that ¥n € N, z,, # xo.
Therefore, combining the above results, we get

Ve > 0,3no € N such that Vn > ng, d(f (x,),1) <e

as desired.

151
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[«<]
Suppose otherwise, then

Je > 0 such that V6, = %, ie,VneN,dz, € S such that
(10.1)
2, €S N0 <d(zy,20) < tand d(f (z),l) > e.

Consider (2,),,cy; then, from the above and from Proposition 404, x,, — x¢, and from the above

(specifically the fact that 0 < d (x,, o)), we also have that Vn € N, z, # x¢. Then by assumption,
lim,— oo f (zn) =1, i.e., by definition of limit,
Ve >0, IN €N such that if n > N, then |f (z, —1)| <e¢,
contradicting (10.1). m

Proposition 490 (uniqueness) Given xo € D(S) and f:S — T,

<lim F@) =1 and lim f(z) =l >;»<z1=12>

T—x0 Tr—xTo
Proof. It follows from Proposition 489 and Proposition 408. =
Proposition 491 Given S C X, zg € D(S) and f,g: S — R, , and

lim f(z)=1and lim g(x)=m

Tr—x0 T—xTo
1. limy oy, f(2) +g(x) =1+ m;
2. limy_yy f(z)-g(z)=1-m;

3. ifm#0andVa €S, g(x) #0, limy_4, J;g;; =L

Proof. It follows from Proposition 489 and Proposition 406. =

10.2 Continuous Functions

Definition 492 Given a metric space (X,d) and a set V. C X, an open neighborhood of V' is an
open set containing V .

Remark 493 Sometimes, an open neighborhood is simply called a neighborhood.

Definition 494 Tuke S C (X,d),T C (Y,d'), zo € S and f : S = T. Then, f is (X,d) — (Y,d')
continuous at xg if

Ve > 0,36 > 0 such that x € (B(X‘d) (z0,0) N S) = f(z) € Bixr,a (f (%0) ,€),

i.e.,
Ve > 0,36 > 0 such that x € S ANd(z,x0) <d=d (f(z), f(z0)) <&,
i.e.,
Ve > 0,30 >0, f(Bx.a) (20,6)NS) C Bixra (f (w0),€),
i.e.,

for any open neighborhood V' of f (xq),
there exists an open neighborhood U of xy such that f(UNS) CV.

If f is continuous at xy for every xg in S, f is continuous on S.

Remark 495 If xg is an isolated point of S, f is continuos at xg. If xg is an accumulation point
for S, f is continuous at xo if and only if limy_, f () = f (zo).
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Proposition 496 Suppose that Z C X", where (X",d") is a metric space and
f:8—=T, g:WDf(S)—Z
hiS =2, h@) =g (f @)
If f is continuous at xg € S and g is continuous at f (xo), then h is continuous at xg.
Proof. Exercise (see Apostol (1974), page 79) or Ok, page 206. m
Proposition 497 Take f,g: S CR™ — R. If f and g are continuous, then
1. f+ g is continuous;
2. f-g is continuous;
3. ifve e s, g(x)#0, L s continuous.

g9

Proof. If z( is an isolated point of S, from Remark 495, we are done. If z( is an accumulation
point for S, the result follows from Remark 495 and Proposition 491. m

Proposition 498 Let f : S € X — R™, and for any j € {1,....,m} f; : S — R be such that
Ve S,
f@)=(f; (@)},

Then,
(f is continuous) < (Vj € {1,...,m}, f; is continuous)

Proof. The proof follows the strategy used in Proposition 409. m
Definition 499 Given for any i € {1,...,n}, S; C R, f : x1S; — R is continuous in each
variable separately if Vi € {1,...,n} and Vz{ € S,,

feo t XpziSk — R, fa0 ((%)@g) = [ (@1, i1, 20, Tig, s )
18 continuous.
Proposition 500 Given for any i € {1,...,n},

f x2S — R is continuous = f is continuous in each variable separately

Proof. Exercise. m

Remark 501 [t is false that
f is continuous in each variable separately = f is continuous

To see that consider f: R? — R,

S if (ny) 0
f(@,y) =
0 if (x,y)=0

The following Proposition is useful to show continuity of functions using the results about
continuity of functions from R to R.

Proposition 502 For any k € {1,...,n}, take Sy C X, and define S := x}'_,;Sx € X". Moreover,
take 1 € {1,...,n} and let
g:S; =Y, sxy g ()

be a continuous function and
f:8=Y, (@)1 > g (i) -

Then f is continuous.
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Example 503 An example of the objects described in the above Proposition is the following one.
g:[0,71] =R, g¢(z)=sinz,
f:[0,7] x [-7,0] = R, f(z,y)=sinz.
Proof. of Proposition 502. We want to show that
Vzg € S,¥e >0 36 > 0 such that d (z,29) <dAz €S =d(f(x),f(x0)) <e
We know that
Va0 € S;,Ve >0 36" > 0 such that d (z;,250) <8 Ax; €S =d(g9(x:),9(zi0)) < e

Take § = ¢'. Then d(z,20) <5 Az €S = d(xs,2i0) <6 ANy € Sand e > d(g(z;),9 (i) =
d(f(z), f(z0)), as desired. =

Exercise 504 Show that the following function is continuous.

{ exl2 + cos (z1 - x2)
f . RQ N Rd, f(l’li’Q) — sin® x;

er2
T+ o

From Proposition 498, it suffices to show that each component function is continuous. We are
going to show that f, : R? — R,

f1 (Ill'g) ="t —+ cos (501 . 1‘2)

is continuous, leaving the proof of the continuity of the other component functions to the reader.

1. f11:R?2 =R, f11 (w1, 22) = €®* is continuous from Proposition 502 and “Calculus 17;

2. hy :R?2 =R, hy(21,12) = x1 is continuous from Proposition 502 and “Calculus 17,

ha :R?2 =R, hy(21,72) = x2 is continuous from Proposition 502 and “Calculus 17,

g:R?2 =R, g(x1,22) = hy (x1,%2) - ha (z1,72) = x1 - 22 is continuous from Proposition 497.2,

¢:R—>R, ¢(x) =cosz is continuous from “Calculus 17,

fiz :R2 =R, fia(z1,22) = (p0g) (x1,22) = cos (x1 - T2) is continuous from Proposition 496
(continuity of composition).

8. f1 = fi1 + fi12 is continuous from Proposition 497.1.

The following Proposition is useful in the proofs of several results.

Proposition 505 Let S,T be arbitrary sets, f : S — T, {A;}!_, a family of subsets of S and
{B;},_, a family of subsets of T.Then

1. “inverse image preserves inclusions, unions, intersections and set differences”, i.e.,

a. BiCBy= f'(B), C f(7'B2),
b. f7H (UL Bi) = Ul f71 (Bi),

c. TN By) =N fH(Bi),

d. f71(Bi\Bs) = f1(B)\f " (B2),

2. “image preserves inclusions, unions, only”, i.e.,

e. A C A= f(A), C [(A2),
f. f(UL14i) = ULy f (Ad),
g [ (MizAi) € Niy f (4i) , and
if f is one-to-one, then f (NI, A;) =N, f (4;),

h. f(Ai1\A2) 2 f (A1) \f (A2) and
if f is one-to-one and onto, then f (A1\A3) = f (A1) \f (A2),

3. “relationship between image and inverse image”
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i. Al - f_l (f (A1>), and

if f is one-to-one, then A; = f~1(f (4;)),
1. B1 B f (f_l (Bl)); and

if f is onto, then By = f (f~* (By)).

Proof.

g.
(1).y € f(A1NAg) & 3z € Ay N Ay such that f (z) = y;
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(). y € f(A1)Nf(As) &y € f(A)AN y € f(A2) & (Fz1 € A; such that f(z1) =y) A

(Jz2 € Ay such that f(x2) =y)
To show that (i) = (4) it is enough to take 1 = x and z5 = x.
. i

Proposition 506 f: X — Y is continuous <
V CYisopen = f1(V)C X is open.

Proof. [=]
Take a point zg € f~* (V). We want to show that

3r > 0 such that B (zg,r) C f~ (V)
Define yo = f (z¢) € V. Since V CY is open,
Je > 0 such that B (yo,e) CV
Since f is continuous,
Ve > 0,36 >0, f (B (z0,0)) € B(f (z0) ,€) = B (yo, )
Then, taken r = §, we have

¢)) 2) 3)

B(xo,7) = B (20,0) C [~ (f (B (w0,9))) € f~" (B (yo,€)) S fH(V)
where (1) follows from 3.i in Proposition 505,
(2) follows from 1.a in Proposition 505 and (10.3)
(3) follows from 1.a in Proposition 505 and (10.2).
[«<]
Take 9 € X and define yg = f (x0); we want to show that f is continuous at x.
Take ¢ > 0, then B (yp,¢) is open and, by assumption,

1 (B (yo,¢)) C X is open.

Moreover, by definition of yg,
w0 € f7H(B (yo,€))
(10.4) and (10.5) imply that
36 > 0 such that B (z,6) € £~ (B (yo,¢))
Then

1) 2

f(B(x0,8)) € f(f~"(B(yo,¢))) € (B(y0,¢))

—~
=

where
(1) follows from 2.e in Proposition 505 and (10.6),
(2) follows from 2.1 in Proposition 505 m

Proposition 507 f: X — Y is continuous <

V CY closed = f~! (V) C X closed.

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)
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Proof. [=]
V closed in Y = Y'\V open. Then

AV =)\ V) =X\ L) (10.7)

where the first equality follows from 1.d in Proposition 505.

Since f is continuous and Y'\V open,then from (10.7) X\f~* (V) C X is open and therefore
f1(V) is closed.

(<]

We want to show that for every open set V in Y, f=1 (V) is open.

V open = Y\V closed = f~1 (Y\V) closed< X\ f~! (V) closede f~1 (V) open.
]
Definition 508 A function f: X — Y is open if
S C X open = f(S) open;

it is closed if
S C X closed = f(S) closed.

Exercise 509 Through simple examples show the relationship between open,closed and continuous
functions.

We can summarize our discussion on continuous function in the following Proposition.

Proposition 510 Let f be a function between metric spaces (X,d) and (Y,d'). Then the following
statements are equivalent:

1. f is continuous;
2. VCYisopen= f 1 (V)C X is open;
3. VCY closed = f~1(V)C X closed;

4. Voo € X, V(@) ey € X such that limy, . oo Tp = z0, limyyoo [ (2n) = f(20) -

10.3 Continuous functions on compact sets

Proposition 511 Given f: X — Y, if S is a compact subset of X and f is continuous, then f (S)
is a compact subset (of V).

Proof. Let F be an open covering of f (.5), so that
f(8) CUaerA. (10.8)
We want to show that F admits an open subcover which covers f (S). Since f is continuous,
VAecF, f~'(A) isopenin X

Moreover,

@ @ (€] -1
S Cf(f(8) Cf (VaerA) = Uaerf™ (4)
where
(1) follows from 3.i in Proposition 505,
(2) follows from 1.a in Proposition 505 and (10.8),
(3) follows from 1.b in Proposition 505.
In other words { ! (A)}Aef is an open cover of S. Since S is compact there exists Ay, .., 4, €
F' such that
Scum, (4.
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Then
@) n -1 @ n -1 ) n
f(S) - f( i=1 ( f (A))) = Ui:lf (f (Az)) - Ui:lAi
where
(1) follows from 1.a in Proposition 505,
(2) follows from 2.f in Proposition 505,
(3) follows from 3.1 in Proposition 505. m

Proposition 512 (Extreme Value Theorem) If S a nonempty, compact subset of X and f :
S — R is continuous, then f admits global mazximum and minimum on S, i.e.,

Fmin, Tmax € S such that Vx € S, f (Zmin) < f(2) < f (Tmax) -

Proof. From the previous Proposition f (S) is closed and bounded. Therefore, since f (.9) is
bounded, there exists M = sup f (5). By definition of sup,

Ve >0, B(M,e)Nf(S)# 9
Then!, Vn € N take
aneB<M,%>mf(S).

Then, (), ¢y is such that ¥n € N, oy, € f(S) and 0 < d (v, M) < % Therefore, «,, — M,and
since f (S) is closed, M € f(S). But M € f(S) means that Ixpax € S such that f (Tymax) = M
and the fact that M = sup f (S) implies that Vo € S, f(2) < f (Zmax). Similar reasoning holds
for xmin. M

We conclude the section showing a result useful in itself and needed to show the inverse function
theorem - see Section 15.3.

Proposition 513 Let f : X — Y be a function from a metric space (X, d) to another metric space
(Y,d'). Assume that f is one-to-one and onto. If X is compact and f is continuous, then the
inverse function f~' is continuous.

Proof. Exercise. ®

We are going to use the above result to show that a
have a solution.

Let the following objects be given.

Price vector p € R, , consumption vector x € R", consumer’s wealth w € R, continuous
utility function uw : R® — R, & +— w(z). The consumer solves the following problem. For given,
p € RY,,w € Ry, find z which gives the maximum value to the utility function u under the
constraint x € C (p, w) defined as

4

¢ well behaved” consumer problem does

{z=(2;);_, eR":Vie{l,..,n},z; >0 and pr < w}.

As an application of Propositions 512 and 432, we have to show that for any p € R | ,w € R,

L C(p,w) # 2,

2. C (p,w) is bounded, and

3. C(p,w) is closed,

1. 0 e C (p,w).

2. Clearly if S C R™,then S is bounded iff

S is bounded below, ie., 3z = (z;); € R"such that Vo = (2;);_, € S, we have that Vi €
{1,...,n}, z; > z,, and

S is bounded above, ie., 37 = (T;);_, € R"such that Vo = (z;);_, € S, we have that Vi €
{15 ...,’ﬂ}, T S T;.

C (p,w) is bounded below by zero, i.e., we can take z = 0. C (p,w) is bounded above because
for every i € {1,...,n},
WD P w

Pi ~pi

IThe fact that M € f(S) can be also proved as follows: from Proposition 473 , M € Cl f(S) = f (S), where the
last equality follows from the fact that f(S) is closed.

x; <




158 CHAPTER 10. FUNCTIONS

where the first inequality comes from the fact that pr < w, and the second inequality from the
n
fact that p € R}, and x € R} Then we can take T = (m,m,...,m), where m = max {%}iﬂ.
3. Define
forie{l,..,n}, ¢;:R" >R, z= ()i, — x,

and
h:R" R, z= (), +— w-—pz.

All the above functions are continuous and clearly,
C(p,w) ={z=(z;)l, eR":Vie{l,...,n}, g;(x) >0and h(z) > 0}.
Moreover,
Cpw)={r=(z;);, ER":Vie {1,..,n}, gi(z) € [0,+00) and h(z) € [0,+00)} =

= Mityg; ' ([0, +00)) VAT ([0, +00)).

[0,4+00) is a closed set and since for any g; is continuous and h is continuous, from Proposition
510.3,the following sets are closed

Vi€ {1,..,n}, g ([0,4+00)) and h~* ([0, +o0)).

Then the desired result follows from the fact that intersection of closed set is closed.

10.4 Exercises

From Lipschutz (1965), starting from page 61: 30, 32, 34; starting from page 106:19,20.



Chapter 11

Correspondence, maximum
theorem and a fixed point theorem

11.1 Continuous Correspondences

Definition 514 Consider' two metric spaces (X,dx) and (Y,dy). A correspondence ¢ from X
to Y is a rule which associates a subset of Y with each element of X, and it is described by the
notation

p: X ==Y, p:ax——p(x).

Remark 515 In other words, a correspondence ¢ : X —— Y can be identified with a function
from X to 2Y (the set of all subsets of Y ). If we identify x with {x}, a function from X toY can
be thought as a particular correspondence.

Remark 516 Some authors make part of the Definition of correspondence the fact that ¢ is not
empty valued, i.e., that Vo € X, ¢ (z) # 2.

In what follows, unless otherwise stated, (X,dx) and (Y, dy) are assumed to be metric spaces
and are denoted by X and Y, respectively.

Definition 517 Given U C X, ¢ (U) = Uzepp (z) ={y €Y : 3z € U such that y € ¢ (z)}.

Definition 518 The graph of ¢ : X —— Y s

graph p :={(z,y) e X xY :y € ¢ (x)}.

Definition 519 Consider ¢ : X —— Y. ¢ is Upper Hemi-Continuous (UHC) atx € X if p () # @
and for every open neighborhood V' of ¢ (x), there exists an open neighborhood U of © such that for
everyx' €U, ¢ (2') CV (orp(U)C V).

w is UHC if it is UHC at every x € X.

Definition 520 Consider ¢ : X —— Y. ¢ is Lower Hemi-Continuous (LHC) atx € X if o (v) # @
and for any open set V in'Y such that ¢ (x) NV # @, there exists an open neighborhood U of x
such that for every ' € U, p (¢') NV # @.

w is LHC if it is LHC at every x € X.

Example 521 Consider X =R} and Y =[0,1], and

[ 0,1] if z=0
‘Pl(x)_{{()} if x>0

{0} if x=0
g02(35)_{[0,1] if x>0

¢, is UHC and not LHC; ¢y is LHC and not UHC.

IThis chapter is based mainly on McLean (1985) and Hildebrand (1974).

159
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Some (partial) intuition about the above definitions can be given as follows.

Upper Hemi-Continuity does not allow ”explosions”. In other words, ¢ is not UHC at z if there
exists a small enough open neighborhood of = such that ¢ does “explode”, i.e., it becomes much
bigger in that neighborhood.

Lower Hemi-Continuity does not allow ”implosions”. In other words, ¢ is not LHC at x if there
exists a small enough open neighborhood of = such that ¢ does “implode”, i.e., it becomes much
smaller in that neighborhood.

In other words, “UHC = no explosion” and “LHC = no implosion” ( or “explosion = not UHC”
and “implosion = not LHC)”. On the other hand, opposite implications are false, i.e.,

it is false that “explosion < not UHC” and “implosion < not LHC”, or, in an equivalent
manner,

it is false that “no explosion = UHC” and “no implosion = LHC”.

An example of a correspondence which neither explodes nor explodes and which is not UHC
and not LHC is presented below.

[1,2] if =x€[0,1)

p:Ry == R, WmHH{ 3.4 if z€[l,+o0)

o does not implode or explode if you move away from 1 (in a small open neighborhood of 1):
on the right of 1, ¢ does not change; on the left, it changes completely. Clearly, ¢ is neither UHC
nor LHC (in 1).

The following correspondence is both UHC and LHC:

p: Ry —-— R, ¢:iz——[z,z+1]

A, maybe disturbing, example is the following one

p: Ry == R, p:z——(z,z+1).

Observe that the graph of the correspondence under consideration “does not implode, does not
explode, does not jump”. In fact, the above correspondence is LHC, but it is not UHC in any
x € Ry, as verified below. We want to show that

for every neighborhood V' of ¢ (z),
not < >
there exists a neighborhood U of z such that for every 2’ € U, ¢ (') CV
i.e.,
< there exists a neighborhood V* of ¢ (x) such that. >
for every neighborhood U of x there exists 2/ € U such that ¢ (2') £ V

Just take V' = ¢ (z) = (x,z 4 1); then for any open neighborhood U of z and, in fact, Va' €

U\{z}, (") 2 V.

Example 522 The correspondence below

| . [1,2] if =x€]0,1]
0: Ry >R, 4,0.37»—>»—>{ 3,4 if xe[l,400)

is UHC, but not LHC.

Remark 523 Summarizing the above results, we can maybe say that a correspondence which is
both UHC and LHC, in fact a continuous correspondence, is a correspondence which agrees with
our intuition of a graph without explosions, implosions or jumps.

Proposition 524 1. If ¢ : X —— Y is either UHC or LHC and it is a function, then it is a
continuous function.
2. If p: X —-— Y is a continuous function, then it is a UHC and LHC' correspondence.
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Proof.

1.

Case 1. ¢ is UHC.

First proof. Use the fourth characterization of continuous function in Definition 494.

Second proof. Recall that a function f : X — Y is continuous iff [V open in Y] = [f~! (V) open in X].
Take V open in Y. Consider x € f~1(V), i.e., x such that f (z) € V. By assumption f is UHC and
therefore 3 an open neighborhood U of z such that f (U) C V. Then, U C f~to f(U) C f~1(V).
Then, for any x € f=1(V), we have found an open set U which contains z and is contained in
71 (V),ie., f~1(V) is open.

Case 2. ¢ is LHC.

See Remark 528 below.

2.

The results follows from the definitions and again from Remark 528 below.

|

Definition 525 ¢ : X —— Y is a continuous correspondence if it is both UHC and LHC.

Very often, checking if a correspondence is UHC or LHC is not easy. We present some related
concepts which are more convenient to use.

Definition 526 ¢ : X —— Y is “sequentially LHC” at x € X if
for every sequence (xn)neN € X such that z, — x, and for every y € ¢ (z),
there exists a sequence (Yn),cny € Y™ such that V n € N, y, € ¢ (2,) and y, — y,
p is "sequentially LHC” if it is "sequentially LHC” at every x € X.

Proposition 527 Consider ¢ : X —— Y. ¢ is LHC at x € X & ¢ is LHC in terms of sequences
atx € X.

Proof.

(=]

Consider an arbitrary sequence (z,,),, oy € X°° such that z,, — = and an arbitrary y € ¢ (z).
For every r € N, consider B (y, %) . Clearly B (y, %) Ny (x) # @, since y belongs to both sets. From
the fact that ¢ is LHC, we have that

1
Vr € N, 3 a neighborhood U, of z such that Vz € U,., ¢ (2) N B (y, F) +#@. (1)

Since z,, — =,

Vr €N, 3n, € Nsuch that n >n, =z, € U, (2).

Consider {ny,...,ny,...} . For any r € N, if n, < n,41, define nj. :=n, and n,.; :=n,4, i.e., “just
add a ’ to the name of those indices”. If n, > n,,1, define n]. := n, and n,; := n, + 1. Then,
Vr € N, n;; > n and condition (2) still hold, i.e.,

Vr, 3 n;. such that n > n;. = z,, € U, and n;; >n;. (3)

We can now define the desired sequence (yn), ey - For any n € [n.,n)., ), observe that from (3),
Zp € Uy, and, then, from (1), ¢ (z,) N B (y, %) # &. Then,

1
for any r, for any n € [n],n. ;) NN, choose y, € ¢ (z,) N B <y, —> (4).
r

We are left with showing that y, — v, i.e., Ve > 0, 3™ such that n > m = y,, € B (y,&). Observe
that (4) just says that

for any n € [0}, nh), yn € p(xn) N B (y, %) ,

for any n € [n5,n3), yn € ¢ (#2) N B (y,5) € B (y,1)

for any n € [nl,nl 1), yn € ¢ (z,) N B (y,1) € B (y %1) ,
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and so on. Then, for any £ > 0, choose 7 > 1 (so that 2 < ¢) and ™ = n/,, then from the above
observations, n € [m, n;_H) =y, €B (y, %) C B(y,¢),and for n > n,. , a fortiori, y, € B (y, %) )

[

Assume otherwise, i.e., 3 an open set V such that

p)nV#a (5

and such that V open neighborhood U of z 3 zy € U such that p (zy) NV = 2.
Consider the following family of open neighborhood of z:

(5 (o) nen)

Then Vn € N, 3, € B (z, 1), and therefore ,, — =, such that

plx,)NV =0 (6).

From (5), we can take y € ¢ (z) N V. By assumption, we know that there exists a sequence
(Un)pen € Y such that Vn € N, y,, € ¢ (z,) and y, — y. Since V is open and y € V, 3 7 such
that n > n = y,, € V. Therefore,

y€@(zn) NV (7).

But (7) contradicts (6) .

]

Thanks to the above Proposition from now on we talk simply of Lower Hemi-Continuous corre-
spondences.

Remark 528 If ¢ : X —— Y is LHC and it is a function, then it is a continuous function. The
result follows from the characterization of Lower Hemi-Continuity in terms of sequences and from
the characterization of continuous functions presented in Proposition 510.

Definition 529 ¢ : X —— Y is closed, or "sequentially UHC", at x € X if

for every sequence (1), .y € X such that x,, — x, and for every sequence (Yn), cny € Y such
that y, € ¢ (x,) and y, — v,

it is the case thaty € ().

p is closed if it is closed at every x € X.

Proposition 530 ¢ is closed < graph ¢ is a closed set in X x Y. 2

Proof. An equivalent way of stating of the above Definition is the following one: for every
sequence (Zn,Yn) ey € (X X Y)™ such that Vn € N, (2,,y,) € graph ¢ and (2, yn) — (2,¥), it is
the case that (z,y) € graph . Then, from the characterization of closed sets in terms of sequences,
i.e., Proposition 413, the desired result follows. m

Remark 531 Because of the above result, many author use the expression “p has closed graph” in
the place of “p is closed”.

Remark 532 The definition of closed correspondence does NOT reduce to continuity in the case
of functions, as the following example shows.

p3 : Ry -— R, <P3($):{ {{8}} zj"c :f>:(())

x

©p is a closed correspondence, but it is not a continuous function.
Definition 533 A set C C R"™ is convex if V1, 2o € C and VA € [0,1], (1 — ) z1 + Azg € C.

Definition 534 ¢ : X —— Y is closed (non-empty, convex, compact ...) valued if for every x € X,
v (x) is a closed (non-empty, convex, compact ...) set.

2((X xY),d*) with d* ((z,2'), (y,y")) = max {d (z,2') ,d’' (y,y')} is a metric space.
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Proposition 535 Consider ¢ : X —— Y. ¢ closed z p closed valued.

Proof.

(=]

We want to show that every sequence in ¢ (x) which converges, in fact, converges in ¢ (z).
Choose = € X and a sequence (yn),,cy such that {y, : n € N} C ¢ (z) and such that y,, — y. Then
setting for any n € N, x,, = x, we get x,, — =, Yn € ¢ (Tn), Yyn — y. Then, since ¢ is closed,
y € ¢ (). This shows that ¢ (x) is a closed set.

[<]

¢, in Example 521 is closed valued, but not closed.

]

Remark 536 Consider ¢ : X —— Y. ¢ is UHC z p 1s closed.

(]

v Ry == R, ¢, (z) =[0,1) for every z € R

is UHC and not closed.

[«]

3 in Remark 532 is closed and not UHC, simply because it is not a continuous “function”.

Proposition 537 Consider p : X —— Y. If ¢ is UHC (at x) and closed valued (at x), then ¢ is
closed (at z).

Proof.

Take an arbitrary x € X. We want to show that ¢ is closed at z, i.e., assume that z,, — z, vy, €
¢ (zn), yn — y; we want to show that y € ¢ (). Since ¢ (z) is a closed set, it suffices to show
that y € Clg (), i.e.,> Ve > 0, B(y,e) Ny (z) # 2.

Consider {B (z, %) iz € (x)} Then, U,cy(2)B (z, %) := V is open and contains ¢ (z). Since
@ is UHC at x, there exists an open neighborhood U of = such that

pU)cV. (1)

Since x, — x € U, In € N such that ¥n > 7, =z, € U, and, from (1), ¢ (x,) C V. Since
Yn € @ (n), .

Vn>n, Y, €V :i=U.cpwm)B (z, 5) . (2

From (2), Vn >n, 3z} € ¢ (z) such that y, € B (z},5) and then
o €
A=) <5 )
Since y,, — y, In* such that Vn > n*,

€
d(ynay) < 5 (4)
From (3) and (4),Vn > max{n,n*}, 2z € ¢(z) and d(y,2*) < d(y,yn) + d(yn,z*) < ¢, Le,
€ B(y,e) N (@) £ 0.
|

Proposition 538 Consider ¢ : X —— Y. If ¢ is closed and there exists a compact set K CY such
that ¢ (X) C K, then ¢ is UHC.
Therefore, in simpler terms, if ¢ is closed (at x)and Y is compact, then ¢ is UHC (al z).

Proof.

Assume that there exists x € X such that ¢ is not UHC at z € X, i.e., there exist an open
neighborhood V' of ¢ (x) such that for every open neighborhood U, of z, ¢ (U,) NVY # @. In
particular, Vn € N, ¢ (B (a:, %)) NVC # @. Therefore, we can construct a sequence (Tn)pey € X
such that x, — = and ¢ (z,) NV # @. Now, take y, € ¢ (z,) N V. Since y, € ¢ (X) C K and

3See Corollary 473.
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K is compact, and therefore sequentially compact, up to a subsequence, y, — y € K. Moreover,
since Vn € N, y, € V¢ and V¢ is closed,

yeVe (1).

Since ¢ is closed and z,, — z, Yy, € ¢(Tn), Yn — y, we have that y € ¢ (z). Since, by
assumption, ¢ (z) C V, we have that
yevV (2).

But (2) contradicts (1).

]

None of the Assumptions of the above Proposition can be dispensed of. All the examples below
show correspondences which are not UHC.

Example 539 1.
1 ) z € (0,2
QDSR_FHHR,QD(SC)—{ %12}} zf” x>[2. ]

Y =[0,1], but ¢ is not closed.

2.
gp:R+—>—>R,90($):{ ?)l}} 2; iig

p s closed, but p (X) =Ry, which is closed, but not bounded.
3.
0y if =€)
{%} if x =1
@ is closed (inY ), but Y =[0,1) is not compact. Observe that if you consider

{0} if xz €[0,1)
{3 if x=1.

o 0.1] = [0,1), w(w)Z{

v:[0,1] »— [071]l7 p(x) = {

then ¢ is not closed.

Definition 540 Consider p: X -—Y, V CY.
The strong inverse image of V' via ¢ is

o (V)i={zeX:p(x)CV};

The weak inverse image of V wia ¢ is
Yot (V):={z e X p()NV #a}.

Remark 541 1. VV CY, Sp=1 (V) C wp 1 (V).
2. If v is a function, the usual definition of inverse image coincides with both above definitions.

Proposition 542 Consider ¢ : X —— Y.
1.1. ¢ is UHC < for every open set V inY, S~ (V) is open in X;
1.2. ¢ is UHC < for every closed set V in'Y, Y~ (V) is closed in X;
2.1. ¢ is LHC & for every open set V. in'Y, Yo~ (V) is open in X;
2.2. ¢ is LHC & for every closed set V in'Y, o=t (V) is closed in X .

Proof.

[1.1.,=] Consider V open in Y. Take 29 € *p~ ! (V); by definition of ¢!, ¢ (z9) C V. By
definition of UHC correspondence, 3 an open neighborhood U of z such that Vz € U, ¢ (x) € V.
Then 2o € U C p~1 (V).

[1.1., <] Take an arbitrary o € X and an open neighborhood V' of ¢ (x¢) . Then xg € o1 (V)
and *p~! (V) is open by assumption. Therefore (just identifying U with =1 (V)), we have proved
that ¢ is UHC.

4Part 2.2 of the Proposition will be used in the proof of the Maximum Theorem.
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To show 1.2, preliminarily, observe that
w — c s
(Yot (V))T = e (VE). (11.1)

(To see that, simply observe that (¢! (V))C ={zeX:p(@)NV =0}and o~ (V) :=
{zeX o)V}

[1.2.,=] V closed < V¢ open Assurgy (11) St (V) (LD (vt (V))C open < Yo~ (V)
closed.

[1.2., <]

From (1.1.), it suffices to show that V open set V in Y, o1 (V) is open in X. Then,

V open < V¢ closed 4™ " e 1 (V) closed < (V! (VC))C (1Lh) S~ (V) open.

The proofs of parts 2.1. and 2.2. are similar to the above ones.

[

Remark 543 Observe that ¢ is UHC z for every closed set V inY, *p=1 (V) is closed in X.

(]

Consider 0.2 ; 01
0,2] i z €0,

piRy == R, ‘p(m):{ 0,1 if z>1.

¢ is UHC and [0,1] is closed, but *p~'([0,1]) := {z € Ry : ¢ (x) C[0,1]} = (1,+00) is not
closed.

[«]

Consider
if z=0

¢:Ry -— Ry, w(w)Z{ [0’%]}U{1} if x>0

0,1

For any closed set in Y :=Ry, =1 (V) can be only one of the following set, and each of them
is closed: {0} ,Ry,&. On the other hand, ¢ is not UHC in 0.

Definition 544 Let the vector spaces (X,dx), (Y,dy) and (Z,dz) and the correspondences ¢ :
X 5= Y, Y:Y —-— Z be given. The composition of ¢ with 1 is
Yop: X —— 7,

(o) (x) :=Uyep@)? (y) ={z € Z: 3w € X such that z € P (¢ (x))}

Proposition 545 Consider ¢ : X —— Y, Y —— Z. If ¢ and ¢ are UHC, then ¢ o ¢ is UHC.

Proof.
Step 1. * (o)™ (V) = *p~! (¢ (V).

S(Wop) H(V)={zeX ¢(p ())Q p={zeX: Vy@ﬁ()iﬁ(y)gv}
:{xeX:VyE@()yesw W)} ={zeX: ¢ }Zs_l(s¢ ().

Step 2. Desired result.

Take V open in Z. From Theorem 542, we want to show that ® () o ¢) (V) is open in X. From
step 1, we have that * (po )™ (V) = 51 (51/)_1 (V)) . Now, $4»~1 (V) is open because 1 is UHC,
and S~ ! (51/)_1 (V)) is open because ¢ is UHC.

|

Proposition 546 Consider ¢ : X —— Y. If ¢ is UHC and compact valued, and A C X is a
compact set, then ¢ (A) is compact.
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Proof.
Consider an arbitrary open cover {Cq},; for ¢ (A). Since ¢ (A) := Uzeap (z) and ¢ is compact
valued, there exists a finite set N, C I such that

¢ (z) C Uaen, Co = Gy (11.2)

Since for every a € N,, C, is open, then G, is open. Since ¢ is UHC, *p~! (G,) is open.
Moreover, € *p~!(G,): this is the case because, by definition, z € o1 (G,) iff p (z) C G,
which is just (11.2). Therefore, {Scp_1 (Gw)}mGA is an open cover of A. Since, by assumption, A is
compact, there exists a finite set {z;};"; C A such that A C U, (¢! (G,,)) . Finally,

(1) @)
@ (A) C (UL, (e 1 (Ga))) S ULip (e~ (Gy,)) © U Ga, = ULy Uaen,, Ca,

and {{C’a}aeNW }m . is a finite subcover of {C,}

1=

acr- We are left with showing (1) and (2)
above.

(1). In general, it is the case that ¢ (U ,S;) C U™, ¢ (S;).

y € (UM, S;) & Jx e U™, S, such that y € ¢ (z) = Ji such that y € p(z) C ¢ (S;) =y €
Uiy (Si) -

(2). In general, it is the case that ¢ (¢ ™" (A)) C A.

y € (Pt (A) = 3w e *p ! (A) such that y € ¢ (). But, by definition of *p~' (A4), and
since z € Sp~1(A), it follows that o () C A and therefore y € A.

]

Remark 547 Observe that the assumptions in the above Proposition cannot be dispensed of, as
verified below.

Consider ¢ : Ry —— R, @ (z) = [0,1). Observe that ¢ is UHC and bounded valued but not
closed valued , and ¢ ([0,1]) = [0,1) is not compact.

Consider ¢ : Ry —— R ,p(x) = Ry. Observe that ¢ is UHC and closed valued, but not
bounded valued, and ¢ ([0,1]) =R, is not compact.

Consider ¢ : Ry -— Ry, ¢(z) = { }g% ijﬁ i 7: } Observe that ¢ is not UHC' and
»([0,1]) =[0,1) is not compact.

Add Proposition 5, page 25 and Proposition 6, page 26, from Hildebrand (1974)
maybe as exercises ...

Remark 548 Below, we summarize some facts we showed in the present Section, in a somehow
informal manner.

((if o is a fen., it is cnt.) < (¢ is UHC) z (¢ is sequentially UHC,i.e., closed) z ((if ¢ is a fen., it is cnt.)
((if ¢ is a fen, it is continuous) < (¢ is LHC) < (p is sequentially LHC)

(p UHC and closed valued at x) = (¢ is closed at z)
(¢ UHC at © ) < (p is closed at = and Im ¢ compact)

11.2 The Maximum Theorem

Theorem 549 (Maximum Theorem) Let the metric spaces (I, dr), (X,dx), the correspondence
B:11 -— X and a function v: X x II — R be given. Define

&1 —-— X,
§(m)={z€B(m):Vzep(n),u(z,m) >u(r,m)}=argmax,eg(r) u(x,T),

5Obviously, 8 stands for “budget correspondence” and u for “utility function”.
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Assume that
B is non-empty valued, compact valued and continuous,
U 18 continuous.

Then
1. £ is non-empty valued, compact valued, UHC and closed,and
2.
v: Il — R, v:m— max u(z, 7).
z€B(m)

18 continuous.
Proof.
¢ is non-empty valued.

It is a consequence of the fact that [ is non-empty valued and compact valued and of the
Extreme Value Theorem - see Proposition 512.

¢ is compact valued.

We are going to show that for any m € II, £ (7) is a sequentially compact set. Consider a
sequence (), oy € X°° such that {x, :n € N} C £ (7). Since  (7) C B (7) and j3 () is compact
by assumption, without loss of generality, up to a subsequence, =, — xo € (7). We are left
with showing that zo € & (). Take an arbitrary z € §(w). Since {z, :n € N} C £(7), we have
that u (z,,7) > u(z,7). By continuity of u, taking limits with respect to n of both sides, we get
u (zo, ) > u(z,m), ie., g € & (), as desired.

¢ is UHC.

From Proposition 542, it suffices to show that given an arbitrary closed set V in X, “£* (V)=
{mell:{(r)NV # @} is closed in II. Consider an arbitrary sequence (7,,),,c such that {7, : n € N} C
we=! (V) and such that 7, — my. We have to show that 7o € “&~* (V).

Take a sequence (z,,),cy € X°° such that for every n, x,, € {(m,) NV # @. Since £ (m,,) C
B (mn), it follows that x,, € 8 (7). We can now show the following

Claim. There exists a subsequence (zy, ), ey Of (#n),cy such that x,, — x¢ and 2o € 3 (7o) .

Proof of the Claim.

Since {m, : n € N} U {mo} is a compact set (Show it), and since, by assumption, 8 is UHC
and compact valued, from Proposition 546, ({7, : n € N} U{mg}) is compact. Since {z,}, C
B ({mn} U{mo}), there exists a subsequence (xy,),, cy Of (Zn),cy Which converges to some z.
Since 3 is compact valued, it is closed valued, too. Then, 8 is UHC and closed valued and from
Proposition 537, [ is closed. Since

ﬂ—nk - 7T07 x7lk G B (ﬂ-nk)v x7lk - 1'0,

the fact that 8 is closed implies that zg € 3 (7).

End of the Proof of the Claim.

Choose an arbitrary element zp such that zo € S (mp). Since we assumed that m, — 7o and
since 3 is LHC, there exists a sequence (2y),,cy € X such that z, € #(7,) and z, — 2.

Summarizing, and taking the subsequences of (7,,),, ¢y and (2,),,cy corresponding to (2,,)
we have for any ny,

ni€eN?

Ty, — T0,
Tny — Lo, Tpy € §<7Tnk)v To € 5(7T0)7

an — 20, an E/B(Wnk)v 20 EB(TFO)-

Then for any ng, we have that u (zn,,7n,) > u (2n,, T, ) . Since u is continuous, taking limits,
we get that u(zg,m9) > u(z0,70) .Since the choice of 2y in 3 (my) was arbitrary, we have then

zo € £ (mo) -
Finally, since (zn,),, ey € V', Tn, — o and V' is closed, zg9 € V. Then zy € £ (mo) NV and

moE{m ell:E(n)NV # @} := w1 (V), which was the desired result.

¢ is closed.



168CHAPTER 11. CORRESPONDENCE, MAXIMUM THEOREM AND A FIXED POINT THEOREM

¢ is UHC and compact valued, and therefore closed valued. Then, from Proposition 537, it is
closed, too.

v is a continuous function.

The basic idea of the proof is that v is a function and “it is equal to” the composition of UHC
correspondences; therefore, it is a continuous function. A precise argument goes as follows.

Let the following correspondences be given:
(& id) : I —— X xTI, 7w & (m) x {m},
B: X xII -— R, (x,m) — {u(z,m)}.
Then, from Definition 544,
(Bo (&, id)) () = Ugz,mee(mx{x} {u (@, m)}.
By definition of &,
Vr e ILVE € {(m), Uameemxin {u(@m)} ={u(® )},

and

v e II, (Bo(&id)) (m) ={u(@,m)} ={v(m)}. (11.3)

Now, (£, id) is UHC, and since w is a continuous function, 5 is UHC as well. From Proposition
545, B o (£,id) is UHC and, from 11.3, v is a continuous function.

A sometimes more useful version of the Maximum Theorem is one which does not use the fact
that 8 is UHC.

Theorem 550 (Mazimum Theorem) Consider the correspondence 8 : I —— X and the function
u: X XII = R defined in Theorem 549 and I1, X Euclidean spaces.
Assume that

B is non-empty valued, compact valued, convexr valued, closed and LHC.
U 18 continuous.
Then

1. € is a non-empty valued, compact valued, closed and UHC correspondence;
2. v is a continuous function.

Proof.

The desired result follows from next Proposition.
]

Proposition 551 Consider the correspondence B : 11 —— X , with Il and X FEuclidean spaces.

Assume that B is non-empty valued, compact valued, convexr valued, closed and LHC. Then (3
1s UHC.

Proof.

See Hildenbrand (1974) Lemma 1 page 33. The proof requires also Theorem 1 in Hildenbrand
(1974).

The following result allows to substitute the requirement “g is LHC” with the easier to check
requirement “ClS is LHC”.

Proposition 552 Consider the correspondence ¢ : Il —— X. ¢ is LHC < Cl¢ is LHC.
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Proof.

Preliminary Claim.

V open set, ,Cl¢p (1) NV # T = p(m)NV # 2.

Proof of the Preliminary Claim.

Take z € Clg () NV # @. Since V is open, Je > 0 such that B (z,¢) C V. Since z € Cl¢ (n),
I{zn} C ¢ (m) such that z, — 2. But then In, such that n > n. = 2z, € B(z,6) CV. But z, € V
and z,, € ¢ () implies that ¢ (7) NV # @.

End of the Proof of the Preliminary Claim.

(=]

Take an open set V such that Clg (7) NV # @. We want to show that there exists an open set
U* such that 7 € U* and V¢ € U*, Clo (§) NV # &. From the preliminary remark, it must be the
case that ¢ (7) NV # &. Then, since ¢ is LHC, there exists an open set U such that 7 € U and
Ve e U*, p(m)NV # @. Since Clo () 2 ¢ (1), we also have Cl¢ (1) NV # @. Choosing U* = U,
we are done.

[<]

Since ¢ (m) NV # &, then Clg () NV # &, and, by assumption, 3 open set U’ such that
meU and V€ e U', Clo (§)NV # &. Then, from the preliminary remark, it must be the case that
e(mNV #2.

|

Remark 553 In some economic models, a convenient strategy to show that a correspondence 3 is
LHC is the following one. Introduce a correspondence 3; show that 8 is LHC; show that Cl 8 = (5.
Then from the above Proposition 552, the desired result follows - see, for example, point 5 the proof
of Proposition 566 below.

11.3 Fixed point theorems

A thorough analysis of the many versions of fixed point theorems existing in the literature is outside
the scope of this notes. Below, we present a useful relatively general version of fixed point theorems
both in the case of functions and correspondences.

Theorem 554 (The Brouwer Fixed Point Theorem)
For anyn € N, let S be a nonempty, compact, convex subset of R™. If f : S — S is a continuous
function, then 3z € S such that f (x) = x.

Proof. For a (not self-contained) proof, see Ok (2007), page 279. m

Just to try to avoid having a Section without a proof, let’s show the following extremely simple
version of that theorem.

Proposition 555 If f : [0,1] — [0, 1] is a continuous function, then 3x € [0,1] such that f (x) = x.

Proof. If f(0) =0 or f(1) =1, the result is true. Then suppose otherwise, i.e., f (0) # 0 and
f (1) #1, ie., since the domain of f is [0, 1], suppose that f(0) > 0 and f (1) < 1. Define

g:[0,1] = R, cx—x— f(x).
Clearly, g is continuous, g(0) = —f(0) < 0 and ¢g(1) = 1 — f(1) > 0. Then, from the
intermediate value for continuous functions, 3z € [0,1] such that g(x) = =z — f(z) = 0, ie,

x = f(z), as desired. ®
Theorem 556 (Kakutani’s Fized Point Theorem)
For anyn € N, let S be a nonempty, compact, convex subset of R™. If ¢ : S —— S is a conver

valued, closed correspondence, then 3z € S such that ¢ () 3 x.

Proof. For a proof, see Ok (2007), page 331. =
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11.4 Application of the maximum theorem to the consumer
problem

Definition 557 (Mas Colell (1996), page 17) Commodities are goods and services available for
purchases in the market.

We assume the number of commodities is finite and equal to C. Commodities are indexed by
superscript ¢ =1, ..., C.

Definition 558 A commodity vector is an element of the commodity space RC.

Definition 559 (almost Mas Colell(1996), page 18) A consumption set is a subset of the
commodity space RC. It is denoted by X . Its elements are the vector of commodities the individual
can conceivably consume given the physical or institutional constraints imposed by the environment.

Example 560 See Mas colell pages 18, 19.

Common assumptions on X are that it is convex,bounded below and unbounded. Unless other-
wise stated, we make the following stronger

Assumption 1 X = Rg = {x eRC x> 0} .
Definition 561 p € RY is the vector of commodity prices.

Households’ choices are limited also by an economic constraint: they cannot buy goods whose
value is bigger than their wealth, i.e., it must be the case that pxr < w, where w is household’s
wealth.

Remark 562 w can take different specifications. For example, we can have w = pe, where e € RY
is the vector of goods owned by the household, i.e., her endowments.

Assumption 2 All commodities are traded in markets at publicly observable prices, expressed in
monetary unit terms.

Assumption 3 All commodities are assumed to be strictly goods (and not "bad”), i.e., p € IR{E Ty

Assumption 4 Households behave as if they cannot influence prices.
Definition 563 The budget set is

B(p,w) ={zeRY :pr <w}.

With some abuse of notation we define the budget correspondence as
,B:R$+ xRiy —— RE, B (p,w) = {xERE :pxgw}.
Definition 564 The utility function is
u: X - R, x — u(x)
Definition 565 The Utility Mazimization Problem (UMP) is
max,cpc U (x) st. pr<w, orz € B (p,w).

E:RY, xRy »— RY, € (p,w) = argmax (UMP) is the demand correspondence.

Theorem 566 £ is a non-empty valued, compact valued, closed and UHC correspondence and
v :R$+ xRipy =R, v:(p,w)+— max (UMP),

i.e., the indirect utility function, is a continuous function.
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Proof.

As an application of the (second version of) the Maximum Theorem, i.e., Theorem 550, we have
to show that § is non-empty valued, compact valued, convex valued, closed and LHC.

1. B is non-empty valued.

C
T = (CLPC)C:1 € B (p,w) (or, simpler, 0 € 8 (p,w)).
2. [ is compact valued.
B (p,w) is closed because is the intersection of the inverse image of closed sets via continuous
functions.
B (p, w) is bounded below by zero.

B (p,w) is bounded above because for every ¢, x¢ < A?‘— < 4%, where the first inequal-

ity comes from the fact that pr < w, and the second mequahty from the fact that p € RY Y, and
T € RE.

3. [ is convex valued.

To see that, simply, observe that (1 — A) pz’ + Apz” < (1 — AN w+ Iw = w.

4. [ is closed.

We want to show that for every sequence {(pn,wy)},, € RS Y. xRy such that

(pna wn) - (P7 ’LU) , T € (pnawn) y In — T,

it is the case that z € § (p,w).

Since x,, € B (pn,wy), we have that p,z, < w, and x,, > 0. Taking limits of both sides of both
inequalities, we get pr < w and x > 0,i.e., z € 5 (p,w).

5. §is LHC.

We proceed as follows: a. Int §is LHC; b. Cl Int § = . Then, from Proposition 552 the
result follows.

a. Observe that Int (8 (p,w) := {x € Rg x> 0 and pr < w} and that Int 8 (p,w) # &, since

c
T = (%})C)CZI € Int B (p,w) . We want to show that the following is true.

For every sequence (pn,wn), € (RY, x R++)OO such that (p,,w,) — (p,w) and for any z €
Intp (p,w),

there exists a sequence {z,}, C RE such that Vn, x,, € Int 8 (pn,w,) and z, — .

P — wy, — pr —w < 0 (where the strict inequality follows from the fact that = € Int S (p,w) .
Then, AN such that n > N = p,xz — w, < 0.

For n < N, choose an arbitrary x,, € Int 8 (pp, wy) # . Since p,x — w < 0, for every n > N,
there exists €, > 0 such that z € B (x,e,) = ppz — w, < 0.

For any n > N, choose x,, = x + % min {<¢, 1} 1. Then,

e = [0 Lmnd e 2V i {0 21 2
Ty Tp) = \/6 1 2 = min 5 n En,

ie., , € B(x,e,) and therefore

DnZpn —wy, <0 (1).

Since z,, > x, we also have

z, >0 (2).

(1) and (2) imply that z,, € Int 8 (pp,wy,) . Moreover, since x,, > x, we have 0 < lim,,, o0 (z, — 2) =

lim,, oo % - min {52&, %} -1 < limy,— oo %% 1=0,ie., lim, . oz, =.°

It follows from the fact that the budget correspondence is the intersection of the inverse images
of half spaces via continuous functions.

2.

It follows from Proposition 567, part (4), and the Maximum Theorem.

|

60r simply
1
0< lim d(z,zn) < lim — =0.

n— oo n—oo n
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Proposition 567 For every (p,w) € RY, x Ry,
(1) Va € R++7§ (Ozp, OzU}) = 5 (p7 U}) ;
(2) if u is LNS, Yz € RS, x € £ (p,w) = pr = w;
(3) if u is quasi-concave, £ is convex valued;
(4) if u is strictly quasi-concave, £ is single valued, i.e., it is a function.

Proof.

(1)

It simply follows from the fact that Va € R4 8 (ap, aw) = 8 (p,w) .

(2)

Suppose otherwise, then 3z’ € Rg such that 2’ € £ (p,w) and pa’ < w. Therefore,3e’ > 0 such
that B (z',¢") C B (p,w) (take &’ = d (2', H (p,w))). Then, from the fact that u is LNS, there exists
x* such that z* € B(2',&") C 8 (p,w) and u (z*) > u (2'), i.e., 2’ ¢ £ (p,w), a contradiction.

(3)

Assume there exist 2/, 2" such that x’/,2" € & (p,w). We want to show that VA € [0,1], z* :=
(I=XNa' + 2" € £(p,w). Observe that u (z') = u(z”) := u*. From the quasi-concavity of u, we
have u (z*) > u*. We are therefore left with showing that z* € 8 (p,w), i.e., 8 is convex valued.
To see that, simply, observe that pz* = (1 — \) pz’ + Apz” < (1 — A w + Iw = w.

(4) Assume otherwise. Following exactly the same argument as above we have 2/, 2" € £ (p,w),
and pz* < w. Since u is strictly quasi concave, we also have that u (z*) > u(2') = u(2”) = u*,
which contradicts the fact that 2/, z” € £ (p,w) .

[

Proposition 568 If u is a continuous LNS wutility function, then the indirect utility function has
the following properties.

For every (p,w) € RY, x Ry,

(1) Voo € Ry, v (ap, aw) = v (p,w) ;

(2) Strictly increasing in w and for every c, non increasing in p<;

(3) for every T € R, {(p,w) : v (p,w) <T} is convex.

(4) continuous.

Proof.

(1) Tt follows from Proposition 567 (2).

o)

If w increases, say by Aw, then, from Proposition 567 (2), px (p,w) < w+Aw. Define x (p, w) :=
z’. Then,3e’ > 0 such that B (2/,¢") C 8 (p,w + Aw) (take ¢’ = d (2/, H (p,w + Aw))). Then, from
the fact that u is LNS, there exists 2* such that «* € B (2/,¢") C 8 (p,w + Aw) and u (z*) > u (z').
The result follows observing that v (p,w + Aw) > u (z*).

Similar proof applies to the case of a decrease in p. Assume Ap¢ < 0. Define A := (AC)CC:1 € R¢
with A€ =0 iff ¢ # ¢ and A = Apc/. Then,

(<0)

pe (p,w) = w = (p+ A) z (p,w) = pz (p,w) + Apa®’ (p,w) =

= w + Ap® z¢ (p,w) < w. The remaining part of the proof is the same as in the case of an
increase of w.

(3) Take (p/,w'), (p",w") € {(p,w) : v (p,w) <wv} := 85 (V). We want to show that VA € [0,1],
(p* w?) =1 =X (@, w)+ A", w") € S@),ie, zc(p*,vw) = u(z)>7.

zel(Pwt)=plr<wr e (1-Np+0 < 1=+’

Then, either p'z < w' or p’z < w”. If p'z < W', then u(z) < v(p/,w') < T. Similarly, if
e < w' .

@)

It was proved in Theorem 566.

|
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Chapter 12

Partial derivatives and directional
derivatives

12.1 Partial Derivatives

The! concept of partial derivative is not that different from the concept of “standard” derivative of
a function from R to R, in fact we are going to see that partial derivatives of a function f: R” — R
are just standard derivatives of a naturally associated function from R to R.

Recall that for any k € {1,...,n}, ef = (0,..,1,...,0) is the k — th vector in the canonical basis
of R™.

Definition 569 Let a set S C R", a point xo = (zok)r—; € Int S and a function f: S — R be
given. If the following limit exists and it is finite

lim f (w0 + hek) — f (xo) — lim f (w0 + (zr — o) €F) — f (z0)

h—0 h TR —Tok T — Tok

(12.1)

then it is called the partial derivative of f with respect to the k — th coordinate computed in xo and
it is denoted by any of the following symbols

D-fkf ($0) 5 Dkf ('TO) ) 2L ($0) 5 9/(z)

G Otk |o=m0’

Remark 570 As said above, partial derivatives are not really a new concept. We are just treating
f as a function of one variable at the time, keeping the other variables fized. In other words, for
simplicity taking S = R™ and using the notation of the above definition, we can define

gr R—=R, g (2x) = f (0 + (2 — zox) €)))

a function of only one variable, and, by definition of gi,

gk (Tok+Th—Tok) —gr(Tok) _
Tk —Tok

g;c (IOk) = hmﬂck—>$ok
(12.2)

F(wo+he" )= f(w0)

gk (Tok+h)—gr(Tor) _ limy,__o - =D, f (z0) .

= hmh,_,o 13

Example 571 Given f: R?> — R,

[ (21, 22,23) = €™ cosz + sinyz

we have
D, f(z) — (sinz) €Y + y (cos x) €Y
D,,f(z) | = | zcosyz+ x(cosz)e*¥
Dy, f (x) ycosyz

'Tn this Part, I follow closely Section 5.14 and chapters 12 and 13 in Apostol (1974).
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Remark 572 Loosely speaking, we can give the following geometrical interpretation of partial deriv-
atives. Given f : R?2 — R admitting partial derivatives, %ﬁo) is the slope of the graph of the
function obtained cutting the graph of f with a plane which is

orthogonal to the ©1 — x5 plane, and

going through the line parallel to the x1 axis and passing through the point xg, line to which we
have given the same orientation as the x1 axis.

picture to be added.

Definition 573 Given an open subset S in R™ and a function f : S — R, if Vk € {1,...,n}, the
limit in (12.1) exists, we call the gradient of f in xg the following vector

(Dr.f (20))j—1

and we denote it by
Df (o)

Remark 574 The existence of the gradient for f in xg does not imply continuity of the function
n xg, as the following example shows.

either x1 =0 or 2 =0

1 +xo if
FiR? SR, (o0, 22) = ! 2 ie., (z1,22) € ({0} x R)U (R x {0})

1 otherwise

o f(2,0) - f(0,0) o m
Dif(0)=1 =1 =1
SO = T o AT —o
and similarly
Dyf (0) = 1.

f is not continuous in 0: we want to show that Ie > 0 such that V§ > 0 there exists (x1,x2) €
R2such that (z1,z2) € B(0,¢) and |f (z1,22) — f(0,0)| > e. Takee = 1 and any (z1,22) € B(0,9)
such that 1 # 0 and x2 # 0. Then |f (z1,22) — £(0,0)| =1 > €.

12.2 Directional Derivatives

A first generalization of the concept of partial derivative of a function is presented in Definition 576
below.
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Definition 575 Given
f:SCR" —R™ z— f(x),

Vi € {1,..,m, }, the function
fi: SCR® - R™, x +— i —th component of f(x).
is called the i — th component function of f.

Therefore,

veeS, f(@)= (i), (12:3)

Definition 576 Given m,n € N, a set S CR", g € Int S, u € R™, h € R such that xo+ hu € S,
85— R™ we call the directional derivative of f at xo in the direction u, denoted by the symbol

[ (@o;u),
the limat
h—0 h

if it exists and it is finite.

Remark 577 Assume that the limit in (12.4) exists and it is finite. Then, from (12.3) and using
Proposition 409,

= (fi (zo;u));L, -

m f (w0 + hu) — f (z0) _ (hm fi (xo + hu) — f; (ifo))m

’ . _ _
F' (wosu) = i1L—>o h h—0 h

=1

If u=el, the j — th element of the canonical basis in R™, we then have

, . - fi(zwo+hel) — fi(z " , iNymo (x
e e IO

where equality (%) follows from (12.2).
We can then construct a matriz whose n columns are the above vectors, a matriz which involves
all partial derivative of all component functions of f. That matriz is formally defined below.

=1

Definition 578 Assume that f = (f;);~, : S C R" — R™ admits all partial derivatives in zo. The
Jacobian matriz of f at xy is denoted by Df (z¢) and is the following m x n matriz:

Dy, fi(wo0) .. Da;fi(wo) .. De,f1(20)
Do fi(20) - Dufi(@0) -~ Daufi(wo) | =[ Duif(z0) .. Duf(zo) - D f(xo)]=
Davfon (20) o D, fun (20) o Doy fon (z0)

=[ f'(zose)) o [ (zoied) - ['(zoep) ]

Remark 579 How to easily write the Jacobian matriz of a function.
To compute the Jacobian of f is convenient to construct a table as follows.

1. In the first column, write the m vector component functions f1, ..., fi, ..., fm of f.
2. In the first row, write the subvectors z, ..., z;, ..., x, of x.

3. For each i and j, write the partial Jacobian matrix D, f; () in the entry at the intersection
of the ¢ — th row and j — th column.
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We then obtain the following table,

fi [ Dufie)  Dufie)  Dafi(e) ]
i Dan) D, fi (=) Do) |
i | D) Difn(@)  Dafn(@) |

where the Jacobian matrix is the part of the table between square brackets.

Example 580 Given f:R* — RS,

zy
2
AR
eﬂ?
f(zy,2t) =]
TH+y+z+t¢
x? + t2
its Jacobian matriz is
2
im0 0
wow@tyr) & & 0
tyZ te s todk xyZ —trys
1 1 1 1
2z 0 0 2t -
Remark 581 From Remark 577,
Vu € R™, f'(xo;u) exists = Df (xq) exists (12.6)

On the other hand, the opposite implication does not hold true. Consider the example in Remark
574. There, we have seen that
Do f(0) =Dy f(0) =1
But if u = (u1,u2) with uy # 0 and ug # 0, we have
f(0+ hu) — f(0) 1-0

lim = lim — =
h—0 h h—0

Remark 582 Again loosely speaking, we can give the following geometrical interpretation of direc-
tional derivatives. Take f: R? — R admitting directional derivatives. f (zo;u) with ||ul| = 1 is the
slope the graph of the function obtained cutting the graph of f with a plane which is
orthogonal to the ©1 — x5 plane, and
going through the line going through the points xo and xo + u, line to which we have given the
same orientation as u.
picture to be added.

Example 583 Tuke
fiR" R, zez-z=|z|

Then, the existence of f' (xo;u) can be checked computing the following limit.

limy, o w = limy_o

(zothu)(zo+hu)—x0z0 __
- —

_ 1imh~>0 zozoJrhzoquhuhwoJrhzuufa:ga:g _

2hwou+h2uu
h

= limy,_.g = limp_0 229u + huu = 2xou
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Exercise 584 Verify that
f(@o; —u) = —f' (205 u).

Solution:

J(zoth(—u))—f(=zo) f(@o—hu)—f(z0) _
h h

f/ (:EQ; *u) = hmh_,o = limh_@

f(wo-i-(—h)hu)—f(xo) k:::—h

f(wo-‘rkz)—f(wo) =—f'(

= —limy_,g —limy_,g Toju) .

Remark 585 It is not the case that

Vu € R", f'(zo;u) exists = [ is continuous in xg (12.7)

as the following example shows. Consider

2 .
wf—i’?ﬁ if z#0

fRP =R, f(zy) =
0 if x=0,ie.,(z,y) € {0} xR

Let’s compute f' (0;u). If up # 0.

_ 1242 2 2
lim LOFM) =T Oy huc e g wew  u
h—0 h h—0 (h?uf + h*u3)h  h—ou? + h2uj w

If up = 0,we have

1m
h—0 h h—0 h h—0 h

On the other hand, if x = y* and x,y # 0, i.e., along the graph of the parabola x = y? except

the origin, we have
4

_ 2 y__Y _
fley)=1(y ,y)—y4+y4—

1
2
while

f£(0,0)=0.

Roughly speaking, the existence of partial derivatives in a given point in all directions implies
“continuity along straight lines” through that point; it does not imply “ continuity along all possible
curves through that point”, as in the case of the parabola in the picture above.

Remark 586 We are now left with two problems:
1. Is there a definition of derivative whose existence implies continuity?
2. Is there any “easy” way to compute the directional derivative?
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Appendix (to be corrected)

There are other definitions of directional derivatives used in the literature.

Let the following objects be given: m,n € N, a set S CR", 2o € Int S, u € R", h € R such
that xg + hu e S, f: S — R™,

Definition 587 (our definition following Apostol (1974)) We call the directional derivative of f
at xo in the direction u according to Apostol, denoted by the symbol

fa (xo;u),
the limit
h—0 h

if it exists and it is finite.

Definition 588 (Girsanov (1972)) We call the directional derivative of f at xq in the direction u
according to Girsanov, denoted by the symbol

& (wosu),
the limit L
h—0t+ h

if it exists and it is finite.

Definition 589 (Wikipedia) Take v € R™such that ||ul| = 1. We call the directional derivative of f
at xy in the direction u according to Wikipedia, denoted by the symbol

fiv (zosw),

the limit
T ot hu) — ] (wo)
h—0t h

(12.10)
if it exists and it is finite.

Fact 1. For given zg € S,u € R"
A= G=W,

while the opposite implications do not hold true. In particular, to see way A < G, just take
[ R—=R,

0 if =<0
f(z)= ;
1 if >0
and observe that while the right derivative in 0 is
lim fh) = F0) _ lim 2:0,
h—0t h h—0- h
while the left derivative is
lim M = lim 0-1 = +00.
h—0— h h—0— h

Fact 2. For given zg € S,
fiv (z,u) exists = fi (z,v) exists for any v = au and o € R 4.
Proof.

o thaw)—f(wy) k=ah>0

+hv)— :
I(@o 1;1) flzo) _ alimy, o+ o

£ (@,0) = limy, s

= alim,_ g+ —f(x°+k1,i)_f(x°) = afly (z,u).
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Fact 3. Assume that u # 0 and zg € R™. Then the following implications are true:
Vu € R™, f)) (z,u) exists <  Yu e R", fi(z,u) exists < Vu € R" such that ||ul]| =1, f{} (z,u) exists.

Proof.

From Fact 1, we are left with showing just two implications.
G= A

We want to show that

e i @010~ [ (@)
h—0t h

f(xo+ hv) — f(z0)
h

€ R =V e R, }1}171}J eR.

Therefore, it suffices to show that [ := limj,_,o- w € R.Take u = —v. Then,

= lim f@wo—hu) — f(wo) _ lim f(@o — hu) — f (o) k=-n _ lim [ (@o + ku) — f (20)
N h—0~— h o h—0— —h o k—0t k

W= G.
The proof of this implication is basically the proof of Fact 2.We want to show that

fxo + hu) — f (x0)

eR.

f(xo+ hv) — f(x0)

Yu € R™ such that ||u| = 1, hli»%l+ 5 e R=Vv e R"\ {0},1:= hli% 5 eR.
In fact,
£ (wo+ Aol g2) - £ (o)
[:= lim eR,
h—0t h
simply because ‘ ”z—” ‘ =1.

Remark 590 We can give the following geometrical interpretation of directional derivatives. First
of all observe that from Proposition 593,

[ (wo + hu) = £ (w0)
h

= df . (u).

' (wo;u) = lim
If f : R — R, we then have
[ (zo;u) = f' (20) - u.
Therefore, if uw = 1, we have
[ (@o;u) = [ (20)
and if uw > 0, we have
sign ' (zo;u) = sign f'(zo).

Take now f : R? — R admitting directional derivatives. Then,
' (zo;u) = Df (wo) -u with |lul| =1

is the slope the graph of the function obtained cutting the graph of f with a plane which is
orthogonal to the x1 — xo plane, and
along the line going through the points xog and xo + w, in the direction from xg to xg + u.
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Chapter 13

Differentiability

13.1 Total Derivative and Differentiability
If f: R — R, we say that f is differentiable in xg, if the following limit exists and it is finite

lim flxo+h)— f(z0)
h—0 h

and we write

or, in equivalent manner,

h—% h =0
and
f(zo+h) = (f (xo) + ' (x0) - h) =1 (h)
where )
r
pm = =0
or

f@o+h)=f(zo) + f (x0) - h+r(h),

or using what said in Section 7.5, and more specifically using definition 7.8,
f(wo+h) = f(z0) + Ly (ao) (h) +7(h)
where lf’(xo) el (R, R)

and limp_.g T(:) =0

Definition 591 Given a set S CR", zg € Int S, f : S — R™, we say that f is differentiable at
Zo Zf
there exists
a linear function df;, : R* — R™

such that for any u € R™u # 0, such that g+ u € S,

o £ @0+ 0) =  20) — dfay (1)
= Jul

=0 (13.1)

In that case, the linear function dfy, is called the total derivative or the differential or simply
the derwative of f at xq.

183
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Remark 592 Obviously, given the condition of the previous Definition, we can say that f is dif-
ferentiable at zo if there exists a linear function dfy, : R® — R™ such that Yu € R"™ such that
ro+uc€sS

flxo+u) = f(xo) +dfe, (u) +7(u), with ili% % =0 (13.2)
or
flxo+u) = f(zo) + dfu, (W) + ||u]| - By, (w), with ilgb E,, (u) =0 (13.3)

The above equations are called the first-order Taylor formula (of f at xg in the direction u).
Condition (13.3) is the most convenient one to use in many instances.

Proposition 593 Assume that f: S — R™ is differentiable at xq , then

Yu € R", I (xo;u) = dfzy (u) .

Proof. £ hat) — F (z0)

, . s To + hu) — f(Zo) (1)

f (zo;u) == lim 0 =
iy £ (%0)  dfig (h) + |[hull - Bay (hu) = f (w0) @) | g (W) + Bl [[ul] - Bay (hu) @)
a0 h — % h o

= lim dfy, (u) + Jim sign () - Jull- By, (he) @ dfs, (u) + ] lim sign (h)- By, (h) 2 dfs, (u),

where

(1) follows from (13.3) with hu in the place of u,

(2) from the fact that df,, is linear and therefore (Exercise) continuous, and from a property of
a norm,

(3) from the fact that LZ' = sign (h), !

(4) from the fact that A — 0 implies that hu — 0,

(5) from the assumption that f is differentiable in zo. =

Remark 594 The above Proposition implies that if the differential exists, then it is unique - from
the fact that the limit is unique, if it exists.

Proposition 595 If f : S — R™ is differentiable at xq, then f is continuous at .
Proof. We have to prove that
lim f (2o +u) = f(z0) =
i.e., from (13.3), it suffices to show that
timn df, (u) + ] - Eay (1) = iy 0) 4 it [ - Eo, () = 0

where the first equality follows from the fact that df, is linear and therefore continuous, and the
second equality from the fact again that df,, is linear, and therefore df, (0) = 0, and from (13.2).
]

Remark 596 The above Proposition is the answer to Question 1 in Remark 586. We still do not
have a answer to Question 2 and another question naturally arises at this point:
3. Is there an “easy” way of checking differentiability?

Lsign is the function defined as follows:

-1 if <0
sign: R —{-1,0+1}, =z~ 0 if zz=0
41 if x>0
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13.2 Total Derivatives in terms of Partial Derivatives.

In Remark 598 below, we answer question 2 in Remark 586: Is there any “easy” way to compute
the directional derivative?

Proposition 597 Assume that f = (fj);.n:l : S CR™ — R™ is differentiable in xo. The matriz
associated with df ., with respect to the canonical bases of R™ and R™ is the Jacobian matriz D f (xq),
i.e., using the notation of Section 7.5,

[dfa0] = D (20),

i.e.,

Vo € R", dfze () = Df (z0) - . (13.4)
Proof. From (7.6) in Section 7.5
(dfag) = [ dfay (eh) o dfay () o dfug (D) ],
From Proposition 593,
Vie{l,..,n}, dfys, (¢') = f (z0se),

and from (12.5) ;
f (wose’) = (Da, £ (xO));RZI '
Then

(dfoo) = [ (Dacfi @)1y oo (Dasfs @)™y o (Day £y ()™

]mxn’

as desired. m

Remark 598 From Proposition 593, part 1, and the above Proposition 597, we have that if f is
differentiable in xo, then Yu € R™

Yu e R™, ' (vo;u) = Df (x9) - u.
Remark 599 From (13.4), we get
1 & 2 &
ldf 2o (@)Il = I1Df (20)]y @ll < D Dfj (o) -2l < Y IDS; (o)l - 1]
Jj=1 j=1

where (1) follows from Remark 56, (2) from Cauchy-Schwarz inequality in (53) . Therefore, de-
fined o := 375 || Dfj (o) ;we have that

[y ()| < - [l]|

and
lim [df, ()] =0

Remark 600 We have seen that

f differentiable in xy = f admits directional derivative in o = Df (xo) exists
“

(3 (not |}) (not |)
f continuous in x, f continuous in x, f continuous in x,
Therefore

f differentiable in g <= Df (xg) ewists

and
f differentiable in vy <= [ admits directional derivative in xg

We still do not have an answer to question 3 in Remark 596: Is there an easy way of checking
differentiability? We will provide an answer in Proposition 628.
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Chapter 14

Some Theorems

We first introduce some needed definitions.
Definition 601 Given an open S C R",
feS—=R™  zi= (z5)i, — f(2) = (fi (@),

IC{l,...,m} and JC{l,..,n},
the partial Jacobian of (fi);e; with respect to (x;);c; in xo € S is the following (#1) x (#J)

submatriz of D f (xo)
[afi (370)}
Ox; i€l, jeJ,

D(fﬂj)jeJ (fj)ie] (1'0)

and it is denoted by

Example 602 Take:
S an open subset of R™ | with generic element ' = (xj);il,
T an open subset of R™2, with generic element z"" = (zy),2, and

f:8xT—R™ (2,2")— f(a' 2"

Then, defined n = nq + n1, we have

Dy, fi(z0) - Da, f1(0)
Duf (@)= | Darfi@o) o Da, filao)
Doy fon (@0) o Day fn (o) |,
o sy Dey o fi(@0) o Dafiao)
f@o)i= | Dry i@ . D fi(w)
Dayoifo@0) o Dapfunlao) |

and therefore

Df (z0) = [ Darf (z0) Darf (o) |

Definition 603 Given an open set S C R™ and f : S — R, assume that Yx € S, Df (z) :=
n
(%f_é;)) exists. Then, Vj € {1,...,n}, we define the j — th partial derivative function as
i /=1

mXn

ﬁ:SHR, xr—>af($)
c’)xj 8.%‘]‘

187
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Assuming that the above function has partial derivative with respect to xy, for k € {1,...,n}, we
define it as the mived second order partial derivative of f with respect to x; and x and we write

Pf() _ 0%
&rjé)ﬂck T axk

Definition 604 Given f: S CR"™ — R, the Hessian matrix of f at xg is the n X n matriz

D (a0) = [ (a0

Gk=1,...,n
Remark 605 D?f (x) is the Jacobian matriz of the gradient function of f.
Example 606 Compute the Hessian function of f : R} | — R,
f(z,y,2) = (¢" cosy + 2% + 2%logy + logx + log z + 2tlog t)
We first compute the gradient:

2zIny + (cosy) e” + <
4 C .’L‘2

— (siny) e” + -

22+ 1

2Int+2

and then the Hessian matrix

21ny—|—(cosy)e“”—m—12 —(siny)e"”—i—Q% 0 0
— (siny)e” + 2% —(cosy)e” =& 0 0
0 0 -%+2 0
0 0 0 2

14.1 The chain rule
Proposition 607 (Chain Rule) Given S CR"™, T C R™,
f:SCR" - R™

such that Im f C T, and
g: T CR™ — RP,
assume that f and g are differentiable in xo and yo = f (xo), respectively. Then

h:SCR" =R, h(z)=(g0f)(x)

1s differentiable in xg and
dhxo = dgf(zo) o dfaco-

Proof. We want to show that there exists a linear function dh,, : R" — RP such that

h(zo 4 u) = h(20) + dhg, (u) + |lu| - E;, (u), with lim £ (u) =0,

u—0

and dhy, = dgy () © Afeq-
Taking v sufficiently small (in order to have g 4+ u € S), we have

h(zo +u) — h(zo) = g[f (xo +u)] — g[f (x0)] = g [f (w0 +u)] — g (v0)
and defined
v = f(xo+u)—yo

we get
h(zo+u) = h(xo) =g (Yo +v) —g(yo)-
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Since f is differentiable in xg, we get

v =dfy, (u) + ||u] - Bz (u), with lirrb E,, (u)=0. (14.1)

Since g is differentiable in yo = f (x0), we get
9 (50 +0) — 9 (s0) = dgyo () + o] - By (v),  with lim B, (v) = 0. (142)
Inserting (14.1) in (14.2), we get

9 (0 +0)=9 (o) = dgyo (dfis (u) + [[ull - Exy (w))+[[v]|- By, (v) = dgy, (dgao (w))+[ull-dgy, (Ezy (w))+[[v]|-Ey, (v)

Defined
0 if w=0

Observe that
lim dfy, (Es, (1)) = 0

since linear functions are continuous and from (14.1). Moreover, since lim,, g v = lim, o (f (20 +u) — yo) =
0, from (14.2), we get
1];2% Eyo (7}) =0.
Finally, we have to show that lim,_¢ % is bounded. Now, from the definition of u and from

(599), defined o := 3772, [[Df; (wo)ll,
o]l = lldfzy (w) + [l - By ()] < lldfao (Wl + [[u]l 1Bz (W) < (@ + [[Ezy (@)]]) - [|ul

and

el
1 <1 E, = a,
Jim 7 < Jim (o[ By ()]) = o

as desired. m

Remark 608 From Proposition 597 and Proposition 279, or simply (7.10), we also have

Dh(20),x, = Dg (f (%0))psern - DF (20), 51 -

Observe that Dg (f (z9)) is obtained computing Dg (y) and then substituting f (x¢) in the place
of y. We therefore also write Dg (f (xo)) = Dg (y)‘y:f(

o)

Exercise 609 Compute dhg,,, if n=1,p=1.
Definition 610 Given f: S CR® - R™ ¢g: S CR"” — R™2,
(f.g9) : R" — R™*m2, (f,9) (z) = (f (), 9 (z))

Remark 611 Clearly,

Example 612 Given
f:R—R2?, ;2 +— (sinx, cosx)

g:R2=RE (yr,2) — (Y1 +y2, 91 - 42)

h=gof:R—R?  :z+ (sinz+cosz,sinz-cosz)
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verify the conclusion of the Chain Rule Proposition.

ps@={ 5, |
Dg(y) = [ ;2 yll }

D9 = | s sin |

cosr sinz

cosT . cosT —sinx
cos®“x —sin“ x

Dot @) D@ = | oty e || o, | = pre

cosx sinx

Example 613 Take

g:RF - R™, it g(t)
fiR"XRF = R™ i (x,8) > f (,1)
hiRFSR™ it f(g(t),t)

Then
G:= (g idpr) : RF = R" xR*, £+ (g(t),1)
and

h = foﬁ: fO (guldR’H)
Therefore, assuming that f, g, h are differentiable,

[Dh (t())]mxk = [Df (g (t()) ’to)]mx(n—i-k) . |: Dg](to) :|( - =
n+k)x
= [[Daf (9 (t0) ,t0)]usen | [Def (9 (t0) s t0)] k] - [ [DQI(Zi)k]nxk ] _

[Dxf (9 (t0) s t0)]sen * [P (t0)],sr + [Def (9 () 1 10)] i

In the case k =n =m =1, the above expression

df(x=9).t) _0f(g(®).t)dg(t)  Of(g(t).t)

dt Oz dt ot
or
FlW).) _ 0wt dg()  9f(w0)
dt 0x  |z=g(t) dt ot |z=g(t)

14.2 Mean value theorem

Proposition 614 (Mean Value Theorem) Let S be an open subset of R™ and f : S — R™ a
differentiable function. Let x,y € S be such that the line segment joining them is contained in S,
e,

L(z,y):={2€R":3X€0,1] such that z=(1—-N)z+ Ay} CS.
Then
Va e R™, 3JzeL(z,y) such that  a- [f(y)— f(z)]=a-[Df(2)- (y — )]
Remark 615 Under the assumptions of the above theorem, the following conclusion is false:
dze L(x,y) such that f(y) — f(x) =Df(2) (y — ).

But if f : S — R™=1, then setting a € R™=! equal to 1, we get that the above statement is
indeed true.
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Proof. of Proposition 614
Define v = y — x. Since S is open and L (z,y) C S, 3§ > 0 such that Vt € (—J,1+ ) such that
x+tu=(1—t)z+ty €S. Taken a € R™, define

F:(=6,140) =R, b as fz+tu) =300 a5 fi (a+ tu)
Then
F' (t) = Zaj [Dfj (@ +tu)], ., - Unx1 = @G1xm - [Df (@ +tu)],, 00 - Unxi
j+1

and F is continuous on [0, 1] and differentiable on (0, 1); then, we can apply “Calculus 17 Mean
Value Theorem and conclude that

36 € (0,1) such that F (1) — F (0) = F' (0),
and by definition of F' and u,
36 € (0,1) such that f(y) — f(z) =a - Df (x+0u)- (y — x)
which choosing z = = + Ou gives the desired result. m

Remark 616 Using the results we have seen on directional derivatives, the conclusion of the above
theorem can be rewritten as follows.

3z € Lz,y) such that f (y) — f (2) = f'(z.y — )

As in the case of real functions of real variables, the Mean Value Theorem allows to give a simple
relationship between sign of the derivative and monotonicity.

Definition 617 A set C C R"™ is convex if V1, 9 € C and VA € [0,1], (1 — Nz + Az € C.

Proposition 618 Let S be an open and convex subset of R™ and f : S — R™ a differentiable
function. IfVx € S, df, =0, then f is constant on S.

Proof. Take arbitrary x,y € S. Then since S is convex and f is differential, from the Mean
Value Theorem, we have that

Va e R™, 3JzeL(z,y) suchthat «a [f(y)—f(x)]=alDf(2) - (y—2z)]=0.
Taken a = f (y) — f (), we get that

1f () = f (@) =0

and therefore

as desired. =
Definition 619 Given = := (2;);_;,y = (y;);—; € R",
x>y means Yie€{l,..n}t, x; >y;
x>y means >y N xTFy;
x>y means Vi€ {l,..,n}, x;>y;.

Definition 620 f: S CR" — R is increasing if Vz,y € S, v >y = f (z) > f ().
f is strictly increasing if Ve,y € S, v >y = f(z) > [ (y).

Proposition 621 Take an open, convex subset S of R"™, and f : S — R differentiable.
1. IfVx € S, Df (x) > 0, then f is increasing;
2. IfVx € S, Df () >> 0, then f is strictly increasing.



192 CHAPTER 14. SOME THEOREMS

Proof. 1. Take y > x. Since S is convex, L (x,y) C S. Then from the Mean Value Theorem,
32 € L(z,y) such that f(y) — f (z) = Df (=) - (y — 2)

Since y —x > 0 and Df (z) > 0, the result follows.
2. Take x > y. Since S is convex, L (z,y) C S. Then from the Mean Value Theorem,

3z € L(z,y) such that f(y) — f(z) = Df (2) - (y — 2)
Since y —x > 0 and Df (z) >> 0, the result follows. m

Exercise 622 Is the following statement correct: “If Vo € S, Df(x) > 0, then f is strictly
increasing” ?.

Corollary 623 Take an open, conver subset S of R", and f € C*(S,R). If 3x9 € S and u €
R™\ {0} such that f'(wg,u) >0, then 3T € Ry such that Vt € [0,7),

f@o +tu) = f (x0).
Proof. Since f is C* and f’ (zo,u) = Df (o) - u > 0, 3r > 0 such that
Vz € B(xg,7), f'(z,u)>0.

Then Yt € (—r,7), )

To + n_iut“ _ xOH =t < r, and therefore

f (xo + Lu,u) >0
[l
Then, from the Mean Value Theorem, Vt € [0, 5],
[ (wo +tu) — f (wo) = f (w0 + tu,u) > 0.
|
Definition 624 Given a function f: S CR"™ — R, xg € S is a point of local mazximum for f if
30 > 0 such that Vx € B (x9,0), f(x0) > f(x);
xo 18 a point of global maximum for f if
veesS, fleo)= /().
xo € S is a point of strict local mazximum for f if
36 > 0 such that Vz € B (x0,9), f(x0)> f(x);
xg 18 a point of strict global maximum for f if
VeeS, f(xo) > f(x).
Local, global, strict minima are defined in obvious manner

Proposition 625 If S CR™, f: S5 — R admits all partial derivatives in o € Int S and xg is a
point of local mazimum or minimum, then Df (z¢) = 0.

Proof. Since zg is a point of local maximum, 34 > 0 such that Vz € B (z,9), f (zo) > f (x).
As in Remark 570, for any k € {1, ...,n}, define

gr :R—R,  g(zr) = f (w0 + (zx — zor) €} -

Then g has a local maximum point at zg;. Then from Calculus 1,

gi(zox) =0

Since, again from Remark 570, we have

Dy f (x0) = g, (20) -

the result follows. m
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14.3 A sufficient condition for differentiability

Definition 626 f = (f;);~, : S CR"™ — R™ is continuously differentiable on A C S, or f is C!
on S, or f € C(AR™) ifVie{l,..,m},j€{1,..,n},

Dy, fi: A—R, x> Dy fi () is continuous.

Definition 627 f: S C R® — R is twice continuously differentiable on A C S, or f is C? on S,
or f € C?(A,R™) if ¥4,k € {1,....,n},

0*f o f
tA—-R —
0z 0z, ’ v 0z ;0x, v

18 continuous.

Proposition 628 If f is C' in an open neighborhood of g, then it is differentiable in xg.

Proof. See Apostol (1974), page 357 or Section "Existence of derivative", page 232, in Bartle
(1964), where the significant case f : R®™ — R™=! is presented using Cauchy-Schwarz inequality.
See also,Theorem 1, page 197, in Taylor and Mann (1984), for the case f : R? - R. m

The above result is the answer to Question 3 in Remark 596. To show that f : R™ — R" is
differentiable, it is enough to verify that all its partial derivatives, i.e., the entries of the Jacobian
matrix, are continuous functions.

14.4 A sufficient condition for equality of mixed partial deriv-
atives

Proposition 629 If f : S CR™ — R! is C? in an open neighborhood of xq, then Vi

4L AL
L4 _ Tk
D2, (z0) = z, (20)
or
0% f 0% f

Ox;0xy, (wo) = Oz, 0x; (wo)

Proof. See Apostol (1974), Section 12.13, page 358. m

14.5 Taylor’s theorem for real valued functions

To get Taylor’s theorem for functions f : R™ — R, we introduce some notation in line with the
definition of directional derivative:

' (z,u) = ZDzif (%) - uj.
i=1

Definition 630 Assume S is an open subset of R™ and the function f : S — R admits partial
derivatives at least up to order m, and x € S, u € R™. Then

f" (w,u) == ZzDi,jf () - wi - uy,
=1 j=1
" (w,u) == ZZZDi,j,kf () - wi - uj -

i=1 j=1 k=1

and similar definition applies to f(™ (z,u).
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Proposition 631 (Taylor’s formula) Assume S is an open subset of R™ and the function f : S —
R admits partial derivatives at least up to order m, and x € S, u € R™. Assume also that all its
partial derivative of order < m are differentiable. If y and x are such that L (y,x) C S, then there
exists z € L (y,x) such that

m—1

Iy ) +

k=1

f xy—@+7%fmmay—@~

§|~

Proof. . Since S is open and L (z,y) C S, 3§ > 0 such that V¢t € (—=d,1+ ) such that
x+t(y—z)€S. Defineg:(-0,1+6) =R

gt)=f(z+t(y—=)).
From standard “Calculus 1”7 Taylor’s theorem, we have that 30 € (0, 1) such that

m—1

f) (@) =g 9% (0) + —g™ (6).
k=1 ’
Then
g (t)=Df( (y —)) > Daf(@+t(y—a)- (yi—a)=f (@+1t( ),y —x)
"B =D Deafl@ttly—a) (i—m) (y—z)=f (@+t(y—z),y—2)
i=1 j=1

and similarly
g (@) = @ty —2),y - )

Then the desired result follow substituting 0 in the place of ¢ where needed and choosing z =
x+0(y—x). m



Chapter 15

Implicit function theorem

15.1 Some intuition
Below, we present an informal discussion of the Implicit Function Theorem. Assume that
f:R? =R, (z,t) — f(z,1)
is at least C'. The basic goal is to study the nonlinear equation
fla,t) =0,

where z can be interpreted as an endogenous variable and ¢ as a parameter (or an exogenous

variable). Assume that
3 (xo,to) € R? such that f (mo,to) =0

and for some € > 0

JFa C' function g: (t°—,t° +e) > R, t > g(t)

such that
flgt),t)=0 (15.1)
We can then say that g describes the solution to the equation
f(z,t) =0,

in the unknown variable £ and parameter ¢, in an open neighborhood of t°. Therefore, using
the Chain Rule - and in fact, Remark 613 - applied to both sides of (15.1), we get

ofwt)  dg)  Ofwt)  _,
0x  |a=g(t) dt Ot |a=g(t)
and 5
assuming that M
0T  |z=g(t)
we have 8F(ot)
dg () _ ot lz=g(t) (15.2)
dt ~  9f(=z) ’
9z |z=g(t)

The above expression is the derivative of the function implicitly defined by (15.1) close to the
value t°. In other words, it is the slope of the level curve f (z,t) = 0 at the point (¢, g (t)).
For example, taken
f:R2 =R, (z,t)—a?+t2—1
f (x,t) = 0 describes the circle with center in the origin and radius equal to 1. Putting ¢ on the
horizontal axis and = on the vertical axis, we have the following picture.

195
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057

0.5 1
t
Clearly
f(0,1))=0
Aslong ast € (—1,1), g (t) = V1 — 2 is such that
flgt),t)=0 (15.3)

Observe that

) !

dt V1—1t?

and
of (x,t)
T ey 2t _ ¢
0f(x.0) O 2a=gt) 12
ox  |xz=g(t)

Ea

For example for ¢t = %, g ) =- = _1.

=
|
I~

2
Let’s try to present a more detailed geometrical interpretation'. Consider the set {(CE, t) ER?: f(z,t) = 0}
presented in the following picture.
Insert picture a., page 80.
In this case, does equation
f(z,t)=0 (15.4)

define x as a function of ¢t? Certainly, the curve presented in the picture is not the graph of a
function with z as dependent variable and ¢ as an independent variable for all values of ¢ in R. In
fact,

1. if t € (—o0, t1], there is only one value of « which satisfies equation (15.4);

2. if t € (t1,t2), there are two values of x for which f (z,t) = 0;

3. if t € (t2, +00), there are no values satisfying the equation.

If we consider ¢ belonging to an interval contained in (¢1, t2), we have to to restrict the admissible
range of variation of x in order to conclude that equation (15.4) defines  as a function of ¢ in that
interval. For example, we see that if the rectangle R is as indicated in the picture , the given
equation defines x as a function of ¢, for well chosen domain and codomain - naturally associated
with R. The graph of that function is indicated in the figure below.

Insert picture b., page 80.

I This discussion is taken from Sydsaeter (1981), page 80-81.
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The size of R is limited by the fact that we need to define a function and therefore one and only
one value has to be associated with ¢. Similar rectangles and associated solutions to the equation
can be constructed for all other points on the curve, except one: (ta,x2). Irrespectively of how
small we choose the rectangle around that point, there will be values of ¢ close to tg, say t’, such
that there are two values of z, say 2’ and z”, with the property that both (¢, z') and (¢',z") satisfy
the equation and lie inside the rectangle. Therefore, equation (15.4) does not define = as a function
of ¢t in an open neighborhood of the point (t2,z2). In fact, there the slope of the tangent to the
curve is infinite. If you try to use expression (15.2) to compute the slope of the curve defined by
22 + 12 = 1 in the point (1,0), you get an expression with zero in the denominator.

On the basis of the above discussion, we see that it is crucial to require the condition

Of (x,t)

0x  |a=g(t)

to insure the possibility of locally writing = as a solution (to (15.4)) function of ¢.
We can informally, summarize what we said as follow.
If fis C, f(z0,t0) =0 and Ml(x )= (29,10 # 0, then f (z,t) = 0 define z as a C! function

oz
Af(x,t)
g of ¢ in an open neighborhood of t°, and ¢’ (t) = — 7%
“oz |z=g(t)

Next sections provide a formal statement and proof of the Implicit Function Theorem. Some
work is needed.

15.2 Functions with full rank square Jacobian

Proposition 632 Taken a € R", r € Ry, assume that
1 f:=(fi)i_, : R" = R" is continuous on Cl (B (a,r));
2. Yz € B(a,r), [Df ()], erists and det Df (z) # 0;
3. Vz € F(B(a,r)), f(z) # f(a).

Then, 36 € R4 such that
f(B(a,r)) 2 B(f(a),9).
Proof. Define B := B (a,r) and
9:F(B)=R, w—|f(z)-f(a)].

From Assumption 3, Vx € F (B), g (z) > 0. Moreover, since g is continuos and F (B) is compact,
g attains a global minimum value m > 0 on F (B). Take 0 = %&; to prove the desired result, it is
enough to show that T':= B (f (a),d) C f(B), i.e,Vye T,y € f(B). Define

h:ClL(B) =R, w—|f(z)-yl.

since h is continuos and Cl B is compact, h attains a global minimum in a point ¢ € B. We
now want to show that ¢ € B. Observe that, since y € T = B (f (a),6 = %),

m

hia)=|f(a) —yll <3 (15.5)

Therefore, since c is a global minimum point for h, it must be the case that h(c) < . Now

take x € F (B); then

Ve

he) =7 @) — vl = 1f @) — 1 (@) — (= F@)] = I @) — F @~y - f @] = g(2)-

where (1) follows from Remark 54, (2) from (15.5) and (3) from the fact that ¢ has minimum
value equal to m. Therefore, Vo € F (B), h(xz) > h(a) and h does not attain its minimum on
F (B). Then h and h? get their minimum at ¢ € B 2. Since

)

| 3
—
&

m
2

n

H(z) :=h*(2) = |f (@) —9l* = D (fi (@) =)

=1

2Yx € B, h(z) > 0 and h(z) > h(c). Therefore, h? (x) > h? (c).
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from Proposition 625, DH (¢) = 0, i.e.,

Vk e {1,...,n}, QZDmkfi (¢)-(file)—yi)=0
i=1

ie.,
[Df ()]s (f(€) = Y)yuq = 0.
Then, from assumption 2,
fle) =y,
i.e., since c € B, y € f(B), ad desired. ®

Proposition 633 (1st sufficient condition for openness of a function)
Let an open set A CR™ and a function f: A — R™ be given. If
1. f is continuous,
2. f is one-to-omne,
3. Ve € A, Df (z) exists and det D f (z) # 0,

then f is open.

Proof. Taken b € f (A), there exists a € A such that f (a) = b. Since A is open, there exists
r € Ry such that B (a,r) C A. Moreover, since f is one-to-one and since a ¢ F (B), Vo € F (B),
f(z) # f (a) .Then?, for sufficiently small r, C1(B (a,r)) C A, and the assumptions of Proposition
632 are satisfied and there exists § € R, such that

f(A) 2 f(CL(B(a,r))) 2 B(f(a),d),
as desired. m

Definition 634 Given f:S — T, and A C S, the function f|4 is defined as follows

flatA—=f(A),  flalz)=f(z).
Proposition 635 Let an open set A C R™ and a function f: A — R"™ be given. If
1. fis Ct,
2. Ja € A such that det Df (a) # 0,
then 3r € Ry such that f is one-to-one on B (a,r), and, therefore, fip(a,r) is invertible.

Proof. Consider (R")" with generic element z := (2%)"_, where Vi € {1,...,n}, z' € R", and

i=1
define

Dfl (Zl)
heRY =R, () det Dy (<))

Observe that h is continuous because f is C'! and the determinant function is continuous in its
entries. Moreover, from Assumption 2,

h(a,...,a,..,a) =det Df (a) # 0.

Therefore, 3r € R4 such that

n

v (zi)izl € B((a,...,a,....a),r"), h ((zl)lzl) £ 0.

n

Observe that B* := B ((a, ..., a, ...,a),7)N3 # &, where 3 := {(Zi)izl

Define

eER™ :Vie {1,...,n},2" = zl}.

proj : (R™)" — R" proj : (zi):zl — b

3Simply observe that Vr € Ry, B (=, %) C B(z,r).
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and observe that proj (B*) = B(a,r) CR" and Vi € {1,..,n},Vz; € B(a,r), (zl, ,zz,z") €
B* and therefore h (2%, ...,z"...,2") # 0,0r, summarizing,
Ir € Ry such that Vi € {1,..,n},Vz; € B(a,r), h(z' .., 20.,2") #0

We now want to show that f is one-to-one on B (a,r). Suppose otherwise, i.e., given z,y €
B (a,r), f(x) = f (y), but  # y. We can now apply the Mean Value Theorem (see Remark 615) to

fiforany i € w{l,...,n} on the segment L (z,y) C B (a,r). Therefore Vi € {1,..,n}, 32* € L (x,y)
such that

Vi€ {1,..,n},32" € L(x,y) such that 0 = f; () — f; (y) = Df (zl) (y — x)

i.e.,

Df (Zl)
Df; (zl) (y—x)=0
Df, (™)
Observe that Vi, z' € B (a,r) and therefore (zi)?zl € B((a,...,a,...,a),r") and therefore
Dfi (")
det | Dfi (=) | =n((z)),) #0
Df, (™)
and therefore y = x, a contradiction. m

Remark 636 The above result is not a global result, i.e., it is false that if f is C' and its Jacobian
has full rank everywhere in the domain, then f is one to one. Just take the function tan.

5T

The next result gives a global property.

Proposition 637 (2nd sufficient condition for openness of a function) Let an open set A C R"
and a function f: A — R™ be given. If

1. fis Ct,

2. Ve e A, det Df (z) #0,

then f is an open function.
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Proof. Take an open set S C A. From Proposition 635,Vx € S there exists r € R, such that
f is one-to-one on B (z,r). Then, from Proposition 633, f (B (z,r)) is open in R™. We can then
write S = UzesB (z,r) and

f(9) = [ (UresB(2,7)) = Usres f (B (x,7))

where the second equality follows from Proposition 505.2..f1, and then f (S) is an open set. m

15.3 The inverse function theorem

Proposition 633 shows that a C' function with full rank square Jacobian in a point a has a local
inverse in an open neighborhood of a. The inverse function theorem give local differentiability
properties of that local inverse function.

Lemma 638 If g is the inverse function of f : X — Y and A C X, then gjsa) is the inverse of

fia, and
if g is the inverse function of f: X —Y and B CY, then gp is the inverse of fiqB)-

Proof. Exercise. m

Proposition 639 Let an open set S C R™ and a function f: S — R™ be given. If
1. fis C', and
2. da€ S, detDf (a) #0,
then there exist two open sets X C S and Y C f(S) and a unique function g such that
l.ae X and f(a) €Y,
2' Y = f (X)7
3. f is one-to-one on X,
4. g is the inverse of fx,
5. gis CL.

Proof. Since f is C', 3r1 € Ry, such that Vo € B(a,r1), det Df (z) # 0. Then, from
Proposition 635, f is one-to-one on B (a,r1). Then take ro € (0,71), and define B := B (a,r3).
Observe that Cl (B) (a,r2) C B (a,r1) .Using the fact that f is one-to-one on B (a,r1) and therefore
on B (a,rs2), we get that Assumption 3 in Proposition 632 is satisfied - while the other two are
trivially satisfied. Then, 36 € Ry such that

f(B(a,r2)) 2 B(f(a),6) =Y.

Define also
X :=fHY)nB, (15.6)

an open set because Y and B are open sets and f is continuous. Since f is one-to-one and
continuous on the compact set Cl (B) , from Proposition 513, there exists a unique continuous
inverse function g : f (Cl (B)) — Cl (B) of fic1 (). From definition of Y,

Y C f(B)C[(CI (B)). (15.7)

From definition of X,

FX)=YNf(B)=Y.
Then, from Lemma 638,

g = gy is the inverse of f|x.

The above shows conclusions 1-4 of the Proposition. (About conclusion 1, observe that a €
Y (B(f(a,8)NB(a,r2) =X and f(a) € f(X)=Y".)

We are then left with proving condition 5.
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Following what said in the proof of Proposition 635, we can define
Dfy ()
heRY SR, (2] det Df; ()
DF, (")
and get that, from Assumption 2,
h(ay...,a,..,a) =det Df (a) # 0,
and, see the proof of Proposition 635 for details,
Ir € Ry, such that Vi € {1,..,n} ,Vz; € B(a,r), h(z',..,2".,2") #0, (15.8)
and trivially also
Ir € Ry such that Vz € B(a,r), h(z, ..,z...,2) =det Df (z) # 0. (15.9)
Assuming, without loss of generality that we took r; < r, we have that
Cl (B):=Cl (B)(a,r2) € B(a,r1) C B(a,r).

Then Vz!,...,2" € C1 (B) , h (zl, ,zl,z") # 0. Writing g = (gj):zl, we want to prove that

Vi € {1,..,n}, ¢g' is C1. We go through the following two steps: 1. Vy € Y, Vi,k € {1,..,n},
D, ¢" (y) exists, and 2.it is continuous.

Step 1.

We want to show that the following limit exists and it is finite:

g' (y+hek) — g' () '

fimy h
Define n
x = (z:);— = g(y) € X CCl (B) (15.10)
' = (@))i = g (y+her) C X CCl(B) |
Then

@)= f(x) = (y+hek) —y = hel.

We can now apply the Mean Value Theorem to f! for i € {1,..,n}: 32* € L(x,2’') C Cl (B),
where the inclusion follows from the fact that z,2’ € Cl (B) a convex set, such that

fi (xl) _ fz (.’E) _ sz (Zl) (:L'/ o $)

Vie{l,.,n}, - .
and therefore
Df1 (Zl>
Dfl(zl) % (' —z) = ek,
Df, (")
Define
Dfi(24)
| e
Df, (="

Then, from (15.8), the above system admits a unique solution, i.e., using (15.10),

g(y+her) —g(y) L
h h
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and, using Cramer theorem (i.e., Theorem 315),

gy+hel)—gly) (2., 2")
h  h(ZY, ..., 2")

where ¢ takes values which are determinants of a matrix involving entries of A. We are left with
showing that
1 n
lim gp(z s 2)
h—0 h(z!, .., 2")

exists and it is finite, i.e., the limit of the numerator exists and its finite and the limit of the
denominator exists is finite and nonzero.

Then, if h — 0, y + he® — y, and, being g continuous, =’ — z and, since z* € L (z,2'), 2* — =
for any i. Then, h (2!, ...,2") — h(z,...,x) # 0,because, from 15.10, 2 € Cl (B) and from (15.9).
Moreover, ¢ (z!,...,2") — ¢ (z,...,z).

Step 2.

Since

g hek) — ¢t
i 9 (ythen) —9g'(W) _ o)

h—0 h h(z,..,x)

and ¢ and h are continuous functions, the desired result follows. m

15.4 The implicit function theorem

Theorem 640 Given S, T open subsets of R and R* respectively and a function
f:SxT—=R" :(x,t)— f(x,t),

assume that

1. fis C1,
there exists (xo,to) € S x T such that
2. f(xo,to) = 0,

3. Dy f (x0,%0),,y, is invertible.

Then there exist N(xo) C .S open neighborhood of xo, N(to) C T open neighborhood of ty and a
unique function
g: N(to) = N(zo)

such that
1. gis C,
2. {(z,t) € N(zo) x N(to) : f(z,t) =0} = {(2,1) € N(wo) x N(to) : x = g(t)} := graph g."
Proof. See Apostol (1974). proof to be added. m

Remark 641 Conclusion 2. above can be rewritten as
Yt e N(to), f(g(t),t)=0 (15.11)
Computing the Jacobian of both sides of (15.11), using Remark 613, we get
VEEN (), 0=[Dof (9(8),Oin -~ D9 (s + [Dof (9(8) D] (15.12)

and using Assumption 8 of the Implicit Function Theorem, we get

VEEN (to),  [Dg(Ouxr == [Daf (9 (1), D)usn - [Def (9 (1) D)

Observe that (15.12) can be rewritten as the following k systems of equations: Vi € {1, ..., k},
[Daf (9 @) 0)]nxn - [Prg Olpuys = = [De.f (9 (8) D)1

4Then g (to) = zo.
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Exercise 642 ° Discuss the application of the Implicit Function Theorem to f : R® — R?

2e™1 + xoty — 4to + 3 )

f(x17$27t17t27t3> = ( To COS T1 —6.731 —|—2t1 —t3

at (z°,t%) =(0,1,3,2,7).
Let’s check that each assumption of the Theorem is verified.

1. f(zo,tp) =0 . Obvious.

2. fisCL.
We have to compute the Jacobian of the function and check that each entry is a continuous
function.
3] T3 ty ta i3
2e” + Tol1 — 4t2 +3 2e™1 t1 i) —4 0
Tocosxy — 6x1 + 281 — t3 —x9sinxy —6 cosxy 2 0 -1
3. [Daf (z0,t0)],,%, s invertible.
2e”1 t1

2 3
(D f (w0,t0)] = [ —T9sinx — 6 cosxy }(071737277) a { —6 1 }

whose determinant is 20.

Therefore, we can apply the Implicit Function Theorem and compute the Jacobian of g : N (tg) C
RQ — N(.’E0> g R3.'

1
— 2e™ tl ) —4 0 N
Dy (t) = [ —aysinzy — 6 cosz } [ 2 0 -1 ] =

_ 1 2t1 — To COS T 4cosxy —t
6t +2 (coszy) €™ + tyxgsinzy | —6xg —4e™ — r3sinxz; 4rosinxg +24 2™

Exercise 643 Given the utility function u:R2 | — Ry, (z,y) — u(z,y) satisfying the following
properties

i wis C?, . V(z,y) € RE,, Du(z,y) >> 0,ii. V(z,y) € RZ,, Dyyu(z,y) <0,Dyyu(z,y) <
0, Dyyu(z,y) >0,

compute the Marginal Rate of Substitution in (xo,y0) and say if the graph of each indifference
curve is concave.

y 57

3757

257

1257

5The example is taken from Rudin (1976), pages 227-228.
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15.5 Some geometrical remarks on the gradient

In what follows we make some geometrical, not rigorous remarks on the meaning of the gradient,
using the implicit function theorem. Consider an open subset X of R2, a C' function

frX =R i (zy) e fl2y)
where a € R. Assume that set
L(a):={(z,y) € X: f(z,y) = a}
is such that V (z,y) € X, %‘Z’y) # 0 and %‘fc’y) %0, then
1. L(a) is the graph of a C! function from a subset of R to R;

2. (z*,y*) € L(a) = the line going through the origin and the point Df (z*,3*) is orthogonal
to the line going through the origin and parallel to the tangent line to L (a) at (z*,y*);or
the line tangent to the curve L (a) in (z*,y*) is orthogonal to the line to which the gradient

belongs to.
3. (z*,y*) € L(a) = the directional derivative of f at (z*,y*) in the the direction w such that
lw]| = 1 is the largest one if u = %.

1. It follows from the Implicit Function Theorem.
2. The slope of the line going through the origin and the vector D f (*,y*) is

Of(z*,y™)
9y
of(x*,y*)
ox

(15.13)

Again from the Implicit Function Theorem, the slope of the tangent line to L (a) in (x*,y*) is
of(z".y™")
;P — (15.14)

The product between the expressions in (15.13) and (15.14) is equal to —1.
3. the directional derivative of f at (z*,y*) in the the direction w is

@y )su) =Df (2%,y") -u=|Df (z",y")| - lul| - cos b

where 6 is an angle in between the two vectors. Then the above quantity is the greatest possible iff

a1 L . K k) s _ Df(z"y")
cosf =1, i.e., u is colinear with D f (x*,y*), i.e., u = BHGERIE

15.6 Extremum problems with equality constraints.
Given the open set X C R", consider the C* functions
[ X =R, froze f(2),

g: X —-R™, g:x— g(z):= (95 ($));n:1

with m < n. Consider also the following “maximization problem”:

(P) maxzex f(z) subject to g(xz)=0 (15.15)

The set
C:={zreX:g(x)=0}

is called the constraint set associated with problem (15.15).
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Definition 644 The solution set to problem (15.15) is the set
{z"eC:vaed, f(z") > f(a)},
and it is denoted by arg max (15.15).

The function

L:XxR" SR, L:(x,\)— f(z)+ g2

is called Lagrange function associated with problem (15.15).
Theorem 645 Given the open set X C R™ and the C' functions

frX =R frzef(z), g: X 2R grzeg(e)=(g @),

assume that
1. f and g are C' functions,
2. x0 18 a solution to problem (15.15),5 and
3. rank [Dg (z9)] =m.

mxXn

Then, there exists Ao € R™, such that, DL (xg, o) =0, i.c.,

{ Df (zo) + XoDg (z0) =0

4 (z0) = 0 (15.16)

Proof. Define 2’ := (z;);~, € R™ and ¢ = (zy4%),_, € R" ™ and therefore z = (z/,¢). From
Assumption 3, without loss of generality,

det [Dyr g (20)],,5m 7# 0- (15.17)

We want to show that there exists A\g € R™ which is a solution to the system

[Df (20)]1 5 + Atscm [Dg (0)],,50, = 0- (15.18)

We can rewrite (15.18) as follows

[ Darf(20)15m | Def (20)1c(nom) | +Mscm [ Darg (@0)msm | D9 (£0) (o) ] =0

. [ Dar [ (20)15m |+ Xixm [ Darg (20) e | =0 (1)
(15.19)
[ th (xo)lx(n—m) ] + A1xm [ Dtg ($O)m><(n_m) } =0 (2)

From (15.17), there exists a unique solution Ag to subsystem (1) in (15.19). If n = m, we are
done. Assume now that n > m. We have now to verify that Ag is a solution to subsystem (2)
in (15.19), as well. To get the desired result, we are going to use the Implicit Function Theorem.
Summarizing, we hat that

1. gis Ct, 2. g(xp,to) =0, 3. det[Dyg(x(,t0)],,5m # 0,

i.e., all the assumption of the Implicit Function Theorem are verified. Then we can conclude
that there exist N(x¢) C R™ open neighborhood of zf, N(tp) € R™ ™ open neighborhood of ¢,
and a unique function ¢ : N(¢y) — N(x) such that

1. ¢is C1, 2. ¢ (to) =i, 3. VteN(t), glp(),t)=0. (15.20)
Define now
F:N(t) CR"™ =R, t— fe(t),1),
and
G:N(tp) CR*™ — R™, it g(e(t),t).

6The result does apply in the case in which zq is a local maximum for Problem (15.15). Obviously the result
apply to the case of (local) minima, as well.
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Then, from (15.20) and from Remark 641, we have that Vt € N (1),
0= [DG (t>]7n><(n—m) = [Dl’lg (SO (t> 7t)]m><m : [DSD (t)]mx(n—nz) + [Dtg (SD (t> ’t)]mx(n—m) . (1521)

Since’, from (15.20), Vt € N (t9), g (p(t),t) =0 and since

15.20
20 = (zh,t0) "= (¢ (o), to) (15.22)

is a solution to problem (15.15), we have that f (xq) = F (t9) > F (t), i.e., briefly,
VtGN(to), F(to)ZF(t)

Then, from Proposition 625, DF (tp) = 0. Then, from the definition of F' and the Chain Rule,
we have

[Dar f (@ (t0) s t0)]1sem * [P (00)] e (n—my T [Pef (# (t0) 5 0)] 15 (—my = O- (15.23)
Premultiplying (15.21) by A, we get
A [Darg (0 (8) )] nsem [P O ey + Atxm + [Deg (0 () O] (nomy = 0. (15.24)
Adding up (15.23) and (15.24) ,computed at ¢ = fo,we get
([Dar f (¢ (o) s t0)] + A+ [Darg (¢ (to) s t0)]) - [Dep (to)] + [Def (¢ (to) s to)] + +A- [Deg (¢ (to) s o)] = 0,
and from (15.22),
([Dar f (z0)] + A+ [Darg (w0)]) - [Dep (t0)] + [Def (x0)] + A - [Deg (wo)] = 0. (15.25)

Then, from the definition of A as the unique solution to (1) in (15.19) ,we have that [D, f (z¢)]+
Ao - [Dzrg (zg)] =0, and then from (15.25) computed at A = Ay, we have

(D¢ f (z0)] + Ao - [Deg (20)] =0,

i.e., (2) in (15.19), the desired result. m

15.7 Exercises on part III

Problem sets: all of the problems on part III.
See Tito Pietra’s file (available on line): Exercises 1 — 14 (excluding exercises 3, 5, 15).

"The only place where the proof has to be sligtgly changed to get the result for local maxima is here.
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Chapter 16

Concavity

Consider! a set X C R”, a set II C R¥ and the functions f : X xII = R, g: X xII — R™, h:
X x IT — R!. The goal of this Chapter is to study the problem:
for given f, g, h and for given 7 € II,

mg)}({f (x,m) st g(z,m)>0 and h(z,7)=0,

under suitable assumptions. The role of concavity (and differentiability) of the functions f.g
and h is crucial.

In what follows, unless needed, we omit the depends on 7.
16.1 Convex sets
Definition 646 A set C C R" is convez if V1, z2 € C and YA € [0,1], (1 —A) z1 + Aze € C.

Definition 647 A set C C R” is strictly convez if V1, xo € C such that x1 # 2, and VA € (0,1),
(I=XNz1+ g € Int C.

Remark 648 If C is strictly convex, then C is convex, but not vice-versa.
Proposition 649 The intersection of an arbitrary family of convex sets is convez.

Proof. We want to show that given a family {C;};cr of convex sets, if z,y € C := N;esC;
then (1—-XN)z + Ay € C. z,y € C implies that z,y € C;, Vi € I. Since C; is convex, Vi € I,
Yael0,1], 1=Nz+IyeCyand VA€ [0,1] 1-Nz+IyeC. n
Exercise 650 Vn € N,Vi € {1,...,n}, I; is an interval in R, then

n
i 1;

1S a convex set.

16.2 Different Kinds of Concave Functions
Maintained Assumptions in this Chapter. Unless otherwise stated,
X is an open and convex subset of R™.

f is a function such that

f: X =R, cxe f(z).

I This part is based on Cass (1991).

209
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For each type of concavity we study, we present

1. the definition in the case in which f is C? (i.e., continuous),

2. an attempt of a “partial characterization” of that definition in the case in which f is C' and
C?; by partial characterization, we mean a statement which is either sufficient or necessary for the
concept presented in the case of continuous f;

3. the relationship between the different partial characterizations;

4. the relationship between the type of concavity and critical points and local or global extrema
of f.

Finally, we study the relationship between different kinds of concavities.

The following pictures are taken from David Cass’s Microeconomic Course I followed at the
University of Pennsylvania (in 1985) and summarize points 1., 2. and 3. above.
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16.2.1 Concave Functions.

Definition 651 Consider a C° function f. f is concave iff V a',2" € X, ¥ X € [0,1],
FI(A=N2"+A2") = (1= Nf (@) + Af(2").

Proposition 652 Consider a C° function f.
f is concave
=
M={(z,y) e X xR : y < f(z)} is conver.

Proof.
(=]
Take (2/,y"), ("”,y") € M. We want to show that

VAE[0,1], (T—=Na' + X", (1 =Ny + X)) € M.
But, from the definition of M, we get that

(IT=XNy + 2" <A =N f@)+Af(z") < f(1=Na2" + \z").

[<]
From the definition of M, Va', 2" € X, (¢/, f(2')) € M and (2", f(z")) € M.
Since M is convex,

(A=Na"+ X", (1=N) f (@) +Af(a") e M
and from the definition of M,
(1 =X f (@) +Af(2") < f(A" + (1= N)a")

as desired.
| ]

Proposition 653 (Some properties of concave functions).

1. If f,g : X — R are concave functions and a,b € Ry, then the function af +bg : X — R,
af +bg:x— af (x)+bg(x) is a concave function.

2. If f: X = R s a concave function and F : A — R , with A D Im f, is nondecreasing and
concave, then F o f is a concave function.

Proof.
1. This result follows by a direct application of the definition.
2. Let o/,2" € X and A € [0,1]. Then

(Fof)(1-Na + 2" S F(1-X) F@) 1M @) 2 (1= (Fof) @) +A-(Fof) @),

where (1) comes from the fact that f is concave and F' is non decreasing, and
(2) comes from the fact that F' is concave.
|

Remark 654 (from Sydseter (1981)). With the notation of part 2 of the above Proposition, the
assumption that F is concave cannot be dropped, as the following example shows. Take f,F :
Ryy —» Ry, f(z) = Vo and F(y) = y3. Then f is concave and F is strictly increasing, but
Fof(z)= 23 and its second derivative is %x_% > 0. Then, from Calculus I, we know that F o f
is strictly convex and therefore it is not concave.

Of course, the monotonicity assumption cannot be dispensed either. Consider f (z) = —x? and

F (y) = —y. Then, (F o f) (z) = 22, which is not concave.

Proposition 655 Consider a differentiable function f.
f is concave
=
va',a” € X, f(a”) — f(2') < Df(a’) (2" — ).
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Proof.

(=]

From the definition of concavity, we have that for A € (0,1),
(1 =X f(") +Af(2") < f(@' + A (2" —2')) =
AMf ") = f@) < f@+AE@"—2)) - f@) =

fla) ~ flat) < LEAELDIED,

Taking limits of both sides of the lasts inequality for A — 0, we get the desired result.

(<]

Consider z/,z"” € X and X\ € (0,1). For A € {0,1}, the desired result is clearly true. Since X is
convex, 2 := (1 — A\)z’ + A\z” € X. By assumption,

fa") = (&) < Df(a) (2" —2*) and

@) = f(@) < Df )@ — )
Multiplying the first expression by A, the second one by (1 — A) and summing up, we get

A(f@@") = f@) + (1= N(f(2') = f@) < Df M)Az —2*) + (1= N) (@' — )
Since
Mz =2+ (1 =N (@ —2*) =2 —2* =0,
we get
A (") + (1= X) f(2) < fah),
i.e., the desired result.

Definition 656 Given a symmetric matriz A,xn, A is negative semidefinite if Vo € R™, xAz < 0.
A is negative definite if Vo € R™\ {0}, zAz < 0.

Proposition 657 Consider a C? function f.
f s concave
=
Vo € X, D?f(z) is negative semidefinite.

Proof.
(=]
We want to show that Yu € R”, Yz € X, it is the case that u” D? f(z¢)u < 0. Since X is open,
Vo€ X Jae€Riy such that |h| <a = (xg+ hu) € X .Taken I := (—a,a) C R, define
g:I—=R, g:h— f(zo+ hu)— f(zo) — Df(xo)hu.

Observe that
g (h) = Dy f(xo + hu) - u+ Df(xo) - u

and
g (h) =u-D*f(xo+ hu) -u

Since f is a concave function, from Propgsition 655, we have that V h € I, g(h) < 0. Since
g(0) =0, h =0 is a maximum point. Then, g (0) = 0 and

g"(0)<0 (1).
Moreover, Vh € I, g (h) = D f(xo + hu)u — Df(zo)u and ¢’ (h) = uT D? f(xo + hu)u. Then,

9"(0) =u-D*f(wo) - u (2).
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(1) and (2) give the desired result.
[«
Consider z, 2% € X. From Taylor’s Theorem (see Proposition 631), we get

£(@) = F°) + D) — ) + 5 (& — ) D@ - 29)

where T = 20 4 §(2 — 2°), for some 6 € (0, 1). Since, by assumption, (z — xO)T D?f(@)(x—2) <0,
we have that

f(@) = f(z°) < Df(2°)(z - 2°),

the desired result.
| ]

Some Properties.

Proposition 658 Consider a concave function f. If xo is a local mazimum point, then it is a
global mazimum point.

Proof.
By definition of local maximum point, we know that 3§ > 0 such that Vo € B (z,0), f (x0) >
f (). Take y € X; we want to show that f (z°) > f (y).
Since X is convex,
YAelo,1], (1-XN)a"+ )y e X.

Take A’ > 0 and sufficiently small to have (1 — )\O) 20+ 2y e B(2°,6). To find such MY, just solve

the inequality ” (1 = )\0) 29 + X0y — xo” = ”)\0 (y — :EO) || = |)\0’ ” (y = xo) ” < §, where, without
loss of generality, v # x°.
Then,
f concave

FE) = (=22 + %) > (1=2°) f(=°) + A F (),
or )\Of(aco) > )\Of(y). Dividing both sides of the inequality by A’ > 0, we get f(2°) > f(y).
| |

Proposition 659 Consider a differentiable and concave function f. If Df(z°) = 0, then 2° is a
global mazimum point.

Proof.
From Proposition 655, if Df(2°) =0, we get that Vx € X, f (:EO) > f(z), the desired result.
|

16.2.2 Strictly Concave Functions.

Definition 660 Consider a C° function f. f is strictly concave iff V 2',x"” € X such that
' £, Ve (0,1),

FI(L=Na"+A") > (1= N f (@) + Af(2").
Proposition 661 Consider a C' function f.

f is strictly concave
& Vo' 2" € X such that x’' # 2",

fa") = f(a') < D"~ ),
Proof.
d
Since strict concavity implies concavity, it is the case that
va', 2" € X, f(2") — f(2') < Df(2") (2" — 2). (16.1)

By contradiction, suppose f is not strictly concave. Then, from 16.1, we have that
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Ja' 2" € X, 2/ # 2 such that f(2”) = f(z') + Df(2") (=" — 2). (16.2)

From the definition of strict concavity and 16.2, for A € (0,1),

P =Na"+22") > (1= N (2) + M (@) + ADf(2') (2" — ')

or

F(1=Na" +22") > f(2") + ADf(2") (2" — 2"). (16.3)
Applying 16.1 to the points z () := (1 — A)a’ + Az’ and 2/, we get that for A € (0,1),

FI(L= N2’ +X2”) < f(a') + Df(')(1 - N)a’ + A" — ')

or

F((A =Nz + X)) < f(2') + ADf(z') (2" — ). (16.4)

And 16.4 contradicts 16.3.
[«<] The proof is very similar to that one in Proposition 652.
]

Proposition 662 Consider a C? function f. If
Vo € X, D?*f(x) is negative definite,
then f is strictly concave.

Proof.
The proof is similar to that of Proposition 657.
|

Remark 663 In the above Proposition, the opposite implication does not hold. The standard coun-

terexample is f : R = R, f : 2 — —z?.

Some Properties.

Proposition 664 Consider a strictly concave, C° function f. If z° is a local mazimum point, then
it 1s a strict global maximum point, i.e., the unique global maximum point.

Proof.

First, we show that a. it is a global maximum point, and then b. the desired result.

a. It follows from the fact that strict concavity is stronger than concavity and from Proposition
658.

b. Suppose otherwise, i.e., 32/, 2z € X such that 2’ # 2° and both of them are global maximum
points. Then, VA € (0,1), (1 — )2’ + A\z® € X, since X is convex, and

FA=N2" +22%) > (1= f(@)+Af (2°) = f(2') = f ("),

a contradiction.
| |

Proposition 665 Consider a strictly concave, differentiable function f. If Df (3?0) =0, then x°
18 a strict global mazimum point.

Proof.

Take an arbitrary # € X such that x # 2°. Then from Proposition 661, we have that f(z) <
f(xo) + Df(wo)(w — 960) =f (aco) , the desired result.

|
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16.2.3 Quasi-Concave Functions.
Definitions.

Definition 666 Consider a C° function f. f is quasi-concave iff Va', 2" € X, V A € [0,1],
F(1L=N2"+A") = min{f (), f(z")}.

Proposition 667 If f : X — R is a quasi-concave function and F : R — R is non decreasing,
then F o f is a quasi-concave function.

Proof.
Without loss of generality, assume

fE") = ) D).

Then, since f is quasi-concave, we have

F(A=Na"+x") > f () (2).
Then,

F(F(1= N2+ 2a) S F(f @) Qmin (F(F @) . F(f (=),

where (a) comes from (2) and the fact that F is nondecreasing, and
(b) comes from (1) and the fact that F' is nondecreasing.
|

Proposition 668 Consider a C° function f. f is quasi-concave <
VaeR, B(a):={xecX: f(zx)>a} is conver.

Proof.
[=] [Strategy: write what you want to show].
We want to show that Va € R and VA € [0,1], we have that
(',2" € B(a)) = ((1-XN) 2 + X" € B(a)),

i.e.,

(f (@) zaand f(z") > a) = (f (1= Az’ + A 2") > a).
But by Assumption,

def 2’ 2"

F(L=Na" +A2") > min{f (2'), f(z")} > «

[«]
Consider arbitrary z’,2"” € X. Define a := min{f ('), f(2”)}. Then 2/,2" € B(a). By
assumption, V XA € [0,1], (1 — Az’ + A\z” € B(a), ie.,

F(A= N2’ +A2") = a = min{f (), f(z")}.
]

Proposition 669 Consider a differentiable function f. f is quasi-concave < V', 2" € X,

f@") = f(@') =20 = Df(a’)(a" —2') > 0.

Proof.
[=] [Strategy: Use the definition of directional derivative.]
Take a’, 2" such that f (z”) > f (2’). By assumption,

FE=Na"+x") = min{f (2'), f(2")} = f (2)
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and
F((=XNa" +Xx2")— f(2') >0.

Dividing both sides of the above inequality by A > 0, and taking limits for A — 0%, we get

i L@ NG =) F (@)

A—0+ A

=Df(a")(z" — ') > 0.

[<]
Without loss of generality, take

f@') =min{f (@), f(=")} (1),

Define
0 [0,1] >R, p: A= f((1=XN)a' +Xz").

We want to show that
VA€ [0,1], ¢ (A) > ¢ (0).

Suppose otherwise, i.e., 3 A* € [0, 1] such that ¢ (A\*) < ¢ (0). Observe that in fact it cannot be
A* € {0,1}: if A* =0, we would have ¢ (0) < ¢ (0), and if A* = 1, we would have ¢ (1) < ¢ (0), i.e.,
f(@") < f (), contradicting (1). Then, we have that

IX* € (0,1) such that o (") < (0) (2).
Observe that from (1), we also have that
p(1) = ¢(0) (3).
Therefore, see Lemma 670, 3 \** > A" such that
¢ (A7) >0 (4), and

e (A7) <e(0) (5).

From (4), and using the definition of ¢, and the Chain Rule,? we get
0< @ N™")=[Df (1 —=XN")a" +X"2")] (2" —2") (6).
Define z** := (1 — A*™) 2’ + A**z”. From (5), and the assumption, we get that
fam) < f@).
Therefore, by assumption,
0<Df (@) (2" —2™) = Df (&™) (=A") (2" = 2')
ie.,

[Df (@) (@ —a) <0 (7).

But (7) contradicts (6).
|

Lemma 670 Consider a function g : [a,b] — R with the following properties:
1. g is differentiable on (a,b);
2. there exists ¢ € (a,b) such that g (b) > g(a) > g(c).
Then, 3t € (c,b) such that g’ (t) >0 and g (t) < g (a).

?Defined v : [0,1] — X C R™, A — (1 —A) 2’ + Az, we have that ¢ = f owv. Therefore, ¢’ (A\*) = Df (v (A\*)) -
Duv (X*).
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Proof.

Without loss of generality and to simplify notation, assume g (a) = 0. Define A := {z € [¢,b] : g (z) = 0}.

Observe that A = [¢,b] N g~* (0) is closed; and it is non empty, because g is continuous and by
assumption g (¢) < 0 and g (b) > 0.

Therefore, A is compact, and we can define £ := min A.

Claim. z € [¢,&) = g (z) < 0.

Suppose not, i.e., Iy € (¢, &) such that g (y) > 0. If g (y) = 0, £ could not be min A. If g (y) > 0,
since g (¢) < 0 and g is continuous, there exists 2’ € (¢,y) C (¢, &), again contradicting the definition
of £. End of the proof of the Claim.

Finally, applying Lagrange Theorem to g on [c, ], we have that 3t € (¢,§) such that ¢’ (¢) =
%. Since g (§) =0 and g (¢) < 0, we have that ¢’ (¢) < 0. From the above Claim, the desired
result then follows.

|

Proposition 671 Consider a C? function f. If f is quasi-concave then
Vo € X,VA € R" such that Df (z)-A =0, ATD?*f(z)A<0.

Proof.

for another proof- see Laura’ s file

Suppose otherwise, i.e., 3z € X, and JA € R* such that Df (z)-A = 0and ATD?f (2°) A > 0.

Since the function h : X — R, h : 2 — ATD?f(x)A is continuous and X is open, Y\ €
[0,1], Je > 0 such that if || z — 2° ||< e, then

A-D*f(Az+(1-X)2")-A>0 (1).

Define T := 2% + uﬁ, with 0 < o < . Then,

A
|1z — 2%l = lurgll = n <e
Al
and T satisfies (1). Observe that
LAl 0
A= T—z
o )

Then, we can rewrite (1) as
@—a")" D*f (AF+ (1 - N)2°) (F—2°) >0
From Taylor Theorem, 3\ € (0,1) such that
f@ =f@")+@-2")"Df (°) + %(T —2OTD2 (AT + (1 — N)2°) (T — ).
Since D f(z")A =0 and from (1), we have

f@ > f(=%) ()

Letting 7 = 2° + u(—A/|| A||), using the same procedure as above, we can conclude that

f@) > (=) (3).

But, since z° = 1(Z + 7), (2) and (3) contradict the Definition of quasi-concavity.
|

Remark 672 In the above Proposition, the opposite implication does not hold. Consider f: R —
R, f: x> x* From Proposition 668, that function is clearly not quasi-concave. Take o > 0. Then
B(a)={zeR:2? > a} = (—o0, —v/a) U (y/a,+oc) which is not convex.

On the other hand observe the following. f' () = 423 and 4x3A = 0 if either x =0 or A = 0.
In both cases A122%A = 0. (This is example is taken from Avriel M. and others (1988), page 91).
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Some Properties.

Remark 673 Consider a quasi concave function f. It is NOT the case that
if o is a local mazimum point , then it is a global maximum point. To see that, consider the
following function.

—z2 41 if r<l1
f-R—WRaf.xH{O i e>1

| | ; ;
t t t t
-2.5 -1/25 0 125 25

-1.25T

257

Proposition 674 Consider a C° quasi-concave function f. If xq is a strict local maximum point,
then it is a strict global maximum point.

Proof.

By assumption, 3§ > 0 such that if x € B (z9,d) N X and z¢ # x, then f (xq) > f ().
Suppose the conclusion of the Proposition is false; then 3z’ € X such that f (z') > f (o).
Since f is quasi-concave,

VA e [0,1], F((1=Nzo+ ') > f(zo). (1)

For sufficiently small A, (1 — A\) zg + A\a’ € B (z0,0) and (1) above holds, contradicting the fact
that zq is the strict local maximum point.

Proposition 675 Consider f : (a,b) — R. f monotone = f quasi-concave.

Proof.

Without loss of generality, take ' > 2.

Case 1. f is increasing. Then f(z”) > f(a'). If A € [0,1], then (1 =Nz’ + A\z" = 2’ +
A(z” — ') > 2’ and therefore f ((1 — \) 2’ + \a) > f (/).

Case 2. fis decreasmg Then f (z") < ( V. IEA€0,1], then (1 =Nz’ + X" =(1—-N)a' —
(1-=XNz"+a2"=2"—-(1-)N) (2" —2') <z"and therefore f (1 — Nz’ + Az”) > f(z") .

]

Remark 676 The following statement is false: If fi and fa are quasi-concave and a,b € R, then
afr + bfy is quasi-concave.

It is enough to consider f1,fo : R — R, fi (x) = 2® + x, and fa (z) = —4x. Since f| > 0, then
f1 and, of course, fy are monotone and then, from Proposition 675, they are quasi-concave. On the
other hand, g (z) = f1(x) + fo (x) = 2® — x has a strict local mazimum in x = —lwhich is not a
strict global maximum, and therefore, from Proposition 674, g is not quasi-concave.

3 — 3z
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107

-2.5 -1.25 0 ; 2.5

-10T

20"

Remark 677 Consider a differentiable quasi-concave function f. It is NOT the case that
if Df(2°) =0, then 2° is a global maximum point.
Just consider f 1R = R, f:x— 23 and zo = 0, and use Proposition 675.

16.2.4 Strictly Quasi-concave Functions.

Definitions.

Definition 678 Consider a C° function f. f is strictly quasi-concave
iffv o' x" € X, such that ' # 2", andV X\ € (0,1), we have that

F((A= N2’ + Az") > min{f (), f(2")}.

Proposition 679 Consider a C° function f. f is strictly quasi-concave = Yo € R, B(a) :=
{reX: f(x) > a} is strictly convex.

Proof.
Taken an arbitrary a and ', 2" € B(«a), with 2/ # z”, we want to show that YA € (0,1), we
have that

2t = (1—- Nz’ + 2" € Int B(a)
Since f is strictly quasi-concave,
f(z*) >min{f ('), f(a")} >

Since f is CY, there exists § > 0 such that Yz € B (33>‘, 5)

fz)>a
i.e., B (2z*,6) C B(«), as desired. Of course, we are using the fact that {zx € X : f(z) > a} C
B (a).
|

Remark 680 Observe that in Proposition 679, the opposite implication does not hold true: just
consider f :R—=R, f:xz+— 1.

Observe that Va < 1, B(a) =R, and Ya > 1, B(a) = @. On the other hand, [ is not strictly
quasi-concave.
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Definition 681 Consider a differentiable function f. f is differentiable-strictly-quasi-concave iff
V', 2" € X, such that ¥’ # 2", we have that

f(@") = f(@') >0 = Df(a)(a" —2') > 0.

Proposition 682 Consider a differentiable function f.
If f is differentiable-strictly-quasi-concave, then f is strictly quasi-concave.

Proof.
The proof is analogous to the case of quasi concave functions.
]

Remark 683 Given a differentiable function, it is not the case that strict-quasi-concavity implies
differentiable-strict-quasi-concavity.

f:R =R, f:x~— 2% a is differentiable and strictly quasi concave and b. it is not
differentiable-strictly-quasi-concave.

a. [ s strictly increasing and therefore strictly quasi concave - see Fact below.
b. Take 2’ =0 and 2” = 1. Then f(1)=1>0= f(0). But Df (2') (¢ —2') =0-1=0 % 0.

Remark 684 If we restrict the class of differentiable functions to whose with non-zero gradients
everywhere in the domain, then differentiable-strict-quasi-concavity and strict-quasi-concavity are
equivalent (see Balasko (1988), Math. 7.2.).

Fact. Consider f : (a,b) — R. f strictly monotone = f strictly quasi concave.

Proof.
By assumption, «’ # z”, say ' < z” implies that f(z') < f(2"”) (or f(z') > f(z")). If
A € (0,1), then (1 — X) 2’ + Az > 2/ and therefore f ((1 — A\) 2’ + A2”) > min{f (z), f ()} .
[
Proposition 685 Consider a C? function f. If
Vo € X,VA € R™\ {0}, we have that (Df (z) A =0= ATD?f(z)A < 0),

then f is differentiable-strictly-quasi-concave.

Proof.

Suppose otherwise, i.e., there exist 2/, 2" € X such that
a'#a’, f(@") = f(a') and Df(a') (2" —a') <0.

Since X is an open set, 3a € R4 such the following function is well defined:

g:[-a,1] =R,g: h— f((1—h)z"+ha").

Since g is continuous, there exists h,, € [0,1] which is a global minimum. We now proceed as
follows. Step 1. h,, ¢ {0,1}. Step 2. h,, is a strict local maximum point, a contradiction.
Preliminary observe that

g/ (h) — Df(xl_’_h(x// _:L'l)) . (m// _$I>

and
g// (h) _ (xl/ . LE/)T . D2f (:L'/ + h($“ B :E/)) . (xl/ . :L'/).
Step 1. If Df (z') (" — ') = 0, then, by assumption,
(2" — x')T "Df (@ +h(2 —2)) (2 —2) <.

Therefore, zero is a strict local maximum (see, for example, Theorem 13.10, page 378, in Apostol
(1974) ). Therefore, there exists h* € R such that g (h*) = f(2' + h* (2" —2')) < f(2') = g (0).
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If
9'(0) =Df (2') (=" —2) <0,

then there exists A** € R such that

g(h™) = f @@ +h" (2" —a")) < f(2') = g(0).
Moreover, g (1) = f(z”) > f(2'). In conclusion, neither zero nor one can be global minimum
points for g on [0,1].
Step 2. Since the global minimum point h,, € (0,1), we have that

Ozg/ (hm> ZDf(J}/—Fhm (x// _ml)) (J:N _x/>_

Then, by assumption,

¢ (0) = (" =) D2F (@ B (2 = 2) - (2~ 2!) <0,

but then h,, is a strict local maximum point, a contradiction.
|

Remark 686 Differentiable-strict-quasi-concavity does not imply the condition presented in Propo-
sition 685. f : R — R, f : o — —a* is differentiable-strictly-quasi-concave (in next section
we will show that strict-concavity implies differentiable-strict-quasi-concavity). On the other hand,
take * = 0. Then Df (z*) = 0. Therefore, for any A € R™\ {0}, we have Df (z*) A = 0, but
ATD2f (z*)A=0%0.

Some Properties.

Proposition 687 Consider a differentiable-strictly-quasi-concave function f.

*

x* is a strict global maximum point < Df (z*) = 0.

Proof.

[=] Obvious.

[«<] From the contropositive of the definition of differentiable-strictly-quasi-concave function,
we have:

V z*, 2" € X, such that x* # 2", it is the case that Df(z*)(z" —2*) < 0= f(2")— f(z*) <0
or f(z*) > f(z"). Since Df (z*) = 0, then the desired result follows.

|

Remark 688 Obviously, we also have that if f is differentaible-strictly-quasi-concave, it is the case
that:
x* local maximum point = x* is a strict mazimum point.

Remark 689 The above implication is true also for continuous strictly quasi concave functions.
(Suppose otherwise, i.e., 3 &' € X such that f (') > f(x*). Since f is strictly quasi-concave,
YA€ (0,1), f((1 =X z*+ ') > f(x*), which for sufficiently small A contradicts the fact that x*
s a local mazimum point.

Is there a definition of ?—concavity weaker than concavity and such that:
If f is a 7—concave function, then
x* is a global maximum point iff Df (z*) = 0.
The answer is given in the next section.
16.2.5 Pseudo-concave Functions.
Definition 690 Consider a differentiable function f. f is pseudo-concave iff
Vo' 2" € X, f(2")> f(2') = Df(2)) (2" —2') >0,

or

Vo' 2" € X, Df(2') (2" —2') <0= f(z") < f ().
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Proposition 691 If f is a pseudo-concave function, then

*

x* is a global maximum point < Df (z*) = 0.

Proof.

[=] Obvious.

[<] Df (%) =0 = Vo € X, Df(a%)(z—a") 0= [ (2) < f (a").
]

Remark 692 Observe that the following “definition of pseudo-concavity” will not be useful:
Vo' 2" € X, Df(2')(z" —2') > 0= f(2") < f(a) (16.5)

For such a definition the above Proposition would still apply, but it is not weaker than concavity.
Simply consider the function f : R — R, f : x — —x2. That function is concave, but it does not
satisfy condition (16.5). Take ' = —2 and " = —1. Then, ' (2') (2" —2') = 4(-1 - (-2)) =
4>0, but f(z")=—-1> f(2) = —4.

We summarize some of the results of this subsection in the following tables.

Class of function Fundamental properties
C = G max | L max = G max Uniqueness
of G. max

Strictly concave Yes Yes Yes
Concave Yes Yes No
Diff.ble-str.-q.-conc. Yes Yes Yes
Pseudoconcave Yes Yes No
Quasiconcave No No No

where C stands for property of being a critical point, and L and G stand for local and global,
respectively. Observe that the first, the second and the last row of the second column apply to the
case of C° and not necessarily differentiable functions.

16.3 Relationships among Different Kinds of Concavity

The relationships among different definitions of concavity in the case of differentiable functions are
summarized in the following table.

strict concavity

I \
linearity = affinity = concavity
I
pseudo-concavity <«  differentiable-strict-quasi-concavity
I

quasi-concavity

All the implications which are not implied by those explicitly written do not hold true.

In what follows, we prove the truth of each implication described in the table and we explain
why the other implications do no hold.

Recall that

1. f:R™ — R™ is a linear function iff Va’/, 2" € R", Va,b € R f (az’ + bx”) = af (') +bf (');

2. g:R" — R™ is an affine function iff there exists a linear function f : R®™ — R™ and ¢ € R™
such that Vo € R, g(z) = f(z) +c.

Obvious (“a >b=a>1").



16.3. RELATIONSHIPS AMONG DIFFERENT KINDS OF CONCAVITY 223

From the assumption and from Proposition 655, we have that f (z”/)—f (/) < Df (2’) (2" — 2').
Then f (") — f(2') > 0= Df (') (2" — ') > 0.

Suppose otherwise, i.e., 3 z',2” € X and 3\* [0, 1] such that
F((@=X)2" 4+ X2") <min{f (2), f(2")}.
Define x () := (1 — A)2’ + Az"”. Consider the segment L (z',2")joining 2’ to x”. Take \ €

argminy f (z (X)) s.t. A €[0,1]. X is well defined from the Extreme Value Theorem. Observe that

A # 0,1, because f (z(A")) <min {f (z (0)) = f (2'), f (z (1)) = f(z")}.
Therefore, VA € [0,1] and VY € (0,1),

fl@) < F(A=ma () +pz ().

!
T T
x’ x(N) z (X) !
Then,
e, o< tim LAZHTNFw) =L @) b0 5y @oy—o ().

p—0%F 1
Taking A = 0,1 in the above expression, we get:

DI (@) (@~ (M) =0 (1)

and

D () 6 () 20 ().
Since
g —x(N)=2"—(1-X)a' = A" =-X(a"-2") (3),
and
" —z(N)=a"—(1-XN)2' =" =(1-X) (=" —2') (4),
substituting (3) in (1), and (4) in (2), we get

(:X) [Df (:E (X)) (2" — x')} >0,

and

(05N [DF (= O)) - " — )] 20

Therefore,

Then, by pseudo-concavity,

By assumption,
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5) and (6) contradict the definition of X.

—~

DSQC = PC

Obvious.

SC = DSQC

L=C

o o
o o
=. =.
[} o
s =

C =+ SC
fR—=R, f:x— .

QC # PC
0 if <0
if >0

0757
05T

0257

f is clearly nondecreasing and therefore, from Lemma 675, quasi-concave.
f is not pseudo-concave: 0 < f(—1) > f (1) =0, but
S 1) (=1-1)=0-(=2) =0.

PC # C|| DSQC # C|and | DSQC # SC|
Take f: (1,400) = R, f: x> a3

(>0) (>0)
Take 2/ < 2”. Then f (z”) > f (2’) . Moreover, Df (z')(z"” — ') > 0. Therefore, f is DSQC and

therefore PC'. Since f” (x) > 0, f is strictly convex and therefore it is not concave and, a fortiori,
it is not strictly concave.

| PC » DSQC||C + DSQC|

Consider f : R — R, f:x+— 1. fisclearly concave and PC, as well (Va/,2” ¢ R, Df (2') (2" — ') >
0). Moreover, any point in R is a critical point, but it is not the unique global maximum point.
Therefore, from Proposition 687, f is not differentiable - strictly - quasi - concave.

|QC =+ DSQC |
If so, we would have QC = DSQC = PC, contradicting the fact that QC » PC.

|C» Lland|SC » L]
f:R—=R, f:ax— —z2.
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16.3.1 Hessians and Concavity.

In this subsection, we study the relation between submatrices of a matrix involving the Hessian
matrix of a C? function and the concavity of that function.

Definition 693 Consider a matriz A, xn. Let 1 <k <n.

A k—th order principal submatriz (minor) of A is the (determinant of the) square submatriz of
A obtained deleting (n — k) rows and (n — k) columns in the same position. Denote these matrices
by 52

The k — th order leading principal submatriz (minor) of A is the (determinant of the) square
submatriz of A obtained deleting the last (n — k) rows and the last (n — k) columns. Denote these
matrices by Dy,.

Example 694 Consider
a1 a2 aig
A= a21 A2z (23
aszr azz2 ass

Then

1 2 3 1 .
Dy = a1, DY = az, DY =az3, D1 =Dj=a;

= a a ~ a aq: = a ao:
D% _ 11 12 ’ D% _ 11 13 7 DS _ 22 A23 ’
az1 a2 asy as3 as2 as3

_ PNl _ | Qi1 G12 |
_D2 — D2 - )
a21 Aa22

Dy =D} = A.

Definition 695 Consider a C? function f : X C R® — R.  The bordered Hessian of f is the
following matriz

0 Df (x)

5@ = o b ](nﬂ)x(nﬂ)‘
Theorem 696 (Simon, (1985), Theorem 1.9.c, page 79 and Sydsaeter (1981), Theorem 5.17, page
259). Consider a C? function f: X — R.

1. Ifvx € X, Vk € {1,...,n},

sign (k — leading principal minor of D2 f (x)) = sign (—1)]c ,

then f is strictly concave.

2.Vzxe X, Vk e {1,...,n},

sign (non zero k — principal minor of D*f (z)) = sign (—l)k ,

iff f is concave.

3. Ifn>2and Ve e X,Vk € {3,..,n+ 1},

sign (k — leading principal minor of Bf (x)) = sign (—1)’6_1 ,

then f 1s pseudo concave and, therefore, quasi-concave.

4. If f is quasi-concave, then Va € X, Vk € {2,...,n+ 1},

sign (non zero k — leading principal minors of Bf (z)) = sign (—1)""*

Remark 697 It can be proved that Conditions in part 1 and 2 of the above Theorem are sufficient
for D2 f (z) being negative definite and equivalent to D?f (x) being negative semidefinite, respec-
tively.

Remark 698 (From Sydsaetter (1981), page 239) It is tempting to conjecture that a function f is
concave iff

Vo € X,Vk € {1,...,n}, sign (non zero k — leading principal minor of D*f (z)) = sign (—l)k,
(16.6)
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That conjecture is false. Consider
f:R3HR7 f:($1,m2’$3>f—7—1'§+$§.

Then Df (z) = (0, —2x4, 2x3) and

00 0
Df(x)=[0 -2 0
00 2

All the leading principal minors of the above matriz are zero, and therefore Condition 16.6 is
satisfied, but fis not a concave function. Take 2’ = (0,0,0) and =" (0,0,1). Then

YAe (0,1), fF(A=XN2' +Xxa) =X <1 =N fE)+ (") =)

Example 699 Consider f : R?H_ — R, f:(2,y) — 2%9y®, with o, 3 € R, .. Observe thatV (z,y) €
R3 ., f(z,y) > 0. Verify that

1. ifa+ B <1, then [ is strictly concave;
2. Va,B € Ryy, f is quasi-concave;
8. a+ B <1 if and only if f is concave.

1.

Dyf (z,y) = az® 'y =2 f (z,y);

Dyf (w,y) = Bay* ' = L f (2,y);

D2 f(z,y) = a(a—1)z22yf = 20U £ (g 4

D2, f(wy)=B(B—1)avy?2 = 28 f (2.y);

D2 f(z,y) =aBz Yt =2Lf(zy).

(a;l) af
D2f (l',y) = f(xay) Qxﬁ B(,%gl) .
Ty

a. 297 c0sae(0,1).

$2

_ —1)—a2s2
p. ol 1)B£§y21) L = =7 (aB(af—a—B+1) - a?B?) =
:#aﬁ(l—a—ﬁ) >0a’g>>0a+ﬂ<1.
In conclusion, if a, 8 € (0,1) and o+ 8 < 1, then f is strictly concave.
2

Observe that

f(z.y)=g(h(z,y))
where
h:R?H_ —R, (z,y)— alnz+ Flny
g:R—=R, z—¢€*

Since h is strictly concave (why?) and therefore quasi-concave and g 1is strictly increasing, the
desired result follows from Proposition 667.

3.

Obvious from above results.
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Maximization Problems

Let the following objects be given:
1. an open convex set X C R™ n € N;
2. f: X >R g: X -R™ h: X —RF m,kecN, with f, g, h at least differentiable.
The goal of this Chapter is to study the problem.
max,ex f (z)

s.t. gx)>0 (1) (17.1)
=0

f is called objective function; = choice variable vector; (1) and (2) in (17.1) constraints; g
and h constraint functions;

C={zeX:g(x)>0 and h(z)=0}

is the constraint set.
To solve the problem (17.1) means to describe the following set

{z* e C:VzeC, f(z") > f(x)}

which is called solution set to problem (17.1) and it is also denoted by argmax (17.1). We will
proceed as follows.
1. We will analyze in detail the problem with inequality constraints, i.e.,

maxzex [ ()
s.t. gx)>0 (1)

2. We will analyze in detail the problem with equality constraints, i.e.,

maxgex [ ()
s.t. h(z)=0 (2)

3. We will describe how to solve the problem with both equality and inequality constraints, i.e.,

maxgex f ()
s.t.

17.1 The case of inequality constraints: Kuhn-Tucker theo-
rems

Consider the open and convex set X C R™ and the differentiable functions f : X — R, ¢ :=
(gj);n:l : X — R™. The problem we want to study is

maxgzex f(x) s.t. g(x) > 0. (17.2)

227
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Definition 700 The Kuhn-Tucker system (or conditions) associated with problem 17.2 is

ff (x)+ADg(z) = 0 El;

> 0 2
g () >0 (3 (17:3)
Mg () — 0 @

Equations (1) are called first order conditions; equations (2),(3) and (4) are called complemen-
tary slackness conditions.

Remark 701 (z,)\) € X x R™ is a solution to Kuhn-Tucker system iff it is a solution to any of
the following systems:

1.
om psm %@~ 0 fori=1,..n (1)
Aj > 0 forg=1,...m (2)
95 (z) > 0 forj=1,..,m (3)
Aig; (@) = 0 forj=1,..,m (4

2.
Df(z)+ADg(x) = 0 (1)
min{\;,g; ()} = 0  forj=1,...m (2)

Moreover, (z,A) € X x R™ is a solution to Kuhn-Tucker system iff it is a solution to
Df(z)+ADg(z) = 0 (1)

and for each j = 1,...,m, to one of the following conditions

either ( Aj>0 and g;(z)=0 )
or (A =0 gj (x) >0 )
or ( A=0 gi(x)=0 )

Definition 702 Given z* € X, we say that j is a binding constraint at «* if g; (z*) = 0. Let

(@) = {j € {L.m} : g (a¥) = 0}

~

*

g = (gj)jej*(w*), g = (gj)j¢J*(a;*)
and

m* = #J* (z¥).

Definition 703 z* € R" satisfies the constraint qualifications associated with problem 17.2 if it is
a solution to
maxzern Df (%) s.t. Dg* (z*) (x —z*) > 0 (17.4)

The above problem is obtained from 17.2
1. replacing g with g*;

2. linearizing f and g* around z*, i.e., substituting f and ¢* with f (z*)+ Df (z*) (x — 2*) and
g(x*) + Dg (z*) (x — x*), respectively;

3. dropping redundant terms, i.e., the term f(z*) in the objective function, and the term
g* (z*) = 0 in the constraint.

Theorem 704 Suppose x* is a solution to problem 17.2 and to problem 17.4, then there exists
A* € R™ such that (x*,\*) satisfies Kuhn-Tucker conditions.

The proof of the above theorem requires the following lemma, whose proof can be found for
example in Chapter 2 in Mangasarian (1994).
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Lemma 705 (Farkas) Given a matriz Ay xn and a vector a € R™,
either 1. there exists A € R such that a = \A,
or 2. there exists y € R™ such that Ay > 0 and ay < 0,
but not both.

Proof. of Theorem 704

(main steps: 1. use the fact «* is a solution to problem 17.4; 2. apply Farkas Lemma; 3. choose
A* = (A from Farkas ,0)).

Since z* is a solution to problem 17.4, for any = € R” such that Dg* (z*) (x — z*) > 0 it is the
case that Df (z*)z* > Df (z*)x or

Dg* (z")(x —2*) > 0= [-Df (")] (x — z*) > 0. (17.5)
Applying Farkas Lemma identifying
a with —Df (z*)
and
A with Dg* (z*)

we have that either
1. there exists A € R’ such that

—Df (z*) = ADg" (z*) (17.6)
or 2. there exists y € R™ such that
Dg* (z*)y >0 and —Df(z*)y <0 (17.7)

but not both 1 and 2.

Choose © = y + z* and therefore you have y = x — z*. Then, 17.7 contradicts 17.5. Therefore,
1. above holds.

Now, choose \* := (),0) € R™ x R™ ™" we have that

Dg* (z*)

D)+ XDy () = Df )+ 00) ( ) ) = bf )+ ADg @) =0

where the last equality follows from 17.6;
A* > 0 by Farkas Lemma;
g (z*) > 0 from the assumption that z* solves problem 17.2;

Mg (z*) = (\,0) ( %\((;*f ) = Ag* (x) = 0, where the last equality follows from the definition
of g*. m
Theorem 706 If z* is a solution to problem (17.2) and

either for j =1,..,m, g; is pseudo-concave and 3z™+ € X such that g (zT+) >0,

or rank Dg* (x*) = m* .= #J* (*),

then x* solves problem (17.4).

Proof. We prove the conclusion of the theorem under the first set of conditions.

Main steps: 1. suppose otherwise: 3 7 ... ; 2. use the two assumptions; 3. move from z* in the
direction 2% := (1 — 0)Z + 2.

Suppose that the conclusion of the theorem is false. Then there exists z € R™ such that

Dg* (z*) (T —2*) >0 and Df(z*) (@ —z*)>0 (17.8)
Moreover, from the definition of g* and 2+, we have that
g (zth) >>0=g"(z%)
Since for j = 1,..,m, g; is pseudo-concave we have that

Dg* (z*) (z7t —2*) >0 (17.9)
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Define
=(1-0)z+0x"

with 6 € (0,1). Observe that

- =(1-0)F+02"" —(1-0)a" — 02" =(1-0) (T —2")+0 (27" —z%)

Therefore,
Dg* (z*) (2% — %) = (1 — 0) Dg* (z*) (Z — 2*) + 0Dg* (z*) (z+ —2*) >0 (17.10)
where the last equality come from 17.8 and 17.9.
Moreover,
Df (z*) (2% —2*) = (1= 0) Df (z*) (T — 2*) + ODf (z*) (z*+ —2%) >0 (17.11)

where the last equality come from 17.8 and a choice of # sufficiently small.!
Observe that from Remark 598, 17.10 and 17.11 we have that

(g) (z*,2%) >0
and
f(z%2%) >0
Therefore, using the fact that X is open, and that g («*) > 0, there exists v such that

¥4y (af —z*) e X

g" (2" (2 =) > g 1719

I *>>> e
(3? + (.’L‘ —x )) >0

But then 17.12 contradicts the fact that z* solves problem (17.2). m

From Theorems 704 and 706, we then get the following corollary.

Theorem 707 Suppose x* is a solution to problem 17.2, and one of the following constraint qual-
ifications hold:

a. for j=1,...,m, g; is pseudo-concave and there exists z7+ € X such that g (zt7) >0

b. rank Dg* (z*) = #J*,

Then there exists \* € R™ such that (x*, \") solves the system 17.5.

Theorem 708 If f is pseudo-concave, and for j = 1,...,m, g; is quasi-concave, and (z*, \*) solves
the system 17.3, then x* solves problem 17.2.

Proof. Main steps: 1. suppose otherwise and use the fact that f is pseudo-concave; 2. for
j € J*(x*), use the quasi-concavity of g;; 3. for j € J*(z*), use (second part of) kuhn-Tucker
conditions; 4. Observe that 2. and 3. above contradict the first part of Kuhn-Tucker conditions.)
Suppose otherwise, i.e., there exists T € X such that

g(@)>0 and f(Z)> f(z) (17.13)
From 17.13 and the fact that f pseudo-concave, we get

Df (¢") (@ —2*) >0 (17.14)

! Assume that 6 € (0,1), o € Ry and 8 € R. We want to show that there exist * € (0,1) such that
(1-0)a+63>0

a>60(a—pB)
If (o — B) = 0, the claim is true.
If (a = ) > 0, any 6 < 525 will work (observe that 25 > 0).
If (a — B) < 0, the claim is clearly true because 0 < a and 6 (o — 3) < 0.
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From 17.13, the fact that ¢* (z*) = 0 and that g; is quasi-concave, we get that
for j€J*(z*), D¢’ (z*) (@ —2*)>0

and since \* > 0,
for jeJ (z*), AN;Dg’ (z*)(@—=")>0 (17.15)

For j € J (z*), from Kuhn-Tucker conditions, we have that gj (z*) > 0and A} = 0, and therefore
for jeJ(z*), N;Dg’(a*)(—2")=0 (17.16)
But then from 17.14, 17.15 and 17.16, we have
Df(z")(Z—2")+ A" Dg(z") (T —=x%) >0

contradicting Kuhn-Tucker conditions. m
We can summarize the above results as follows. Call (M) the problem

maxzex f (z) s.t. gy > 0 (17.17)

and define
M := arg max (M) (17.18)

S:={z € X :3X € R™ such that (x, ) is a solution to Kuhn-Tucker system (17.3)} (17.19)
1. Assume that one of the following conditions hold:

(a) for j =1,...,m, g; is pseudo-concave and there exists 2 € X such that g (z7+) >0

(b) rank Dg* (z*) = #J*.
Then
reM=zxz"€S

2. Assume that both the following conditions hold:

(a) f is pseudo-concave, and
(b) for j =1,...,m, g; is quasi-concave.

Then
z¥eS=a"c M.

17.1.1 On uniqueness of the solution

The following proposition is a useful tool to show uniqueness.
Proposition 709 The solution to problem

maxzex f(x) s.t. g(z) >0 (P)
either does not exist or it is unique if one of the following conditions holds

1. f is strictly quasi-concave, and
for j €{1,...,m}, g; is quasi-concave;

2. f is quasi-concave and locally non-satiated (i.e., Vo € X,Ve > 0, there exists ¥’ € B (x,¢)
such that f(2') > f(z) ), and

for j € {1,...,m}, g; is strictly quasi-concave.
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Proof. 1.

Since g;is quasi concave V7 := {z € X : g; (x) > 0} is convex. Since the intersection of convex
sets is convex V' = N7, V7 is convex.

Suppose that both 2’ and z”" are solutions to problem (P) and a’ # z”. Then for any A € (0, 1),

1-Nz'+X" eV (17.20)
because V is convex, and

F((L=Na 4+ 2y > min{f ('), f (&)} = f (@) = f (") (17.21)

because f is strictly-quasi-concave.

But (17.20) and (17.21) contradict the fact that 2’ and z” are solutions to problem (P).

2.

Observe that V is strictly convex because each V7 is strictly convex. Suppose that both z’ and
a2’ are solutions to problem (P) and z’ # z”. Then for any A € (0, 1),

z(N)=1-Nz' + X" eIntV

i.e., 3¢ > 0 such that B(x(\),e) € V. Since f is locally non-satiated, there exists =’ €
B (z()\),e) CV such that
f(@)> f(z () (17.22)
Since f is quasi-concave,
flaN) = f@)=f(") (17.23)
(17.22) and (17.23) contradict the fact that 2’ and 2 are solutions to problem (P). m

Remark 710 1. If f is strictly increasing (i.e., Vo',2" € X such that ' > z”, we have that
f (&) > f (") ) or strictly decreasing, then f is locally non-satiated.

2. If f is affine and not constant, then f is quasi-concave and Locally NonSatiated.

Proof of 2.

f:R” — R affine and not constant means that there exists a € R and b € R\ {0} such that
[z a+blz. Take an arbitrary T and e > 0. Fori € {1,...,n}, define o := % - (sign b;) and
T:=T+ (), with k # 0 and which will be computed below. Then

[ @ =at bzt Y £ bl > f (@)

5= = £ G 00 b = [0 00°

Remark 711 In part 2 of the statement of the Proposition f has to be both quasi-concave and
Locally NonSatiated.
a. Example of f quasi-concave (and g; strictly-quasi-concave) with more than one solution:

=z oll <eifk> .

max 1 st. xz+1>0 1—x2>0
T€eR

The set of solution is [—1,+1]
a. Example of f Locally NonSatiated (and g; strictly-quasi-concave) with more than one solution:

max z° st. x+1>0 1—z2>0
T€eR

The set of solutions is {—1,+1}.

17.2 The Case of Equality Constraints: Lagrange Theorem.

Consider the C! functions
FiX R fiae f(n),

m

g: X —R™, gz g (@)= (g; (2));,
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(152

with m < n. Consider also the following “”maximization problem:

(P) maxzex f(x) s.t. g(z)=0 (17.24)

L:XXR" >R, L:(z,\)— f(z)+ Mg (z)

is called Lagrange function associated with problem (15.15).
We recall below the statement of Theorem 645.

Theorem 712 (Necessary Conditions)
Assume that rank [Dg (z*)] = m.
Under the above condition, we have that
x* is a local mazimum for (P)

=

there ewists \* € R™, such that

g(x*)=0

Remark 713 The full rank condition in the above Theorem cannot be dispensed. The following
example shows a case in which x* is a solution to mazimization problem (17.24), Dg (z*) does not
have full rank and there exists no \* satisfying Condition 17.25. Consider

{ Df(z*)+ X"Dg(z*) =0 (17.25)

max(zy)er2 T 8.t 2 —y=0
2 +y=0

The constraint set is {(0,0)} and therefore the solution is just (z*,y*) = (0,0). The Jacobian
matrix of the constraint function is

3z2 -1 |10 -1
322 1 .. o1
[(z*,y*)

(0,0) = Df («",y") + (A1, A2) Dy (¢",y") =

which does have full rank.

0 -1
— 0+ g 1 = eae,
from which it follows that there exists no A* solving the above system.

Theorem 714 (Sufficient Conditions)
Assume that
1. f is pseudo-concave,
2. forj=1,...,m, g; is quasi concave.
Under the above conditions, we have what follows.
[there exist (x*,\") € X x R™ such that

3.\ >0,

4. Df (z*) + X" Dg (z*) =0, and
9. g(x")=0]

=

x* solves (P).

Proof.
Suppose otherwise, i.e., there exists T € X such that

forj=1,...,m, g; (@) =g;(@")=0 (1), and

f@)>f(z")  (2).
Quasi-concavity of g; and (1) imply that
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D¢’ (z*) (Z—2*) >0 (3).
Pseudo concavity of f and (2) imply that

Df(z*)Z—-2")>0 (4).
But then

(>0) (=0 (20)

0 Assugption [Df (.’E*) + ADg (.%'*)] (ZC\ . JJ*) = Df (.’L‘*) (/.’L‘\ . .’E*) + X Dg (.’E*) (flj\ — ;c*) >0,
a contradiction.
| ]

17.3 The Case of Both Equality and Inequality Constraints.

Consider

the open and convex set X C R™ and the differentiable functions f : X — R, g: X — R™, h:
X — R

Consider the problem

()

max;ex f () s.t. g
h(x)

v
o

(17.26)

Observe that

h(z) =0«
o fork=1,..,1, hf(z)=0«s

& fork=1,..,1, h* (z):=h*(z) >0 and B** () := —n* (z) > 0.

Defined h'! (z) := (h*! (x))igzl and h?(z) = (A" (x))l

x—1 - broblem 17.26 with associated
multipliers can be rewritten as

maxgecx f () s.t. glz) > 0 A
hl(z) > 0 I (17.27)
h2(z) = 0 gy

The Lagrangian function of the above problem is

L(25 M g 1) = f () + A g (@) + (g — o) h(z) =

m l
=F @)+ Mg @)+ 3 (Wb — 1) h(x),

j=1 k=1

and the Kuhn-Tucker Conditions are:

Df (x) + A" Dg () + (1 — )" Dh () =0
g; (:I?) > O, /\j > 07 /\jgj (:I?) = 07 fOI‘j = 1, ceey T, (1728)
WP (z) =0, (uf — pb) ::,u%(), for k=1,..,1.

Theorem 715 Assume that f,g and h are C? functions and that

either rank [ ll))gh ((w:v*)) ] =m"* +1,

or for j=1,...,m, —g; is pseudoconcave, and Vk, hy and —hy, are pseudoconcave

Under the above conditions,

if * solves 17.26, then 3 (x*, \*, u*) € X x R™ x R! which satisfies the associated Kuhn-Tucker
conditions.
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Proof. The above conditions are called “Weak reverse convex constraint qualification” (Man-
gasarian (1969)) or “Reverse constraint qualification” (Bazaraa and Shetty (1976)). The needed
result is presented and proved in

Mangasarian? - see 4, page 172 and Theorem 6, page 173, and Bazaraa and Shetty (1976) - see
7 page 148, and theorems 6.2.3, page 148 and Theorem 6.2.4, page 150.

See also El-Hodiri (1991), Theorem 1, page 48 and Simon (1985), Theorem 4.4. (iii), page 104.
|

[

Remark 716 For other conditions, see Theorem 5.8, page 124, in Jahn (1996).

Theorem 717 Assume that

f is pseudo-concave, and

forj =1,..,m, g; is quasi-concave, and for k = 1,...,1, h* is quasi-concave and —h* is
quasi-concave.

Under the above conditions,

if (2%, A", 1*) € X x R™ x R! satisfies the Kuhn-Tucker conditions associated with 17.26, then
x* solves 17.26.

Proof.

This follows from Theorems proved in the case of inequality constraints.

|

Similarly, to what we have done in previous sections, we can summarize what said above as
follows.

Call (M>) the problem

max;ex f () s.t.

—~
8
~
v
e}

(17.29)

and define
My = argmax (Ms)

Sy :={z € X : IX € R™ such that (z,A) is a solution to Kuhn-Tucker system (17.28)}

1. Assume that one of the following conditions hold:

(a) rank { e ((;”:3 } —m* +Lor

(b) for j =1,...,m, g; is linear, and h(z) is affine.
Then
My C Sy

2. Assume that both the following conditions hold:

(a) f is pseudo-concave, and

(b) for j =1,...,m, g, is quasi-concave, and for k = 1,...,1, h* is quasi-concave and —h* is
quasi-concave.
Then

My D 5

2What Mangasarian calls a linear function is what we call an affine function.
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17.4 Main Steps to Solve a (Nice) Maximization Problem
We have studied the problem
max;ex f () s.t. g(x) > 0 (M)

which we call a maximization problem in the “canonical form”, i.e., a maximization problem
with constraints in the form of “>”, and we have defined

M := argmax (M)

C:={zeX:g(x)>0}

S:={z € X :3X € R™ such that (x,\) satisfies Kuhn-Tucker Conditions (17.3)}

Recall that X is an open, convex subset of R", f: X — R, Vj € {1,....,m}, g; : X — R and
9:=1(gj)j-, : X > R™
In many cases, we have to study the following problem

m;ixf () st g(x) >0, (M)

in which the set X is not specified.

We list the main steps to try to solve (M").

1. Canonical form.

Write the problem in the (in fact, our definition of) canonical form. Sometimes the problem
contains a parameter m € II an open subset of R¥. Then we should write: for given 7 € II

mxaxf (x,m)  s.t. g (xz,m) > 0.

2. The set X and the functions f and g.

a. Define the functions f, g naturally arising from the problem with domain equal to their
definition set, where the definition set of a function ¢ is the largest set D, which can be the domain
of that function.

b. Determine X. A possible choice for X is the intersection of the “definition set” of each
function, , i.e.,

X =D;NDy, N..ND,,

c. Check if X is open and convex.

d. To apply the analysis described in the previous sections, show, if possible, that f and g are
of class C? or at least C*.

3. Existence.

Try to apply the Extreme Value Theorem. If f is at least C!, then f is continuous and therefore
we have to check if the constraint set C' is non-empty and compact. Recall that a set S in R" is
compact if and only if S is closed (in R™) and bounded.

Boundedness has to be shown “brute force”, i.e., using the specific form of the maximization
problem.

If X =R", then C :={z € X : g(x) > 0} is closed, because of the following well-known argu-
ment:

C = ﬂ;”:lgj*l ([0,400)) ; since g; is C? (or at least C') and therefore continuous, and [0, +00)
closed, g}l ([0,400)) is closed in X = R™; then C is closed because intersection of closed sets.

A problem may arise if X is an open proper subset of R™. In that case the above argument
shows that C' is a closed set in X # R™ and therefore it is not necessarily closed in R™. A possible
way out is the following one.

Verify that while the definition set of f is X, the definition set of g is R". If Dz = R", then from
the above argument N

C:={zeR":g(x) >0}
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is closed (in R™). Observe that
C=CnX.

Then, we are left with showing that C C X and therefore CNX = C and then
c=C

If C is compact, C' is compact as well.?

4. Number of solutions.

See subsection 17.1.1. In fact, summarizing what said there, we know that the solution to (M),
if any, is unique if

1. f is strictly-quasi-concave, and for j € {1,...,m}, g; is quasi-concave; or

2. for j € {1,...,m}, g; is strictly-quasi-concave and

either a. f is quasi-concave and locally non-satiated,

or b. f is affine and non-costant,

or c. f is quasi-concave and strictly monotone,

or d. f is quasi-concave and Vo € X, Df (z) >> 0,

or e. f is quasi-concave and Vz € X, Df (z) << 0.

5. Necessity of K-T conditions.

Check if the conditions which insure that M C S hold, i.e.,

either a. for j =1,...,m, g; is pseudo-concave and there exists 2t € X such that g (z71) > 0,

or b. rank Dg* (*) = #J*.

If those conditions holds, each property we show it holds for elements of S does hold a fortiori
for elements of M.

6. Sufficiency of K-T conditions.

Check if the conditions which insure that M O S hold, i.e., that

f is pseudo-concave and for j = 1,...,m, g; is quasi-concave.

If those conditions holds, each property we show it does not hold for elements of S does not
hold a fortiori for elements of M.

7. K-T conditions.

Write the Lagrangian function and then the Kuhn-Tucker conditions.

8. Solve the K-T conditions.

Try to solve the system of Kuhn-Tucker conditions in the unknown variables (z, A) . To do that;

either, analyze all cases,

or, try to get a “good conjecture” and check if the conjecture is correct.

Example 718 Discuss the problem

MaxX (;, ) 3108 (1+ 1) + 3 log (1 + x2) s.t. x1 > 0
X9 Z 0
r1+xes < w
with w > 0.
1. Canonical form.
For given w € Ry,
Max(;, z,) 5 log (1 + z1) + 3 log (1 4 x2) s.t. X > 0
2 > 0 (17.30)
w—x1—To > 0

2. The set X and the functions f and g.

3Observe that the above argument does not apply to che case in which
C:{zeRiJr:w—xl—zzZO}:
in that case,

6:{$€R21w—$1—x220}gRi+.
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a.
I (—17+oo)2—>R, (1, 22) — %log(l—l—xl)—i—%log(l—&—xg)
g1 :RZ—=R (1, 22) — 21
g2 R2 >R (1, 22) — T2
g3:R? =R (x1,22) — w— 21 — X2
b.
X = (~1,+0)?

and therefore f and g are just ]7 and g restricted to X.

c. X 1is open and convex because Cartesian product of open intervals which are open, convexr
sets.

d. Let’s try to compute the Hessian matrices of f,g1,92,93. Gradients are

Df (v1,22), = (ma m>
Dgl (.’L‘hwg) = (1, O)
DQQ (wl,l‘g) = (O, 1)
Dgg (l’l,l’g) (71,71)
Hessian matrices are
_% 0
D2 f(z1,22), = [ 2(766“) a1 ]
3(I2+1)2
D2§1 (Il,I’Q) = 0
D2§2 (Il,I’Q) = 0
D?g5 (z1,22) = 0

In fact, g1, g2, g3 are affine functions. In conclusion, f and g1, g2, g3 are C?. In fact, g1 and gz
are linear and gs is affine.

3. FExistence.

C is clearly bounded: Yz € C,

(an) < ($1’$2) < (wvw)

In fact, the first two constraint simply say that (x1,x2) > (0,0). Moreover, from the third constraint
1 < w — 29 < w, simply because x5 > 0; similar argument can be used to show that xo < w.
To show closedness, use the strateqy proposed above.

C:={zeR":g(z)>0}

1s obviously closed. Since CC Ri, because of the first two constraints, CCX:= (-1, —&—oo)2
and therefore C = CNX=C is closed.

We can then conclude that C' is compact and therefore arg max (17.30) # &.

4. Number of solutions.

From the analysis of the Hessian and using Theorem 696, parts 1 ad 2, we have that f is strictly
concave:

1
- <0
1
det | 20m+1)? 01 = . 7" : 2
0 T 3@z 41)? 2(x1+1)" 3(z2+1)

Moreover g1, 9o, g3 are affine and therefore concave. From Proposition 709, part 1, the solution
18 unique.

5. Necessity of K-T conditions.

Since each g; is affine and therefore pseudo-concave, we are left with showing that there exists
't € X such that g (1) >> 0. Just take (2, 237) =% (1,1):

SENENS
VvV V V
oo o

|
g

|
NI
wolg
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Therefore

239

MCS

6. Sufficiency of K-T conditions.

f 1is strictly concave and therefore pseudo-concave, and each g; is linear and therefore quasi-

concave. Therefore
M2

7. K-T conditions.

S

1 1
L (1, T2, A1, A2, ;W) = 510g(1 +x1) + glog(l +22) + Mz1 + Aezo + (W — 31 — T2)

1
s T M

1
3(3¢2+1) + )\2

8. Solve the K-T conditions.

—

—
min {5131, /\1}
min {ZL‘Q, /\2}

min {w — x1 — T2, u}

OO O O O

Conjecture: 1 > 0 and therefore Ay = 0; zo > 0 and therefore Ao = 0; w — x1 — x9 = 0.The

Kuhn-Tucker system becomes:

1 _
2(:011—&-1)7” =0
e
w— T1 — T = 0
H > 0
1> 0,29 >0
AM=0,2=0
Then,
1
20+ 1) "
1 _
321D = M
w— T1 — To =0
7 > 0
x> 0,20 >0
AM=0,2=0
X1 = %7
X9 = E*l
o) (1) =
W > 0
1> 0,20 >0
AM=0,2=0
_ 1 1 _ 5 . _ 5 _ 1 _
O—w—(m—l)—(@—l)_w—@—kl andu—m>0. Thenxl—ﬂ—l—
6(w+2) _ 3w46-5 _ 3wl _ 1 _ 6(w+2) _ 2w44-5 _ 2w—1
oo o l=tEe et and ey = gy - 1= S - 1= AeEe = S
Summarizing
I = _3w5+1>0
T2 = _2w5—1>0
_ 5
p = S >0
AM=0,2=0

Observe that while x1 > 0 for any value of w,

xo > 0iff w > % Therefore, for w € (0, %], the

above one is not a solution, and we have to come up with another conjecture;
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x1 = w and therefore A1 =0; xo =0 and A2 > 0; w — 1 — x5 =0 and p > 0. The Kuhn-Tucker
conditions become

2(w1+1)_“ 0
%+>\2*,U =0
)\1 == 0
To = 0
Ao > 0
T = w
H > 0
and
= 5 >0
H 2(w+1)
N = L 1_32w2_ 12w
2 2(wrl) 3 6(w+1) 6(w+1)
A= 0
To = 0
A > 0
X1 = w

Ay = —61(;_21:‘{) =0ifw=1,and X = —6};3}’{ >0 if w e (0, 3

Summarizing, the unique solution x* to the mazimization problem is

if we(0,1), then  x} =w, A1=0 and z5=0, A5 >0
if w=s, then  x} =w, AT=0 x5 =0, A5 =0
if we (3,4+00), then =32 >0 A =0 and 253=2421>0 I3 =0

The graph of x7 as a function of w is presented below (please, complete the picture)

x1 17T

0.75T

05T

0257

The graph below shows constraint sets for different “important” values of w and some significant
level curve of the objective function.

wE(O,%):
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x1

15
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x2 15T

05T

x1

05T

Observe that in the example, we get that if N\ = 0, the associated constraint xo > 0 is not
significant. See Subsection 17.6.2, for a discussion of that statement.

Of course, several problems may arise in applying the above procedure. Below, we describe some
commonly encountered problems and some possible (partial) solutions.

17.4.1 Some problems and some solutions

1. The set X.

X is not open.
Rewrite the problem in terms of an open set X’ and some added constraints. A standard
example is the following one.

maxgepr f(x) st g(z) >0
which can be rewritten as

maxzern f () st. g(xz)>0

2. Existence.

a. The constraint set is not compact. If the constraint set is not compact, it is sometimes
possible to find another maximization problem such that

i. its constraint set is compact and nonempty, and

ii. whose solution set is contained in the solution set of the problem we are analyzing.

A way to try to achieve both i. and ii. above is to “restrict the constraint set (to make it
compact) without eliminating the solution of the original problem”. Sometimes, a problem with
the above properties is the following one.

max,cy f () s.t. g (x) 0 (P1)

IV IV

where Z is an element of X such that g (Z) > 0.

Observe that (P — cons) is an example of (P1).

In fact, while, condition 1. above., i.e., the compactness of the constraint set of (P1) depends
upon the specific characteristics of X, f and g, condition ii. above is satisfied by problem (P1), as
shown in detail below.

Define

M := argmax (P) M!:=argmax(P1)
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and V and V! the constraint sets of Problems (P) and (P1), respectively. Observe that
vicv (17.31)

If V! is compact, then M"' # () and the only thing left to show is that M C M, which is always
insured as proved below.

Proposition 719 M' C M.

Proof. If M = (), we are done.
Suppose that M' # (), and that the conclusion of the Proposition is false, i.e., there exists
x! € M* such that
a. vt € M! and b. 2t ¢ M, or
a. Vo € X such that g (z) >0 and f (z) > f (@), we have f (z') > f (2);
and
b. either i. ! ¢ V,
or ii. 3z € X such that
g (@) >0 (17.32)

and
f(@) > f(2') (17.33)

Let’s show that i. and ii. cannot hold.
i.
It cannot hold simply because V! C V, from 17.31.
ii.

Since z! € V1,

f(@h) > (@) (17.34)
From (17.33) and (17.34), it follows that
f@) > f(@) (17.35)

But (17.32), (17.35) and (17.33) contradict the definition of 2!, i.e., a. above m

b. Existence without the Extreme Value Theorem If you are not able to show existence,
but

i. sufficient conditions to apply Kuhn-Tucker conditions hold, and

ii. you are able to find a solution to the Kuhn-Tucker conditions,

then a solution exists.

17.5 The Implicit Function Theorem and Comparative Sta-
tics Analysis

The Implicit Function Theorem can be used to study how solutions (z € X C R™) to maximizations
problems and, if needed, associated Lagrange or Kuhn-Tucker multipliers (A € R™) change when

parameters (7 € II C R¥) change. That analysis can be done if the solutions to the maximization
problem (and the multipliers) are solution to a system of equation of the form

Fy (z,m)=0
with (# choice variables) = (# dimension of the codomain of F}), or
F2 (ga 7T) =0

where £ := (z, A), and (# choice variables and multipliers) = (# dimension of the codomain of
F2)7

To apply the Implicit Function Theorem, it must be the case that the following conditions do
hold.
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1. (# choice variables z) = (# dimension of the codomain of F}), or

(# choice variables and multipliers) = (# dimension of the codomain of Fy).

2. F; has to be at least C'.That condition is insured if the above systems are obtained from
maximization problems characterized by functions f, g which are at least C2: usually the above
systems contain some form of first order conditions, which are written using first derivatives
of f and g.

3. Fy (z*,m9) = 0 or F5(&",m) = 0. The existence of a solution to the system is usually the
result of the strategy to describe how to solve a maximization form - see above Section 17.4.

4. det [DyFy (x*,m0)],,,, 7 0 or det [DeFy (£%,m0)] # 0. That condition has to be

verified directly on the problem.

(n+m) X (n+m)

If the above conditions are verified, the Implicit Function Theorem allow to conclude what
follows (in reference to Fy).

There exist an open neighborhood N(&*
7o and a unique C* function g : N(mg)
N (mo), F(g(m),n) =0 and

X ¢*, an open neighborhood N(my) C II of
C RP

) € X of
cn RP — N(£") € X C R"™ such that V& €

Dg(m) == |DeF (€M) icym] | DrF (€ )iecyim]

Therefore, using the above expression, we may be able to say if the increase in any value of any
parameter implies an increase in the value of any choice variable (or multiplier).

Three significant cases of application of the above procedure are presented below. We are going
to consider C? functions defined on open subsets of Euclidean spaces.

17.5.1 Maximization problem without constraint
Assume that the problem to study is

ma f (2, 7)

and that

1. f is concave;

2. There exists a solution x* to the above problem associated with mq.
Then, from Proposition 659, we know that x* is a solution to

Df (LL', 770) =0
Therefore, we can try to apply the Implicit Function Theorem to
Fy (z,7) = Df (x,m)

An example of application of the strategy illustrated above is presented in Section 18.3.

17.5.2 Maximization problem with equality constraints

Consider a maximization problem

maxzex f(z,7) s.t. g (z,m) =0,

Assume that necessary and sufficient conditions to apply Lagrange Theorem hold and that there
exists a vector (z*, \*) which is a solution (not necessarily unique) associated with the parameter
mo. Therefore, we can try to apply the Implicit Function Theorem to

Fy (€, m) = < DJ (s t0) + X°Dg (", o) ) (17.36)

(x*,m0) .
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17.5.3 Maximization problem with Inequality Constraints
Consider the following maximization problems with inequality constraints. For given 7 € II,

maxgex f(x,m) st g(z,m) >0 (17.37)

Moreover, assume that the set of solutions of that problem is nonempty and characterized by the
set of solutions of the associated Kuhn-Tucker system, i.e., using the notation of Subsection 17.1,

M=S+#o.

We have seen that we can write Kuhn-Tucker conditions in one of the two following ways, beside
some other ones,

)\Df (z,7)+ ADg(z,m) = 0 Elg
> 0 2
g (2,7 >0 @ 17.38)
Ag (z,m) = 0 (4)
or
Df (z,7) + ADg (z,7) = 0 (1)
{ min {};, g; (z,7)} =0 for j € {1,....m} (2) (17:39)

The Implicit Function Theorem cannot be applied to either system (17.38) or system (17.39):
system (17.38) contains inequalities; system (17.39) involves functions which are not differentiable.
We present below conditions under which the Implicit Function Theorem can be anyway applied
to allow to make comparative statics analysis. Take a solution (z*, \*, () to the above system(s).
Assume that

for each j, either A7 >0 or g; (z*, 7o) > 0.

In other words, there is no j such that \; = g; (z*,m9) = 0. Consider a partition J’ﬂj of
{1,..,m}, and the resulting Kuhn-Tucker conditions.

Df (z*,m0) + A*Dg (z*,m) = 0

A >0 for j € J*

g; (z*,m9) =0 for j € J* (17.40)
)\;:O forjeJ

gj (x*,m9) >0 forjeJ

Define
g (z*,m0) := (g; ($*7W0))jeJ*
g (QJ*, 770) = (gj (:C*vﬂ-()))jej

i** = (X)) e

Write the system of equations obtained from system (17.40) eliminating strict inequality con-
straints and substituting in the zero variables:

l?kf(:f ,7To)+>\ Dg (:E 5770) =0 (1741)

g (z*, mo) =0

Observe that the number of equations is equal to the number of “remaining” unknowns and
they are

n+#J"

i.e., Condition 1 presented at the beginning of the present Section 17.5 is satisfied. Assume that
the needed rank condition does hold and we therefore can apply the Implicit Function Theorem to

Fﬂawﬁz<§ig;$)+Alh*wﬂ“)):o

Then. we can conclude that there exists a unique C' function ¢ defined in an open neighborhood
Ny of g such that
Vr € Ny, o (m) = (" () , A" (7))
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is a solution to system (17.41) at 7.
Therefore, by definition of ¢,

* *% T * % .
{ DI (.7 + 07 (07 Dy’ 0 (7)) = 0 wr

Since ¢ is continuous and A\** () > 0 and g (z* (7o) , mo) > 0, there exist an open neighborhood
N2 Q N1 of 0 such that Vr € N2

{ gz(r),m > 0 (17.43)
Take also Vr € Ny
{Xm = (17.44)

Then, systems (17.42), (17.43) and (17.44) say that V& € Na, (a? (), A" (7) ,X(ﬂ')) satisfy
Kuhn-Tucker conditions for problem (17.37) and therefore, since C'= M, they are solutions to the
maximization problem.

The above conclusion does not hold true if Kuhn-Tucker conditions are of the following form

Df(z,m)+ X' Dg(z,7) = 0

Aj=0, gj(z,m)=0 for jeJ'

Aj >0, gj(z,m)=0 for j € J” (17.45)
Aj=0, gj(z,m) >0 for j € J

where J' # 0, J” and J is a partition of J.
In that case, applying the same procedure described above, i.e., eliminating strict inequality
constraints and substituting in the zero variables, leads to the following systems in the unknowns

z €R" and (\;);c ;0 € R*/":
Df (x,m) + (X)) jen D(95)jegn (1,m) = 0
g; (z,m) =0 for j € J’
g; (w,7) =0 for j € J"

and therefore the number of equation is n + #J” + #J' > n + #J” simply because we are
considering the case J' # ). Therefore the crucial condition

(# choice variables and multipliers) = (# dimension of the codomain of F5)

is violated.
Even if the Implicit Function Theorem could be applied to the equations contained in (17.45),
in an open neighborhood of my we could have

Aj () < 0and/or gj(z(m),m) <0 forje.J
Then ¢ (7) would be solutions to a set of equations and inequalities which are not Kuhn-Tucker
conditions of the maximization problem under analysis, and therefore = () would not be a solution

to the that maximization problem.
An example of application of the strategy illustrated above is presented in Section 18.1.

17.6 The Envelope Theorem and the meaning of multipliers

17.6.1 The Envelope Theorem

Consider the problem (M) : for given 7 € II,

maxgex f (2, ) st. gx,m)=0
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Assume that for every m, the above problem admits a unique solution characterized by Lagrange
conditions and that the Implicit function theorem can be applied. Then, there exists an open set
O C 1II such that

x:0— X, z:7— argmax (P) ,
v:0—=R, v:7— max(P) and

A: O —=R™ 7+~ unique Lagrange multiplier vector

are differentiable functions.

Theorem 720 For any 7* € O and for any pair of associated (x*,\*) := (x (7*), A (7*)), we have
Dyv(r*) = DL (2%, X", 1)

i.e.,

Dy (7%) = Drf (¢, 7") + A" Drg (2%, 7)

Remark 721 Observe that the above analysis applies also to the case of inequality constraints, as
long as the set of binding constraints does not change.

Proof. of Theorem 720 By definition of v (.) and = (.), we have that
VreO, v(m) = f((m),m). (1)

Consider an arbitrary value 7* and the unique associate solution z* = z (7*) of problem (P).
Differentiating both sides of (1) with respect to = and computing at 7*, we get

(Do (T N1y = [Daf (@) g+ [Drt @) pe]  + [Def @)y (@)

Ixn nxk 1xk

From Lagrange conditions
Do f (@, 7)o vy = = A" Dag (,7) (4 2y (3)5
where \* is the unique value of the Lagrange multiplier. Moreover
Vre O, glx(m),n)=0. (4)

Differentiating both sides of (4) with respect to 7 and computing at 7*, we get

[P0 @] [1Po2 @]+ [P0 @] =0 6.
Finally,
* (2),(3) ()
[Drv (7)) 1y, =" =N Dag (@, 7)oy Drt (T) e + D f (2, 7) (o oy =
= Dﬂ-f (x’ﬂ)“a:*,fr*) + )\*Dﬂ—g (.T, 71')‘(1*’7‘.*)
|

17.6.2 On the meaning of the multipliers

The main goal of this subsection is to try to formalize the following statements.

1. The fact that A\; = 0 indicates that the associated constraint g; (z) > 0 is not significant - see
Proposition 722 below.

2. The fact that A; > 0 indicates that a way to increase the value of the objective function is to
violate the associated constraint g; (x) > 0 - see Proposition 723 below.
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For simplicity, consider the case m = 1. Let (CP) be the problem

max f (z) st g(z) 20

and (UP) the problem

max f (x)

with f strictly quasi-concave, g is quasi-concave and solutions to both problem exist . Define

*

z* := arg max (C'P) with associated multiplier A*, and z** := arg max (U P).
Proposition 722 If \* =0, then z* = argmax (UP) < z* = argmax (CP).

Proof. By the assumptions of this section, the solution to (C'P) exists, is unique, it is equal to
z* and there exists A* such that

Df (z*) +A"Dg (z*) =0
min {g (z*), A"} =0.

Moreover, the solution to (UP) exists, is unique and it is the solution to
Df(z) =0.

Since A\* = 0, the desired result follows. m
Take ¢ > 0 and k € (—¢&, +00). Let (CPk) be the problem

max f (z) st g(z) 2k

Let
(e o) X, ki angmax(CPR
U:(—g,+0) = R, k> max(CPk):= f(z(k))

Let A (k) be such that (EE (k) A (k)) is the solution to the associated Kuhn-Tucker conditions.
Observe that R
" =7z(0), A =X(0) (17.46)

Proposition 723 If \* >0, then v’ (0) < 0.

Proof. From the envelope theorem,

Wk € (—e, +00) 7 (k) = 2 @+ A9 (@) = ) (k)
and from (17.46)

|
Remark 724 Consider the following problem. For given a € R,

maxzex f(x) st g(x)—a>0 (17.47)

Assume that the above problem is “well-behaved” and that x (a) = argmax (17.47), v(a) =
f(z(a)) and (z (a), A (a)) is the solution of the associated Kuhn-Tucker conditions. Then, applying
the Envelope Theorem we have



Chapter 18

Applications to Economics

18.1 The Walrasian Consumer Problem

The utility function of a household is
u:RY, - R cau(x).

Assumption. uis a C? function; u is differentiably strictly increasing, i.e., Va € REJF, Du (z) > 0;
u is differentiably strictly quasi-concave, i.e., Vx € R$+, Az # 0 and Du(z)Az =0 =
AzTD?u (x) Az < 0; for any u € R, {# € RY, : u(z) > u} is closed in R,

The maximization problem for household A is

(P1) max, cgo u (z) s.t. pr —w < 0.

The budget set of the above problem is clearly not compact. But, in the Appendix, we show
that the solution of (P1) are the same as the solutions of (P2) and (P3) below. Observe that the
constraint set of (P3) is compact.

(P2) max,cpo u(x) s.t. pr —w = 0;

(P3) Max, cge, u(x) s.t. pr —w < 0;
u(z) > u(e),

where e* € {xER$+ :pxgw}.
Theorem 725 Under the Assumptions (smooth 1-5), &, (p,wp) is a C* function.

Proof.

Observe that, from it can be easily shown that, £ is a function.

We want to show that (P2) satisfies necessary and sufficient conditions to Lagrange Theorem,
and then apply the Implicit Function Theorem to the First Order Conditions of that problem.
The necessary condition is satisfied because D, [px — w] = p # 0;

Define also

wiRY, xRS - RY,,

i (p, w)— Lagrange multiplier for (P2).

The sufficient conditions are satisfied because: from Assumptions (smooth 4), u is differentiably
strictly quasi-concave; the constraint is linear; the Lagrange multiplier p is strictly positive -see
below.

The Lagrangian function for problem (P2) and the associated First Order Conditions are de-
scribed below.

E(JJ,,U,J?,U)) = U(JJ) + e (-p.%' +w)

(FOC) (1) Du(z)—pp = 0
(2) —pr+w = 0

249
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Define
F:RY, xRyy xRY, xRyy - RE xR,

. Du () — pp
F~(x,u,p,w)H<_px+w ~
As an application of the Implicit Function Theorem, it is enough to show that D, ,\F' (z, i1, p, w)
has full row rank (C + 1).
Suppose D(, ) F does not have full rank; then there would exist
Az € R® and Ap € R such that A := (Az, Ap) # 0 and Dy F - (A, Ap) =0, or
D%*u(z) —p¥ Az
= O7
-p 0 Ap
or
(@) D?*u(x)Az—plAp =0
(b) —pAzx =0

The idea of the proof is to contradict Assumption u3.
Claim 1. Az # 0.
By assumption it must be A # 0 and therefore, if Az = 0, Au # 0. Since p € R£+, pT Ap # 0.
Moreover, if Az = 0, from (a), we would have p” Ay = 0, a contradiction. .
Claim 2. Du - Az = 0.
From (FOC1), we have Du - Ax — p,p - Az = 0; using (b) the desired result follows .
Claim 3. Az"D?u - Az = 0.
Premultiplying (a) by Az”, we get Ax” D?u (x) Az — AzTp” Ap = 0. Using (b) , the result follows.
Claims 1, 2 and 3 contradict Assumption u3.
]
The above result gives also a way of computing D, )& (p,w), as an application of the Implicit
Function Theorem .

Since
x i D w
Du(z) — pp D>y —pT —ulc 0
—pr +w -p 0 —T 1
| Dpx Dyzx | _
[Dep,w) (z, 1) (p, w)](C+1)><(C+1) = { Dpp Dy } =
o S I ]
-p 0 (c+1)x(c+1) L —F L | eyxicsn)

To compute the inverse of the above matrix, we can use the following fact about the inverse of
partitioned matrix (see for example, Goldberger, (1963), page 26)
Let A be an n X n nonsingular matrix partitioned as

E F
=6l

where En,xnys Frixnes Gnoxnys Hngoxn, and ni + ng = n. Suppose that £ and D := H —
GE~'F are non singular. Then

4 _ [ EY(I+FD'GE™Y) —E'FD
- ~D'GE! D '

If we assume that D?u is negative definite and therefore invertible, we have
[ D2y —pT ]1 - (Dz)—l (14_571pr (Dz)—l) 5! (Dz)—lpT
—p 0 6—1p (D2)71 5—1

where § = —p (D2)71pT eER, 4.
And
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Dyt = [ (0 (15 (02) ) 57 (o) | [ 4] -

=—pu (D2)71 (I +6'pTp (DQ)fl) —ot (DQ)flpT:r =51 (D2)71 [u (5] +pT'p (D2)71) +pT$}

Do (e == [ (097 (14070 7) 0 ()70 ]| 0y | =7 02

Dot =[5 0 ][4 [0 () ).

Dt (0, 0)] =~ [ 67 p (02) " 67" ] [ 0 } 5,

As a simple application of the Envelope Theorem, we also have that, defined the indirect utility
function as

viRIT =R, v (pw) = u(z (pw)),

we have that

Dpwyv (p,w) = A [ —zT 1 ] .

18.2 Production

Definition 726 A production vector (or input-output or netput vector) is a vector y = (yc)f:1 €
RE which describes the net outputs of C' commodities from a production process. Positive numbers

denote outputs, negative numbers denote inputs, zero numbers denote commodities neither used nor
produced.

Observe that, given the above definition, py is the profit of the firm.

Definition 727 The set of all feasible production vectors is called the production set Y C RC. If
y €Y, then y can be obtained as a result of the production process; if y ¢ Y,that is not the case.

Definition 728 The Profit Mazimization Problem (PMP) is

maxpy st. yeY.
Yy

It is convenient to describe the production set Y using a function F : R — R called the
transformation function. That is done as follows:
Y ={yeRY: F(y) >0}.
We list below a smooth version of the assumptions made on Y, using the transformation function.
Some assumption on F'(.).
(1) 3y € R such that F (y) > 0.
2) Fis C?.
) (No Free Lunch) If y > 0, then F (y) < 0.
) (Possibility of Inaction) F (0) = 0.
) (F is differentiably strictly decreasing) Yy € RY, DF (y) < 0
) (Irreversibility) If y # 0 and F (y) > 0, then F' (—y) < 0.
) (

(
(
(
E
(7) (F is differentiably strictly concave) YA € R\ {0}, ATD2F (y) A < 0.

3
4
5
6
7

Definition 729 Consider a function F (.) satisfying the above properties and a strictly positive real
number N. The Smooth Profit Mazimization Problem (SPMP) is

maxpy s.t. F(y) >0 and |y|]| < N. (18.1)
y
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Remark 730 For any solution to the above problem it must be the case that F (y) = 0. Suppose
there exists a solution y' to (SPMP) such that F (y') > 0. Since F is continuous, in fact C?,
there exists € > 0 such that z € B(y,e) = F(z) > 0. Take 2’ = y' + <. Then, d(y',2') =

1

(25:1 (%)2)5 = (C (%)2)% = (%)% = = <e. Therefore z' € B(y',e) and
F()>0 (1).

But,
e-1
p? =py + P> py (2).

(1) and (2) contradict the fact that y' solves (SPMP).

Proposition 731 If a solution with ||y|| < N to (SPMP) exists . Then y : R, — RY, p —
arg max (18.1) is a well defined C* function.

Proof.

Let’s first show that y (p) is single valued.

Suppose there exist y,y’ € y (p) with y # y/. Consider y* := (1 — A\) y+\y’. Since F (.) is strictly
concave, it follows that F (y*) > (1 —\) F (y) + AF (y') > 0, where the last inequality comes from
the fact that y,4’ € y (p). But then F (y*) > 0. Then following the same argument as in Remark
730, there exists ¢ > 0 such that 2’ = y*—l—% and F' (z') > 0. But pz’ > py* = (1 — \) py+py’ = py,
contradicting the fact that y € y (p) .

Let’s now show that y is C*

From Remark 730 and from the assumption that ||y| < N, (SPMP) can be rewritten as
max, py s.t. F'(y) = 0. We can then try to apply Lagrange Theorem.

Necessary conditions: DF (y) < 0;

sufficient conditions: py is linear and therefore pseudo-concave; F'(.) is differentiably strictly
concave and therefore quasi-concave; the Lagrange multiplier \ is strictly positive -see below.

Therefore, the solutions to (SPM P) are characterized by the following First Order Conditions,
i.e., the derivative of the Lagrangian function with respect to y and A equated to zero:

y p
L(y,p)=py+IF(y). p+ADF(y)=0 F(y)=0
_ __ pl
Observe that A = D Fw) > 0.

As usual to show differentiability of the choice function we take derivatives of the First Order
Conditions.

Y A
p+ADF(y)=0  D2F(y) [DF(y)]"
F(y)=0 DF(y) 0

We want to show that the above matrix has full rank. By contradiction, assume that there
exists A 1= (Ay, A\) € R® x R, A # 0 such that

gFF( 253)/) (DF )" } { Ay } 0,

ie.,

D*F (y)- Ay + [DF (y)]" - Ax=0 (a),

DF (y)-Ay=0 (b).

Premultiplying (a) by Ay”, we get AyT - D?F (y) - Ay + AyT - [DF (y)]T -AX = 0. From (b), it
follows that Ay” - D?F (y) - Ay = 0, contradicting the differentiably strict concavity of F (.).

3) _

From the Envelope Theorem, we know that if (@, )\) is the unique pair of solution-multiplier
associated with p, we have that
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DoF W) 53)
(y) = 0 and, by definition of 7, ¥ = y (D) , we get Dy (p) ; =y (D) ,

Dy ()i = Dy (PY)) ) + A

Since Dy, (py), 55 = ¥> DpF'
as desired.

(4)

From (3), we have that D,y (p) = D27 (p). Since 7 (.) is convex -see Proposition ?? (2)- the
result follows.

(5)

From Proposition 7?7 (4) and the fact that y (p) is single valued, we know that Voo € Ry, y (p) —
y (ap) = 0. Taking derivatives with respect to c, we have D,y (p) -p = 0. For a = 1, the desired
result follows.

|

|(ap)

18.3 The demand for insurance
Consider an individual whose wealth is

W —d with probability 7, and
w with probability 1—m,

where W > 0 and d > 0.
Let the function
u:A—=R, u:c—u(c)

be the individual’s Bernoulli function.

Assumption 1. Vc € R, v/ (¢) > 0 and " (¢) < 0.

Assumption 2. u is bounded above.

An insurance company offers a contract with following features: the potentially insured individ-
ual pays a premium p in each state and receives d if the accident occurs. The (potentially insured)
individual can buy a quantity a € R of the contract. In the case, she pays a premium (a - p) in each
state and receives a reimbursement (a - d) if the accident occurs. Therefore, if the individual buys
a quantity a of the contract, she get a wealth described as follows

Wiyi=W—d—ap+ad with probability m, and

Wy =W —ap with probability 1—m. (18.2)

Remark 732 It is reasonable to assume that p € (0,d) .

Define
U:R-R, Utarrmu(W —-d—ap+ad)+ (1 —7m)u(W —ap).

Then the individual solves the following problem. For given, W € Ry, d € Ry ,p € (0,d),
me (0,1)

maxgser U (a) (M) (18.3)

To show existence of a solution, we introduce the problem presented below. For given W &
R++7d € R-i—-‘rap € (Oad) y TE (07 1)

maxeer U (a) sit. U(a) >U(0) (M)

Defined A* := argmax (M) and A’ := argmax (M’), the existence of solution to (M), follows
from the Proposition below.

Proposition 733 1. A’ C A*. 2. A" #£(.
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Proof.

Exercise

]

To show that the solution is unique, observe that

U'(a)=7u' (W —d+a(d—p))(d—p)+ (1 —m)u (W —ap) (—p) (18.4)

and therefore

+) (+) (+) (=) (+)

(=)
U" (a) = %" (W — d+a(d—p)d—p)?+ (1 —m)" (W —ap)p?® < 0.

Summarizing, the unique solution of problem (M) is the unique solution of the equation:
U'(a) =0.

Definition 734 o* : Ri; x (0,1) x (0,d) x Ry4 — R,
a*: (d,m,p, W) — argmax (M) .
U*:0 — R,
U0 au(W—d+a*(0)(d—p) + (1 —7)u(W —a*(0)p)

Proposition 735 The signs of the derivatives of a* and U* with respect to 0 are presented in the
following table' :

d T P w
a* >0ifa* €[0,1] | >0 =0 <0ifa" <1
U* <0ifa*€l0,1] | <0dfa*€]0,1] | <O0i¢fa*>0]>0

Proof. Exercise. m

18.4 Exercises on part IV

See Tito Pietra’s file (available on line): Exercises 15.1 — 15.6.

1 Conditions on a* (f) contained in the table can be expressed in terms of exogenous variables.
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Chapter 19

Exercises

19.1 Linear Algebra

1.
Show that the set of pair of real numbers is not a vector space with respect to the following

operations:
(i). (a,b) + (¢,d) = (a+ ¢, b+ d) and k (a,b) = (ka,b) ;
(ii) (a,b) + (¢,d) = (a + ¢, b) and k (a,b) = (ka, kb) .

2.
Show that W is not a vector subspace of R? on R if
(i) W= {(z,y,2) eR?: 2> 0};

(i) W={z eR3: ||z|| <1},

(iii) W = Q.

3.
Let V be the vector space of all functions f : R — R. Show the W is a vector subspace of Vif

() W={feV:f(1)=0};
(i) W={fev:f(1)=rQ2)}.

4.

Show that
(i)
V= {(261,.’1?2,.%'3) eER® iz + a9+ 13 = 0}
is a vector subspace of R3;
(ii).
S={@1,-1,0),(0,1,-1)}

is a basis for V.

5.
Show the following fact.
Proposition. Let a matrix A € M (n,n), with n € N be given. The set

Ca:={BeM(n,n): BA= AB}
is a vector subspace of M (n,n) (with respect to the field R).

6.
Let U and V be vector subspaces of a vector space W. Show that

U+V:={weW:3ueUandv €V such that w = u + v}

257
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is a vector subspace of W.

7.
Show that the following set of vectors is linearly independent:

{(1,1,1,),(0,1,1),(0,0,1)}.

8. Using the definition, find the change-of-basis matrix from
S ={u1 =(1,2), us = (3,5)}

to
E = {61 = (170)7 €2 = (07 1)}

and from F to S. Check the conclusion of Proposition 77, i.e., that one matrix is the inverse of
the other one.

9. Find the determinant of

6 2 1 0 5
2 1 1 -2 1
CcC=]1 1 2 -2 3
3 0 2 3 -1

-1 -1 -3 4 2

10. Say for which values of k € R the following matrix has rank a. 4, b. 3:

k+1 1 -k 2
A= -k 1 2—-k k
1 0 1 -1

11.
Show that
V= {(.’L‘l,xg,l'g) S R3 X — X2 = 0}

is a vector subspace of R? and find a basis for V.

12.
Given

iR = RY, (21,20, 23,24) = (1, 21 + X9, 1 + T + 3, T1+ T2+ 23+ T4 )

show it is linear, compute the associated matrix with respect to canonical bases, and compute ker [
and Iml.

13.
Complete the text below.
Proposition. Assume that [ € L(V,U) and ker! = {0}. Then,

Vu € Imi, there exists a unique v € V such that [ (v) = w.

Since ..ooeevveeveveiiiniinnns , by definition, there exists v € V' such that
I(v) =u. (19.1)
Take v' € V such that [ (v') = u. We want to show that

........................ (19.2)
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Observe that

where (a) follows from .......c..ccocevuenne.
Moreover,

where (b) follows from .......c.cccoceeenenne.

Therefore,
l(v—2")=0,
and, by definition of ker,
SINCE, wevvrrreeeeeeeiiiianene, , from (19.5), it follows that
v—1v =0.

14.
Let the following sets be given:

V = {(21, 22, 3, 24) €R42$1—5E2+5E3—SE4=0}

and
W = {(z1, 22,23, 74) € R* 1 21 + 22 + 25 + 24 = 0}

If possible, find a basis of VN W.

15.
Say if the following statement is true or false.

259

(19.3)

(19.4)

(19.5)

Let V and U be vector spaces on R, W a vector subspace of U and [ € £ (V,U). Then [~ (W)

is a vector subspace of V.

16.
Let the following full rank matrices
Q- | o a2 p_ | b2
azi  as ba1 b2

be given. Say for which values of k£ € R, the following linear system has solutions.

1 a11 Q12 0 0 0 1 k

2 Gy agy 0 0 0 T2 1

3 5 6 by by O R

4 7T 8 by by O T4 3

1 ai; a2 0 0 k 5 k
Te

17.
Consider the following Proposition contained in Section 8.1 in the class Notes:
Proposition .Yv € V,

Verify the above equality in the case in which
a.

ZZRQ —>R2, (xl,xQ)’—’ < T+ T2 )

Tr1 — T2

b. the basis v of the domain of [ is

(19.6)
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c. the basis u of the codomain of [ is

18.

Complete the following proof.

Proposition. Let

n,m € N such that m > n, and

a vector subspace L of R™ such that dimL =n

be given. Then, there exists [ € £ (R™,R™) such that Im [ = L.

Proof. Let {v'}_ be a basis of L C R™. Take [ € £ (R",R™) such that

Vie{l,..,n}, I () =,

where €/, is the i—th element in the canonical basis in R™. Such function does exists and, in fact,
it is unique as a consequence of a Proposition in the Class Notes that we copy below:

Then, from the Dimension theorem
dimIml = ..o

Moreover,

Summarizing,
LCIm [, dimL=nand dimIm! <n,

and therefore
dim Iml = n.

Finally, from Proposition ..........ccccccccvvvvvvvvnnnnnns in the class Notes since L C Im [, dimL = n
and dim Iml/ = n, we have that Im! = L, as desired.
Proposition ........cccoeevieiiiinnnnnnn. in the class Notes says what follows:
19.
Say for which value of the parameter a € R the following system has one, infinite or no solutions
ar, + w2 =1
T + X9 = a
2r1 + 292 = 3a
3rv1 + 219 = a

20.
Say for which values of k,the system below admits one, none or infinite solutions.

A(k) -z =b(k)
where k£ € R, and
1 0 k-1
Am=| TP 2L b= |
1 k-1 0

21.
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Let V = {Ul,UQ, ...,v"} be a set of vectors in R™ such that for any i,5 € {1,...,n},

o 0 if i#]
vt = (19.7)
1 if i=j.

Show that V is a basis of R".
22.
Given a vector space V on a field F', sets A,B CV and k € F, we define

A+ B:={v e V: thereexist a € A and b € B such that v = a + b},

kA :={v eV : there exist a € A such that v = ka}.

Given a vector space V on a field F, a linear function T' € L(V,V) and W vector subspace of
V', W is said to be T-invariant if
T(W) CW.

Let W be both S-invariant and T-invariant and let k¥ € F'. Show that

a. W is S + T-invariant;

b. W is S o T-invariant;

c. W is kT-invariant.

23.

Show that the set of all 2 x 2 symmetric real matrices is a vector subspace of M (2,2) and
compute its dimension.

24.

Let V' be a vector space on a field F' and W a vector subspace of V. Show that

a. W+W =W, and

b. for any a € F' \ {0}, aW =W.

25.

Let P, (R) be the set polynomials of degree smaller or equal than n € N_ on the set of real
numbers , i.e.,

Pn (R) = {f : R — R such that Jag, aq,...,a, € R such that for any t € R, f (t) = Zait’} .
i=0

Show that P, (R) is isomorphic to R**1.
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19.2 Some topology in metric spaces

19.2.1 Basic topology in metric spaces

1.
Do Exercise 351: Let d be a metric on a non-empty set X. Show that
d(z,y)
d:XxX—Rd = :

is a metric on X.

2.
Let X be the set of continuous real valued functions with domain [0,1] C R and

1
d(f,g)=/0 f (@) - g(@)de,

where the integral is the Riemann Integral (that one you learned in Calculus 1). Show that
(X,d) is not a metric space.

3.
Do Exercise 368 for n =2: Vn € N,Vi € {1,...,n},Va;,b; € R with a; < b;,

x?:l (a/ia bl)
is (R™, ds) open.

4.
Show the second equality in Remark 376:

S () = O

5.
Say if the following set is (R, d3) open or closed:
1

5;_{ggeR:EIn€Nsuchthatx—(1)” E}

6.
Say if the following set is (R, d3) open or closed:
1 1
A:=uUr> (—, 10 — —> .
n

n=1

7.
Do Exercise 386: show that F (S) = F (S°).

8.
Do Exercise 387: show that F (S) is a closed set.

9.
Let the metric space (R, dz) be given. Find Int S,Cl (S),F (S),D (S),Is(S) and say if S is
open or closed for S =Q, S=(0,1) and S = {:10 € R:3dn € N, such that z = %}

10.

Show that the following statements are false:
a. Cl (Int S) =8,

b. Int Cl (S) = S.
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11.

Given S C R, say if the following statements are true or false.
a. S is an open bounded interval = S is an open set;

b. S is an open set = S is an open bounded interval;
c.zeF(S)=xzeD(S);

d.zeD(S)=xzeF(9) .

12.
Using the definition of convergent sequences, show that the following sequences do converge:
a. (Tn),en € R such that ¥n € N, z, = 1;

b. (xn)neN € R* such that Vn € N, Ty = l_

n

13.
Using Proposition 413, show that [0,1] is (R, dz2) closed.

14.
Show the following result: A subset of a discrete space, i.e., a metric space with the discrete
metric, is compact if and only if it is finite.

15.
Say if the following statement is true: An open set is not compact.

16.
Using the definition of compactness, show the following statement: Any open ball in (RQ, d2) is
not compact.

17.
Show that f(AUB) = f(A)Uf(B).

18.
Show that f (AN B) # f(A)N (B).

19.
Using the characterization of continuous functions in terms of open sets, show that for any
metric space (X, d) the constant function is continuous.

20.
a. Say if the following sets are (R™,ds) compact:
i

RY,
ii.
Vo € R" andvr € Ryy,, Cl B(z,r).
b. Say if the following set is (R, d3) compact:

{mER:EInGNsuChthatx:l}.
n

21.
Given the continuous functions
g:R" —R™

show that the following set is closed

{r eR":g(x) 20}
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22.
Assume that f: R™ — R" is continuous. Say if

X={zeR": f(z)=0}
is (a) closed, (b) is compact.

23.
Using the characterization of continuous functions in terms of open sets, show that the following
function is not continuous

x if xz#0

1 of z=0

fiRSR, f(z)=

24.
Using the Extreme Value Theorem, say if the following maximization problems have solutions
(with || || being the Euclidean norm).

maszi st. x| <1
mamei st x|l <1

mamei st lz|| >1

25.
Let (E, ||| g); (F,|||| ) be normed vector spaces. A function f : (E, ||||z), (F, |||l z) is bounded if

dM € Ry, such that Ve € E || f (2)]|p < M.
Show that given a linear function [ : E — F,
[ is bounded < [ = 0.

26.
f:(X,d) — R is upper semicontinuos at zg € X if

Ve > 0,36 > 0 such that d (z — z9) < d = f(z) < f(x0) +¢.

f is upper semicontinuous if is upper semicontinuos at any xg € X.

Show that the following statements are equivalent:

a. f is upper semicontinuos;

b. for any a« € R, {z € X : f (z) < a} is (X, d) open;

c. forany a €R, {z € X : f(z) > a}is (X,d) closed.

27.

Let A be a subset of (R™,d) where d is the Euclidean distance. Show that if A is (R™,d) open,
then for any z € X, {z} + A is (R",d) open.

Hint: use the fact that for any x,y € R", d(z,y) = ||z — y|| and therefore, for any a € R™,
dat+z,aty) =latz—a—y|=lz—yl|=duy).

28.

Let (X, d) be a metric space. Show that if K; and K> are compact subsets of X, then K; + K,
is compact.

29.

Given two metric spaces (F,d;) and (F,ds), a function f : F — F is an isometry with respect
to dy and ds if Va1, 29 € F,

da(f(@1), f(x2)) = di (21, 32).

Show that if f: F — F is an isometry then

a.f is one-to-one;

b. f: E— f(E) is invertible;

c. f is continuous.
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19.2.2 Correspondences

To solve the following exercises on correspondences, we need some preliminary definitions.!
A set C CR"™ is convex if Vzq, 2o € C and VA € [0,1], (1 — X)) x1 + Az € C.
A set C' C R™ is strictly convex if Vzq, 22 € C and VA € (0,1), (1 = A) z1 + Az € Int C.
Consider an open and convex set X C R"™ and a continuous function f : X — R, f is quasi-
concave iff V 2’2" € X, VA € [0,1],

f(L= X"+ A2") > min{f (), f(2")}.
f is strictly quasi-concave
Definition 736 iff V 2/, 2" € X, such that ' # x”, andV X € (0,1), we have that
(1= N2+ 2a”) > min {f («'), f(2")}
We define the budget correspondence as
Definition 737
,B:R$+ xRy, —— R, B(p,w) = {xERE:pxSw}.
The Utility Maximization Problem (UM P) is

Definition 738
max, e U (x) st. pr<w, orxz € f(p,w)

E:RY, xRyyp »— R, £(p,w) = argmax (UMP) is the demand correspondence.
The Profit Maximization Problem (PMP) is

maxpy st. yevY.
Y

Definition 739 The supply correspondence is
Y R$+ ——RY, y(p) = argmax(PMP).

We can now solve some exercises. (the numbering has to be changed)
1.
Show that £ is non-empty valued.
2.
Show that for every (p,w) € RY, x Ry,

(a) if u is quasiconcave, & is convex valued,;

(b) if u is strictly quasiconcave, & is single valued, i.e., it is a function.
3.
Show that 3 is closed.
4.
If a solution to (PMP) exists, show the following properties hold.

(a) IfY is convex, y (.) is convex valued;

(b) If Y is strictly convex (i.e., YA € (0,1), y* := (1 = \) o/ + M\ € Int Y), y(.) is single valued.
5

Consider ¢, ¢, : [0,2] >— R,

[-14+0.25- z,2% — 1] if z€][0,1)
¢ (z) =9 [FL1] if z=1
[-1+0.25- z,2% — 1] iof ze(l,2]

and
[-1+0.25-z,2% — 1] if x€l0,1)

6y () = { [-0.75,-0.25] if w=1
[-1+0.25-z,2% — 1] if xe (1,2

1The definition of quasi-concavity and strict quasi-concavity will be studied in detail in Chapter .
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Say if ¢, and ¢, are LHC, UHC, closed, convex valued, compact valued.

and

6.
Consider ¢ : Ry —— R,
_f {sini} if >0
‘“f”)—{ 1,1  if z=0 "
Say if ¢ is LHC, UHC, closed.
7.
Consider ¢ : [0,1] »— [—1,1]
_J [0.1] if zeQn][o,1]
o= { L0 if ze[0.1\Q
Say if ¢ is LHC, UHC, closed.
8.
Consider ¢, ¢, : [0,3] >— R,
¢1 (l’) = |:$2 - 2,552} )
¢)2 (‘T) = [xQ - 3,132 - 1] )

¢3 () = (91 N @s) () := ¢y (¥) N @y (7).
Say if ¢;, ¢, and ¢3 are LHC, UHC, closed.

19.3 Differential Calculus in Euclidean Spaces

1

Using the definition, compute the partial derivative of the following function in an arbitrary
point (2o, o) :

f:R? SR,

(7,y) = x - arctan £;
(z,y) = a¥;

a. f
b. f
c. flz,y)=(sin(x+vy

)V i (0,3)

3,
Given the function f:R? — R,

iz i z+y#0

flzy) =
0

otherwise

)

f(@,y) =22% —zy + o>

f possible, compute partial derivatives of the following functions.

show that it admits both partial derivatives in (0,0) and it is not continuous in (0, 0).

4.

Using the definition, compute the directional derivative f’ ((1,1); (a1, a2)) with a1, as # 0 for
f:R? >R,

f(z,y)

5.

__ Tty
a2y 41

Using the definition, show that the following function is differentiable: f : R? — R,

[ (z,y)

=a? —y* +ay

(19.8)
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Comment: this exercise requires some tricky computations. Do not spend too much time on it.
Do this exercise after having studied Proposition 628.

6.

Using the definition, show that the following functions are differentiable.

a. l € L(R™",R™);

b. the projection function f : R™ — R, f: (zf)

7.

Show the following result which was used in the proof of Proposition 593. A linear function
[:R™ — R™ is continuous.

n
1
—
i=1 xr.

8.
Compute the Jacobian matrix of f : R? — R3,

f(z,y) = (sinzx cos y, sinz siny, COS T COSY)

9

Given differentiable functions ¢g,h : R — R and y € R\ {0}, compute the Jacobian matrix of
JiRS SRS f(w,y,2) = (g(0)-h(z), Ll emal)

10 .
Compute total derivative and directional derivative at xo in the direction wu.
a.

1 1 1
f:Ri+—>R, f(xl,xg,xg):§log:ﬂ1+glogm2+§log$3

w0 = (1,1,2), u = == (1,1,1);

V3

b.
f:R® =R, f (@1, 2,23) = 2 + 205 — 2 — 20129 — 6o
To = (1;0,_1)3 u = (_%,0, %)7
C.
f : RQ - Rv f ($1,$2) =T em’lmg
zo = (0,0), u=(2,3).
11 .
Given )
=

flzy,2) = (2 +y* +2%) 7,
show that if (x,y, z) # 0, then

2 2
O*f (x,y, 2) L9 f(z,y,2) N O*f (x,y,2)

Ox? Oy? 0722 =0

12 .
Given the C? functions g, h : R — R, , compute the Jacobian matrix of

—

fRP SR, ey = (83, (@) tay, () +h@)

13 .
Given the functions

eY+x

f:R2 - R?, f(:c,y)=<ew+y)
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g:R—>R, zwg(x)
h:R — R2 h(z) = f(z,9(x))

Assume that g is C?. a. compute the differential of A in 0; b. check the conclusion of the Chain
Rule.

14 .

Let the following differentiable functions be given.
f:RP—=R (z1,22,23) = f (21,72, 73)
g:R¥ =R (z1,22,23) — g (21,22, 23)

f(z1, 22, 23)

a:R3— R (w1, 22, 23) — | g (21, 22,73)
T
b:R3 — R2, Y, N ( 9 (Y1, 92,Y3) )
(yl v y3) f<y17y27y3)

Compute the directional derivative of the function b o a in the point (0,0,0) in the direction
(1,1,1).

15 .
Using the theorems of Chapter 16, show that the function in (19.8) is differentiable.

16 .
Given
f:R® =R, (,y,2) — z+ x4+ 9>+ 22%9y% + 3ayz + 22 — 9,

say if you can apply the Implicit Function Theorem to the function in (xo, yo, 2z0) = (1,1, 1) and,

if possible, compute % and %;i in (1,1,1).

17 .

Using the notation of the statement of the Implicit Function Theorem presented in the Class
Notes, say if that Theorem can be applied to the cases described below; if it can be applied, compute
the Jacobian of g. (Assume that a solution to the system f (z,t) = 0 does exist).

a. f:R* — R?

2?2 — a3 + 2t + 3t
T1T2 + 11 — 1o )

f(xlax27t17t2> = (

b. f: R* — R?, )
f et t) = ( ?s?fzngt;?%m + 12 )
c. f: R* — R?, ) )
242
[ (w1, 20,1, t2) = ( th th;; ,x;:_ i )
18.

Say under which conditions, if 23 — xz —y = 0, then

?z B 32242
0zdy (322 — x)3

19. Do Exercise 643: Let the utility function u : RZ, — Ry, (z,y) — u(z,y) be given.
Assume that it satisfies the following properties i. w is C?, ii. ¥ (z,y) € R% ., Du(z,y) >> 0,iii.
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V(z,y) € R2,, Dyu(z,y) < 0,Dyyu(z,y) < 0,Dyyu(z,y) > 0. Compute the Marginal Rate of
Substitution in (zg,yo) and say if the graph of each indifference curve is concave.

20.

Let the function f,g: R™ — R be given and assume that

for every zop € R™ and every u € R", the directional derivatives f’ (xo;u) and ¢’ (zo;u) do exist.

Define h : R — R, z — f () - g (z). If possible, compute b’ (zo;u) for every o € R™ and every
u € R".

21.

A function f: R? - R, x — f (x) is homogenous of degree n € N if

for every x = (21, 22) € R? and every a € R, f (ax1,ars) = a™ f (w1, 22) .
Show that if f is homogenous of degree n and f € C*' (R?,R), then

for every x = (z1,22) € R2, 21Dy, f (1,22) + @2 Dy, f (21,22) = nf (21, 22) .

19.4 Nonlinear Programming

1. 2 Determine, if possible, the nonnegative parameter values for which the following functions
f:X >R, f:(z;);_, =z f(z)are concave, pseudo-concave, quasi-concave, strictly concave.

(@) X =Ry, f (2) = aa®;

(b)) X=R}, ,n>2 f(z)=>.,q (2;)% (for pseudo-concavity and quasi-concavity consider
only the case n = 2).

(¢) X =R, f(z) =min{a,fz —v}.

2.
a. Discuss the following problem. For given 7 € (0,1), a € (0, 400),

max(;, ;)T u(z)+(1—mu(y) st y<a— iz

y < 2a— 2z
x>0
y=>0

where u : R — R is a C? function such that Vz € R, v/ (2) > 0 and u” (z) < 0.

b. Say if there exist values of (,a) such that (z,y, A1, Ao, A3, A\g) = (%a, %a,)\l,0,0,0), with
A1 > 0, is a solution to Kuhn-Tucker conditions, where for j € {1,2,3,4}, A; the multiplier associ-
ated with constraint j.

c. “Assuming” that the first, third and fourth constraint hold with a strict inequality, and
the multiplier associated with the second constraint is strictly positive, describe in detail how to
compute the effect of a change of a or 7 on a solution of the problem.

3.
a. Discuss the following problem. For given 7 € (0,1),wy,ws € Ry,

Max(y y m)er? , xk 7108 T + (I -m)logy s.t
wy—m—x>0
we+m—y >0

b. Compute the effect of a change of w; on the component xz* of the solution.
c. Compute the effect of a change of m on the objective function computed at the solution of
the problem.

4.

2Exercise 1 is taken from David Cass’ problem sets for his Microeconomics course at the University of Pennsylvania.
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a. Discuss the following problem.

ming, ,)cr2 2?4+ y? — 4z — 6y s.t. z+y<6
y<2
x>0
y=>0

Let (z*,y*) be a solution to the the problem.
b. Can it be 2* =07
c. Can it be (z*,y*) = (2,2) 7.

5.
Characterize the solutions to the following problems.
(a) (consumption-investment)

MaX (e, oy kyeks U (c1) + 0u(ca)
s.t.
a+k<e
c2 < f (k)
C1,C2, k Z Oa

where u : R - R, v/ > 0,u” <0; f:Ry — R, f/>0,f” <0 and such that f(0) =0; ¢ €
(0,1),e € Ry4. After having written Kuhn Tucker conditions, consider just the case in which
c1,c0,k > 0.

(b) (labor-leisure)

max(, erz U (z,1)
s.t.
pr 4+ wl < wl
1<1
z,l >0,

where u : R? is C?, V (z,1) Du(x,l) > 0,u is differentiably strictly quasi-concave, i.e.,¥ (z,1),
if A#0and Du(x,1)-A =0, then ATD*>u A <0; p>0, w>0andl>0.
Describe solutions for which x > 0 and 0 <[ <[,

6.

(a) Consider the model described in Exercise 6. (a) . What would be the effect on consumption
(c1,¢2) of an increase in initial endowment e?

What would be the effect on (the value of the objective function computed at the solution of
the problem) of an increase in initial endowment e?

Assume that f (k) = ak®, with a € R4 4 and o € (0,1). What would be the effect on consump-
tion (cq1,¢2) of an increase in a?

(b) Counsider the model described in Exercise 6. (b) .What would be the effect on leisure I of an
increase in the wage rate w? in the price level p?

What would be the effect on (the value of the objective function computed at the solution of
the problem) of an increase in the wage rate w? in the price level p?.

7.
Show that if f: R* — R, =+ f(z) is homogenous of degree 1, then

f is concave & for any z,y € R?, f(z+y) > f(z)+ f(y).



Chapter 20

Solutions

20.1 Linear Algebra

1.

We want to prove that the following sets are not vector spaces. Thus, it is enough to find a
counter-example violating one of the conditions defining vector spaces.

(i) The definition violates the so-called M2 distributive assumption since for k = landa = b = 1,

(1+1)-(1,1) =2-(1,1) = (2,1) s while: 1- (1,1) +1- (1,1) = (2,2)

(ii) The definition violates the so-called A4 commutative property since for a = b = ¢ =1 and
d =0,
(1L,1)+(1,0) = (2,1) # (1,0) + (1,1) = (2,0)

2.

(i) Take any w := (z,y,2) € W with z > 0, and a € R with a < 0; then aw = (az, ay, az) with
az < 0 and therefore w ¢ W.

(ii) Take any nonzero w € W and define a = 2/||w||. Observe that ||aw|| =2 > 1 and therefore
aw ¢ W.

(iii) Multiplication of any nonzero element of Q3 by o € R\ Q will give an element of R3\ Q3
instead of Q3.

3.

We use Proposition 139. Therefore, we have to check that

a.0€ W; b. Yu,v e W, Va,B € F, au+ fv e W.

Define simply by 0 the function f: R — R such that Vz € R, f (z) = 0.

(i) a. Since 0(1) =0,0€ W.

b.

oau()+pv(l)=a-0+5-0=0,

where the first equality follows from the assumption that u,v € W. Then, indeed, au+ v € W.
(ii) a. Since 0(1) =0 =0(2), we have that 0 € W.
b.

au (1) + Bv (1) = au(2) + fv (2),

where the equality follows from the assumption that u,v € W and therefore u (1) = u (2) and
v(1) =v(2).

4.

Again we use Proposition 139 and we have to check that

a.0€ W; b. Yu,v e W, Va,8 € F, au+ fv e W.

a. (0,0,0) € W simply because 0+ 0+ 0 = 0.

b. Given u = (uy,uz2,u3),v = (v1,v2,v3) € V , i.e., such that

up +us+u3 =0 and v +wvy+v3 =0, (20.1)

271



272 CHAPTER 20. SOLUTIONS

we have
au + Bv = (auy + Por, aug + Pug, aus + Pfus) .
Then,
(20.1)
auy + oy + aug + Pug + aus + fug = a(ug +ug +ug) + B (v1 +va+v3) ="0.
(ii) We have to check that a. .S is linearly independent and b. span S =V.
a.
a(l,-1,00+8(0,1,-1)=(a —a+B —-B)=0

implies that « = 8 = 0.

b. Taken (z1,22,23) € V, we want to find a, 8 € R such that (z1,22,23) = «(1,—1,0) +
£(0,1,-1) = ( a —a+p —-p ), i.e., we want to find «, 5 € R such that

X1 = «
T2 = —a+p
T3 = -0
T1+x04+23 = 0
—x2 — X3 = «
Z2 = —a+p
T3 = —p
Then, & = —x5 — 3, f = —x3 is the (unique) solution to the above system.

5.
1.0eM(n,n): A0 =04 =0.
2. Vo, 8 € R and VB, B’ € Ca4,

(aB + BB') A= aBA+ BB'A= aAB + BAB' = AaB + ABB' = A(aB + BB').

6.
i. 0e U+ YV, because 0 € U and 0 € V.

ii. Take a, 8 € F and w',w? € U 4+ V. Then there exists v!,u? € U and v',v? € V such that
w! = u! + o' and w? = u? + v2. Therefore,

aw' + fu® = a (ul +vl) +0 (u2 +U2) = (ozul +ﬂu2) + (ow1 +Bv2) ceU+7V,

because U and V are vector spaces and therefore au' + fv! € U and au? 4+ Bv? € V.
7

We want to show that if Z?:l B;vi =0, then 8; = 0 for all . Note that Z?Zl Bvi = (84,81 +
B4, 61 + By + B3) = 0, which implies the desired result.
8.

We want to apply Definition ?7?: Consider a vector space V of dimension n and two bases
v = {UZ}ZL:l and u = {uk}zzl of V. Then,

P=[[u'], .. [W], .. "], ]eM(n,n),

is called the change-of-basis matrix from the basis v to the basis u. Then in our case, the
change-of-basis matrix from S to F is

P=[ [ [ ] eM@2).

Moreover,using also Proposition 77, the change-of-basis matrix from S to F is
_ 1 2 _ p—1
Q=[] [*p]=P"

Computation of [e'],. We want to find @ and 3 such that e; = auy + Buy, ie., (1,0) =
a(1,2)+83,5)=( a+38 2a+53),ie,

Il
—

a+3p

Il
o

2a+ 50
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whose solution is « = =5, = 2.
Computation of [62]3. We want to find « and f such that es = auy + Pug, ie., (0,1) =
a(1,2)+83,5)=( a+38 2a+53),ie,

a+38 = 0
20+ 56 = 1
a+38=0
20+ 56 =1
whose solution is o = 3, 8 = —1. Therefore,

=17 4

Since F is the canonical basis, we have

S ={us = (1,2), us = (3,5)}

1 3
=[5 3]
1 377" [-5 3
2 5 - 2 -1
as desired.
9.

Easiest way: use row and column operations to change C' to a triangular matrix.

Finally

6 2 1 0 5 1 1 2 -2 3
2 1 1 -2 1 2 1 1 -2 1
detC =det | 1 1 2 -2 3 :[R1<—>R3]——det 6 2 1 0 5
3 0 2 3 -1 3 0 2 3 -1
-1 -1 -3 4 2 -1 -1 -3 4 2
s 11 Ly 1| [EeR-E 0 1 s o s
- _ 1 3 3 - - -
—det|6 2 1 0 5|=|BFR=RI_ gelo 4 11 12 13
—3R'+R*—>R
3 0 2 3 -1 R4 R 0 -3 —4 9 -10
-1 -1 -3 4 2 o 0o -1 2 5
1 1 2 -2 3 M 1 2 -2 3
0 -1 -3 2 5 0 5 0 -1 -3 2 -5
= —det |0 —4 —11 12 -13 :Eﬁi%j%}:—da 0o 0 1 4 7
0 -3 —4 9 —10 0 0 5 3 5
0 0 -1 2 5 o 0 -1 2 5
1 1 2 -2 3 1 1 2 -2 3
L 0 -1 -3 2 5__5R3+R4_)R4_ 0 -1 -3 2 -5
=—det [0 0 1 4 7 =lTpd T s =—det [0 0 1 4 7
0 0 5 3 5 0 0 0 —17 -30
0 0 -1 2 5 0 0 0 6 12
1 1 2 -2 3 1 1 2 -2 3
0 -1 -3 2 -5 6, . i 0 -1 -3 2 -5
=—det |0 O 1 4 7| = ﬁR + R —-R|=—det |0 O 1 4 7
0 0 0 —17 -30 0 0 0 —17 —30
0 0 0 6 12 0 0 0 0 2
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11 2 -2 3
0 -1 -3 2 -5 94

=—det |0 0 1 4 7| =-D)(=)A)(-17)(F) = detC = 24
0 0 0 -17 —30
oo o o %

10.

Observe that it cannot be 4 as rank(A4) < min{#rows, #collums}. It’s easy to check that
rank(A) = 3 by using elementary operations on rows and columns of A :

2R3+ R' - R, C*+C' = CH O +C3 = C3 O+ C3 = C3, —C? 4+ C® — C3,

to get

k—1 1 0 O
0 0 1 k
0 00 -1
which has the last three columns independent for any k.
11.
Defined

o3
[:R® =R, (21,%2,73) — &1 — T2,

it is easy to check that [ is linear and V' = ker[,a vector space. Moreover,
[l] = [ 1 -1 0 ] .

Therefore, dimker! =3 —rank [[] =3 —1=2. u; = (1,1,0) and uy = (0,0, 1) are independent
elements of V. Therefore, from Remark 190, w1, us are a basis for V.

12.

Linearity is easy. By definition, [ is linear i f Vu,v € R* and Vo, 8 € R, l(au+Bv) = al(u)+81(v).
Then,

al(u) 4+ Bl(v) =
=a(u1,u1+uz,u1+us+us,ur+us+uz+ug)++8(v1,v1 +v2,v1 +v2+v3,01 +v2+v3+vs)

=(aui+pv1,0ur+auz+Fv +Bve,qur +auz+auz 4o +Bve+Pus,aur +aus +auz+aus+Bvi +Fua+Bva+LPua)

m{
4

Therefore, dimker! = 4 — rank [I] = 4 —
of [I] are a basis of Im .

13.

Proposition. Assume that [ € L (V,U) and kerl = {0}. Then,

= l(au + pv)

and then [ is linear.

— ==
i)
_ =0 o
_— o O O

= 0. Moreover, dimIm! = 4 and the column vectors

Vu € Iml, there exists a unique v € V such that [ (v) = u.

Proof.
Since u € Iml, by definition, there exists v € V such that

I(v) =u. (20.2)
Take v' € V such that [ (v') = u. We want to show that

v="u'. (20.3)
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R*.

Observe that

L(v)—1(v") @y u= 0, (20.4)
where (a) follows from (20.2) and (20.3).
Moreover,
L) =1 (") 21w =, (20.5)
where (b) follows from the assumption that [ € £ (V,U).
Therefore,
I(v—1")=0,
and, by definition of kerl,
v—1v' € kerl. (20.6)

Since, by assumption, ker! = {0}, from (20.6), it follows that
v—v' =0.

14.
Both V and W are ker of linear function; therefore V', W and V N W are vector subspaces of
Moreover
1 —2To+x3—24 =0
VnWw= ($1,$2,$3,ZL’4)€R42
T1+To+23+24=0
1 -1 1 -1

rank1111:2

Therefore, dimker! =dimV NW =4 -2 =2.
Let’s compute a basis of VN W :

T — X2 = —T3+ T4

1+ Ty =—T3 — X4

After taking sum and subtraction we get following expression
Tr1 = —T3
X9 = —X4

A basis consists two linearly independent vectors. For example,

{(-1,0,1,0),(0,-1,0,0)}.

15.

By proposition 139, we have to show that

1L.oelt(w),

2. Va, 8 € R and v',v? € 71 (W) we have that av! + Bv? € 71 (W).

1.
leL(v,U) . W vector space

1(0)

2.Since v!,v? € 71 (W),

L(v'),l(v*) e W. (20.7)
Then
) LD (o) + g1 (0?) € W

where (a) follows from (20.7) and the fact that W is a vector space.

l (avl + Bo?

16.
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Observe that
a1 a2 0 0

az1 429 0 0
det 5 6 b11 b12
7T 8 b b
aj; a2 0 0 k

=detA-detB-k.

o O oo

Then, if k£ # 0,then the rank of both matrix of coefficients and augmented matrix is 5 and the
set of solution to the system is an affine subspace of R® of dimension 1. If k£ = 0,then the system is

1 a1 a2 0 0 07 ™ 0
2 as ax 0 0 0| " 1
3 5 6 by b OB |=|2],
4 7T 8 by by O™ 3
1 a1 a2 0 0 0] 0
L .TG -
which is equivalent to the system
1
1 a1 ai12 0 0 0 T 0
2 a1 a922 0 0 0 T3 _ 1
3 5 6 b11 b12 0 T4 - 2 ’
4 7 8 b21 b22 0 Iy 3
Zg

whose set of solution is an affine subspace of R® of dimension 2.

e CLHOU-LL AL 3
=H
con-[( )], [7]
o[y 2)[2]-[7)

n,m € N such that m > n, and

a vector subspace L of R™ such that dim L =n

be given. Then, there exists I € £ (R™,R™) such that Im [ = L.

Proof. Let {vi}?zl be a basis of L C R™. Take | € L (R",R™) such that

Vi€ {1,...,n},ls (e)) =",

where e, is the i—th element in the canonical basis in R™. Such function does exists and, in fact,
it is unique as a consequence of a Proposition in the Class Notes that we copy below:

Let V and U be finite dimensional vectors spaces such that S = {vl, - U"} is a basis of V' and
{ul, ey u"} is a set of arbitrary vectors in U. Then there exists a unique linear function [ : V — U
such that Vi € {1,...,n}, [ (v') = u’ - see Proposition 273, page 82.

Then, from the Dimension theorem

dimIm! = n — dimker! < n.
Moreover, L = span {vi}?zl C Iml. Summarizing,

LCIml, dimL =nand dimIm <n,
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and therefore
dim Im! = n.

Finally, from Proposition 179 in the class Notes since L C Im [ , dim L. = n and dimIml = n,
we have that Iml = L, as desired.

Proposition 179 in the class Notes says what follows: Proposition. Let W be a subspace of an
n—dimensional vector space V. Then, 1. dimW < n; 2. If dim W =n, then W = V.

19.
a 1 1 1 1 a
11 a 1 9 a 1 1
[Altl= 1y | 54| = R =R]= |y | 3,
3 2 a 3 2 a
i 1 Cll —aR' + R? — R’ (1) 1ia 1—aa2
5 | 34| = AR R = | i=[A"(a) | V' (a)]
@ 3R+ R* > R4 ¢
3 2 a 0 -1 —2a
Since
1 1 a
det [0 -1 a | = 3a,
0 -1 —2a

We have that if a # 0, then rank A < 2 < 3 = rank [4' (a) | ¥’ (a)], and the system has no
solutions. If a =0, [A’ (a) | ¥’ (a)] becomes

1 1 0
0 1 1
0 -1 0
0 -1 0

whose rank is 3 and again the system has no solutions.

20.

1 0 k—1
1k 2-k K
Ampry=| 0 2]
1 k—1 0

1 0 k—1
det | 1 k 1 =2-2k

1 k-1 0

If k # 1, the system has no solutions. If £ =1,

1 0 O
o 11
1 0 0
1 0 0
0 1 1
1 1 1
1 0 0
0 1 1

Then, if k£ = 1, there exists a unique solution.
21.
The following Proposition is contained in the class Notes.
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Proposition 740 Let V' be a vector space of dimension n.
1. If S = {ul, ,u"} C V is a linearly independent set, then it is a basis of V;

2. If span (ul,...,u”) =V, then {ul,...,u”} s a basis of V.

From that Proposition, it suffices to show that V is linearly independent, i.e., given (), € R™,
if
D an' =0 (20.8)

then

Now, for any j € {1,...,n}, we have

n n
0 (:1) (Z aivi> vl @ Zaivivj (3:) Q;j,
i=1 j

where (1) follows from (20.8),

(2) follows from properties of the scalar product;

(3) follows from (19.7) .

22.

a. Let w € W. By assumption, S(w) € W and T(w) € W and since W is a subspace,
S(w) + T(w) € Wt. Therefore, (S + T)(w) = S(w) + T(w) € W, as desired.

b. Let w € W. By assumption, T(w) € W. Then (S o T)(w) = S(T(w)) € W since W is
S-invariant.

c. Let w € W. By assumption and recalling Proposition 138 in Villanacci(20 September 2012),
(kT)(w) = kT(w) € W.

23.

The set of 2 x 2 symmetric real matrices is

S={AeM(2,2): A=AT}.

We want to show that

i. 0 € S and

ii. for any o, 8 € R, for any A, B€ S, aA+ B € S.
i. 0=07-

2.(aA+ BB)" = aAT + BBT = aA + BB.

We want to show that
1 0 0 0 0 1
s={[s o ][0 V[T o]}

is a basis of S and therefore dim S = 3. B is clearly linearly independent. Moreover,

S:{AEM(2,2):Ela,b7ceRsuchthatA:{Z ZC)]},

and

i.e., span (B)) = S, as desired.

24.

a. [D] Taken w € W,we want to find w!,w? € W such that w = w' + w?.take w! = w and
wr=0¢eW.

[C] Take w',w? € W. Then w' +w? € W by definition ofvector space.

Isee Proposition 138 in Villanacci(20 September, 2012)
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b. [2] Let w € W. Then 2w € W and a (2w) w € aW.
[C] Tt follows from the definition of vector space.

25.

The isomorphism is ¢ : P, (R) — R"*!

f(t) = Zaiﬁi = (ai)ig -
i=0

Indeed , ¢ is linear

and defined ¢ : R"*! — P, (R),

n

(ai)img — () =D ait,

=0

we have that ¢ o9 =id|p, (r) and P o p = idjgn+1
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20.2 Some topology in metric spaces

20.2.1 Basic topology in metric spaces

1.

To prove that d’ is a metric, we have to check the properties listed in Definition 337.

a. d(z,y) >0,d(z,y)=0&z=y

By definition of d'(z,y), it is always going to be positive as d(z,y) > 0. Furthermore, d'(z,y) =
0<=d(z,y) =0<=z=y.

b. d'(z,y) = d'(y, x)

Applying the definition

d(z,y) d(y, )

but d(x,y) = d(y,x) so we have

dlz,y) _  d(=,y)
1+d(z,y) 1+d(z,y)

c. d(z,2) <d(z,y)+d(y,z)
Applying the definition

d(z,z) _ _d@y) d(y, z)
14+d(z,2) — 1+d(z,y) 1+d(y,2)
Multiplying both sides by [1 + d(z, 2)][1 + d(z, y)][1 + d(y, 2)]

d'(z,2) <d'(z,y)+d'(y,2) =

d(z, 2)[1 + d(z, y)|[1 + d(y, 2)] < d(x, y)[1 + d(z, 2)][1 + d(y, 2)] + d(y, 2)[1 + d(z, 2)][1 + d(z,y)]

Simplifying we obtain

|d(z,2) < d(w,) +dy, ) |+ [1+d(z, 2)][1 + d(z,y)][1 + d(y, 2)] + 2[1 + d(z, y)][1 + d(y, 2)]

which concludes the proof.

2.
It is enough to show that one of the properties defining a metric does not hold.
It can be d(f,g) =0 and f # g. Take

f(x)=0,vz €0,1],

and
g(x)=—-22x+1

Then,
1
/ (—2z+1)dz =0.
0

It can be d(f,g) < 0.Consider the null function and the function that take value 1 for all z in
)

[0;1]. Then d(0,1) = — foll dz. by linearity of the Riemann integral, which is equal to —1. Then,
d(0,1) < 0.

3.
Define S = (a1,b1) % (a2, bz) and take 20 := (29,29) € S. Then, for i € {1,2}, there exist £; > 0
such that 29 € B (2?,¢;) C (a;,b;). Take ¢ = min{ey,e2}. Then, for i € {1,2}, 2¥ € B (2,¢) C
(a;, b;) and, defined B =.B (x%s) x B (x8,5)7 we have that 20 € B C S. It then suffices to show
that B (xo, 5) C B. Observe that
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.%‘EB(.%‘O7€) @d(w,xo) <eg,

d((29,0), (z1,0)) = /(29 — x)’ = |29 — @1

)

and

d((29,0), (z1,0)) = /(29 — ) < \/(x(l) —z)’ + (@0 —3) =d (z,2").

4.
Show the second equality in Remark 376:

i (nn) =0

nn

1 11 11
S=q-1,4+=,—=,—, —=, =, ...
{ 7+2) 37 47 57 67 }
The set is not open: it suffices to find 2 € S and such that z ¢ Int S; take for example —1. We
want to show that it false that

Je > 0 such that (-1 —¢,-14¢)CS.

In fact, Ve >0, -1 =5 € (-1 —¢,—-1+4¢), but =1 — 5 ¢ S. The set is not closed. It suffices
to show that F (S) is not contained in S, in fact that 0 ¢ S (obvious) and 0 € F (S). We want to
show that Ve > 0, B (0,6) NS # @.In fact, (—1)" 1 € B(0,¢) if nis even and (—1)" 2 =1 < It
is then enough to take n even and n > %

6.

A = (0,10)

The set is (R, d2) open, as a union of infinite collection of open sets. The set is not closed,
because A€ is not open. 10 or 0 do not belongs to Int(A®)

7.

The solution immediately follow from Definition of boundary of a set: Let a metric space (X, d)
and a set S C X be given. z is an boundary point of S if

any open ball centered in x intersects both S and its complement in X, i.e., Vr € R4y, B (x,r)N
S+ A B(x,r) NS¢ # @.

As you can see nothing changes in definition above if you replace the set with its complement.

8.

ze(F(9)° ¢ (F(9)
& (VreRiy,B(z,r)NS#@ A B(z,r)NSC # o)
& 3r € Ry such that B(z,7r)NS=2 V B(z,r)NSY # 2
< 3r € R, such that B (z,7) CS® Vv B(x,r)C S
szxeintSC veelnt S

@ Jr* € Ry, such that either a. B (z,7) C Int S or b. B(x,r%) C Int S.

(20.9)
where (1) follows from the fact that the Interior of a set is an open set.

If case a. in (20.9) holds true, then, using Lemma 470, B (z,7%) C (F(S))¢ and similarly for
case b., as desired.

9.
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Int S CL(5) F(S) D (S) Is(S) open or closed

S=Q 1%} R R R (%] neither open nor closed
§=(0,1) 01 01 {01} 01 @ open
S = {%}neN+ %) Su{o} Su{o} {0} S neither open nor closed
10.
a

Take S = N. Then, Int S =, Cl (&) =g, and Cl (Int S) =2 # N =S.
b.
Take S = N. Then, Cl (S) =N, Int N=@, and Int Cl (S) =@ # N=5.

11.
a.
True. If S is an open bounded interval, then Ja,b € R, a < b such that S = (a,b). Take x € §
and 6 = min {|z — a|, |x — b|}. Then I (x,4) C (a,b).

b.

False. (0,1) U (2,3) is an open set, but it is not an open interval.

c.
False. Take S :={0,1}. 0 € F(S), but 0 ¢ D (S)

d. .

False. Take S (0,1). 3 € D(S)0, but 3 ¢ F(S5) .

12.

Recall that: A sequence (x,,),, o € X is said to be (X, d) convergent to 29 € X (or convergent
with respect to the metric space (X, d) ) if Ve > 0,3ng € N such that Vn > ng, d(zn,z0) <e.

a.

(n)nen € R such that Yn € N,:z, =1
Let € > 0 then by definition of (z,,)nen, Vn > 0, d(z,,1) =0 < e. So that

lm z, =1

b.
($n)n€N S R such that Vn c N,: Ty = %
Let ¢ > 0. Because N is unbounded, Ing € N, such that ng > % Then Vn > ng, d(x,,0) = % <

nL < €. Then, by definition of a limit, we proved that
0

lim z, =0
13.
Take (,),,cy € [0,1]% such that x,, — xo; we want to show that zo € [0, 1]. Suppose otherwise,
ie., o ¢ [0,1].

Case 1. wp < 0. By definition of convergence, chosen ¢ = —3 > 0, there exists n. € N such
that Vn > n., d(z,,70) < €, ie., [z, —2o| < e = -, le, zo+ B < < a9 - = F <0.

Summarizing, ¥n > n., &, ¢ [0,1], contradicting the assumption that (z,),cy € [0,1]™.
Case 2. xg > 1. Similar to case 1.

14.

This is Example 7.15, page 150, Morris (2007):

1. In fact, we have the following result: Let (X, d) be a metric space and A = {z1,...,x,} any
finite subset of X.Then A is compact, as shown below.

Let O;, ¢ € I be any family of open sets such that A C U;c;O;. Then for each x; € A, there
exists O;; such that x; € O;;. Then A C O;, UO;, U...UO;, . Therefore A is compact.
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2. Conversely, let A be compact. Then the family of singleton sets O, = {z}, z € A is such
that each O, is open and A C U, 40;. Since A is compact, there exists Oy, Oy, ..., Oy, such that
ACO; UO,,U...UO,,, that is, A C {x1,...,z, }. Hence, A is finite.

15.
In general it is false. For example in a discrete metric space: see previous exercise.

16.
Take an open ball B (z,r). Consider § = {B (z,r (1 — %))}nEN\{O 1} Observe that S is an
open cover of B (z,7); in fact Upen 0,13 B (#,7 (1 — 2)) = B (z,7) ,as shown below.

[C] &' € Upemjo,13B (2,7 (1 = 1)) < Iny N\ {0,1} such z € B (x,r (1 - nl,)) C B(z,r).

x

[D] Take 2’ € B(x,r). Then, d(z,2') < r. Take n such that d(a/,z) < r (1 -1 ), ie.,

n> sty (and n > 1), then 2’ € B (z,r (1 — 1)).
Consider an arbitrary subcover of S, i.e.,

s {0

with #N = N € N. Define n* = min{n € N'}. Then UpenB (z,r (1 — %) =B (z,r(1- ni)),
and if d (2/,x) € (7" (1 — nl) ,r), then 2’ € B (x,r) and 2’ ¢ Up,en B (:r,r (1 )

17.

1st proof.

We have to show that f(AUB) C f(A)U f(B)and f(A)Uf(B)C f(AUB).

To prove the first inclusion, take y € f (AU B); then 3 € AU B such that f(z) = y. Then
either x € A or x € B that implies f(x) =y € A or f(z) =y € B. In both case y € f(A) U f(B)

We now show the opposite e inclusion. Let y € f(A) U f(B), then y € f(A) or y € f(B), but
y € f(A) implies that 3z € A such that f(z) = y. The same implication for y € f(B). As results,
y = f(z) in either case with x € AUB i.e. y € f(AUB).

2nd proof.
y€ f(AUB) &
& 3z € AU B such that f(z) =y
& (3z € A such that f(z) = y) V (3z € B such that f(z) = y)
& (e f(A)Vye f(B)
e ye f(AUF(B)
18.:

First proof. Take f =sin, A = [-2x,0], B = [0, 27].
Second proof. Consider
f:{0,1} =R, z—1
Then take A = {0} and B = {1}. Then AN B =0, so f(ANB) =0. But as f(4) = f(B) = {1},
we have that f(A)N f(B) = {1} # 0.

19.
Take ¢ € R and define the following function

f:X-=Y, f(r)=c

It suffices to show that the preimage of every open subset of the domain is open in the codomain.
The inverse image of any open set K is either X (if ¢ € K) or @ (if ¢ ¢ K), which are both open
sets.

20.
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a.

i. R? is not bounded, then by Proposition 432 it is not compact.

ii. Cl B(x,r) is compact.

From Proposition 432, it suffices to show that the set is closed and bounded.

Cl B(z,r) is closed from Proposition 389.

Cl B(z,r) is bounded because Cl B (z,r) ={y € R": d(x,y) <r} C B(z,2r).

Let’s show in detail the equality.

i. Cl B(z,r) CC.

1

The function d, : R™ — R, d, (y) = d(z,y) := (2?21 (x; — yi)2> * is continuous. Therefore,
C =d;'([0,7]) is closed. Since B (z,r) C C, by definition of closure, the desired result follows.

ii. Cl B(z,7)2C.

From Corollary 473, it suffices to show that Ad B (x,r) 2 C. If d(y,z) < r, we are done.
Suppose that d (y,z) = r.-We want to show that for every e > 0, we have that B (z,r) N B (y,¢) #
@If e > r, then x € B(x,r) N B(y,e). Now take, ¢ < r. It is enough to take a point “very

close to y inside B (z,r)”". For example, we can verify that z € B (z,r) N B (y,¢), where z =
z+ (1- %) (y— x)) Indeed,

€
d(z,z) = (1—2—)d(y,x)> —(1—5)7"—7“—5 <,
and . . .
d(y,2) = 5 d(y,2) =5 r=75<e
c.

See solution to Exercise 5, where it was shown that S is not closed and therefore using Proposition
432, we can conclude S is not compact.

21.
Observe that given for any j € {1,...,m}, the continuous functions g; : R” — R and g = (g;)
we can define

m
j=1

C:={zeR":g(z) >0}.

Then C' is closed, because of the following argument:
C = ﬁjzlgj_l ([0,400)); since g; is continuous, and [0, +00) is closed, then gj_l ([0, 4+00)) is
closed in R™; then C' is closed because intersection of closed sets.

22.
The set is closed, because X = f~1 ({0}).
The set is not compact: take f as the constant function.

23.
LetV = By(1,¢), be an open ball around the value 1 of the codomain, with ¢ < 1. f=%(V) =
{0} U Bx(1,¢) is the union of an open set and a closed set, so is neither open nor closed.

24.

To apply the Extreme Value Theorem, we first have to check if the function to be maximized is
continuous. Clearly, the function ) ;" ; z; is continuous as is the sum of affine functions. Therefore,
to check for the existence of solutions for the problems we only have to check for the compactness
of the restrictions.

The first set is closed, because it is the inverse image of the closed set [0, 1] via the continuous
function ||||. The first set is bounded as well by definition. Therefore the set is compact and the
function is continuous, we can apply Extreme Value theorem. The second set is not closed, therefore
it is not compact and Extreme Value theorem can not be applied. The third set is unbounded, and
therefore it is not compact and the Extreme Value theorem can not be applied.

25.

[<]

Obvious.

(=]

We want to show that [ # 0 = [ is not bounded, i.e., VM € R, , 3z € E such that ||l (z)| > M.
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Since [ # 0,3y € E\{0} such that [(y) # 0. Define z = w24 —y. Then

()l 7
2M 2M
Wl —Hz (—z) = M @) = 20 > A
=R, = e, el
as desired.
26.
a=b.

Take an arbitrary a € R; if {x € X : f(2) < a} = f~! ((—o00,a)) = &, we are done. Otherwise,
take 29 € f~1 ((—00,@)), Then, a — f (z0) := & > 0 and by definition of upper semicontinuity , we
have

36 > 0 such that d(z —z0) < 0= f(x) < f(xo) +e=f(x0) +a— f(x0) = «,

i.e., B(z0,0) C f~!1((—00,)), i.e., the desired result.
b& e

{reX: f(x)<a}=X\{zeX: f(z)>al}

b= a.

We want to show that

Vzo € X, Ve > 0,30 > 0 such that B (z0,0) C f~! ((—oo, f (z0) +¢)).

But by assumption f~!((—oo, f (o) +€)) is an open set and contains zo and therefore the
desired result follows.
27.
Take y € {x} + A. Then there exists a € A such that y = z + a and since A is open there exists
€ > 0 such that
a€B(a,e)CA (20.10)

We want to show that

i. {z} + B (a,¢) is an open ball centered at y = = + a, i.e., {z} + B(a,e) = B (x + a,¢), and

ii. B(z+a,e) C{a}+ A

i

[C] y € {z} + B(a,e) & 3z € X such that d(z,a) < eandy = z+ 2 = d(y,x+a) =
d(z+z,x+a) Hz:ntd(z,a) <e=y€B(x+a,c).

D] yeB(x+a,e)ed(y,z+a) <e Nowsincey = z+(y —z)andd(y — z,a) = |ly—z —al =
ly — (x +a)|| =d(y,x + a) < &, we get the desired conclusion.

ii.

y € B(z+a,e) © |ly—(x+a)] <e Sincey =2zx+ (y—=z) and ||(y —z) —a| < ¢, ie,

(20.10)

y—x € B(a,e) C A, we get the desired result.

28.

By assumption, for any ¢ € {1,2} and for any {z?}, C K;, there exists x; € K; such that, up
to a subsequence z' — x;.Take {y"} C K; + Ko = K. Then Vn, y" = 2} + 2§ with 2 € K,
i = 1,2.Thus taking converging subsequences of (z'),, @ € {1,2}, we get y" — x1 +x2 € K as
desired.

29.

a. We want to show that Vzq,20 € E, f(21) = f(22) = 1 = 2. Indeed

0= d(f(:nl), f(SCQ)) = d($1,$2) = T = To.

b. It follows from a.
c. We want to show that Vzg € E,Ve > 0,39 > 0 such that

dl(ll',l’o) <i= dg(f(ll'),f($0)) <E.

Take § = e. Then,
dl(x,.’lio) <e= dg(f(.’E), f(xo)) <e.
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20.2.2 Correspondences

1.

Since w is a continuous function, from the Extreme Value Theorem , we are left with showing
that for every (p,w), 8 (p,w) is non empty and compact,i.e., 8 is non empty valued and compact
valued.

c
r= (Cch)czl < /6 (p,w) '
B (p,w) is closed because is the intersection of the inverse image of two closed sets via continuous
functions.
B (p,w) is bounded below by zero.

NI
w—zcz#cc p¢ a <
P

B (p,w) is bounded above because for every ¢, z¢ < < X where the first inequal-
P

ity comes from the fact that px < w, and the second inequality from the fact that p € RE 4 and

z € RY.

2.

(a)Consider #’, 2" € & (p, w) . We want to show that VA € [0,1], 2 := (1 — \) 2'+ 2" € € (p,w) .
Observe that u (2’) = u(2”) := u*. From the quasiconcavity of u, we have u (z*) > u*. We are

therefore left with showing that z* € 3 (p,w), i.e., 3 is convex valued. To see that, simply, observe
that pz* = (1 — A\ pz’ + Apz” < (1 — N w + Iw = w.

(b) Assume otherwise. Following exactly the same argument as above we have =/, 2" € £ (p,w),
and pz* < w. Since u is strictly quasi concave, we also have that u (z*) > u(2/) = u(2”) = u*,
which contradicts the fact that 2/, z" € £ (p,w) .

3.

We want to show that for every (p,w) the following is true. For every sequence {(pn,wn)}, C
RY, x Ryy such that

(pnvwn) - (pv w) , Tp € (pnvwn) y In — X,y

it is the case that z € 8 (p,w).

Since z,, € B (pn,wy), we have that p,x, < w,. Taking limits of both sides, we get pz < w,i.e.,
z € B(pw).

4.

(a) We want to show that Vy/,y” € y (p), VA € [0,1], it is the case that y* := (1 — )/ +\y" €
y(p),ie,y* €Y and Vy €Y, py* > py.

y» € Y simply because Y is convex.

i

\ , , Yoy Eup)
py =1 -Npy +Apy” > (1=A)py+Apy =py.
(b)Suppose not; then Jy’, " € Y such that 3’ # y” and such that

VyeY, py =py’ >py (1).

Since Y is strictly convex,YA € (0,1), y* := (1 —\)y' + \y" € Int Y. Then, Je > 0 such that

B (y*,e) C Y. Consider y* := y* 4+ 551, where 1 := (1,...,1) € RY. d (y*,y*) = \/200:1 (%)2 =
255' Then, y* € B (y*,£) C Y and, since p > 0, we have that py* > py* = py’ = py”, contradicting
1).

5.

This exercise is taken from Beavis and Dobbs (1990), pages 74-78.

y
3757

25T

1257

-125T
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For every z € [0,2], both ¢, () and ¢, (z) are closed, bounded intervals and therefore convex
and compact sets. Clearly ¢, is closed and ¢, is not closed.

¢rand ¢, are clearly UHC and LHC for x # 1. Using the definitions, it is easy to see that for
x =1, ¢; is UHC, and not LHC and ¢, is LHC and not UHC.

057

05T

1

For every x > 0, ¢ is a continuous function. Therefore, for those values of x, ¢ is both UHC
and LHC.

¢ is UHC in 0. For every neighborhood of [—1,1] and for any neighborhood of {0} in R™,
(b (x) < [_1’ 1] :

¢ is not LHC in 0. Take the open set V = (%, %) ;we want to show that Ve > 0 3z2* € (0,¢)
such that ¢ (z*) ¢ (3,2). Take n € N such that 2 < ¢ and 2z* = -1 Then 0 < 2* < ¢ and

202
sinz* =sinnr =0¢ (3,3).
Since ¢ is UHC and closed valued, from Proposition 16 is closed.

7.
¢ is not closed. Take z, = 2—‘/3 € [0,1] for every n € N. Observe that z, — 0. For every

neN, y,=-1€¢(z,) and y, — —1. But —1 € ¢(0) = [0,1].
¢ is not UHC. Take z = 0 and a neighborhood V = (—3,3) of ¢ (0) = [0,1]. Then Ve >
0, 3z* € (0,¢) \Q. Therefore, ¢ (z*) = [-1,0] Z V.

¢ is not LHC. Take « = 0 and the open set V = (%, %) .Then ¢ (0) N (%, %) =1[0,1] N (%, %) =
(3,1] # @. But, as above, Ve > 0, 3z* € (0,6)\Q. . Then ¢ (z*)NV =[-1,0]N(3,3) =2

8.

(This exercise is taken from Klein, E. (1973), Mathematical Methods in Theoretical Economics,
Academic Press, New York, NY, page 119).

Observe that ¢ (z) = [2? — 2,22 —1].

¢, (10,3]) = {(z,y) eR?:2>0,x <3,y >2>—2,y<a?}. ¢ ([0,3]) is defined in terms of
weak inequalities and continuous functions and it is closed and therefore ¢, is closed. Similar
argument applies to ¢y and ¢s.

Since [—10,10] is a compact set such that ¢, ([0,3]) C [-10,10], from Proposition 17, ¢, is
UHC. Similar argument applies to ¢, and ¢;.

¢, is LHC. Take an arbitrary T € [0,3] and a open set V with non-empty intersection with
o, (T) = [TQ —2,52]. To fix ideas, take V = [E,TQ +6], with ¢ € (0,52). Then, take U =

(\/E, VZ% + 5) . Then for every z € U, {2*} CV N ¢, (z).
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Similar argument applies to ¢, and ¢s.

20.3 Differential Calculus in Euclidean Spaces

1.
The partial derivative of f with respect to the first coordinate at the point (zo,yo), is - if it

exists and is finite -
lim f($7y0) B f(‘TanO)
T—T0 T — Xo

f(x,90) — f(z0,Y0) _ 2a° — wyo + Y5 — (225 — xoyo + y3)
x* — Xo T — o

21 — 255(2) — (zyo — oY)

T — X9
=2(z+ x0) — Yo

Then
D1 f(z0,y0) = 420 — Yo
The partial derivative of f with respect to the second coordinate at the point (xg,yo), is - if it

exists and is finite -
lim f(zo,y) — f(Zo,y0)

Y—Yo Y —Yo

f(zo,y) — fwo,50) _ 22 — woy +y* — (22§ — Toyo + 43)

Y—Yo Y—Yo
_ —o(y—y0) +v* —

Y—Y

=—x0+ (y+ o)

Dy f(z0,90) = —0 + 2yo.

2.

a.

The domain of f is R\{0} x R. As arctan is differentiable over the whole domain, we may
compute the partial derivative over the whole domain of f at the point (z,y) - we omit from now
on the superscript g

Y 1
D, f(x,y) = arctan = +x(_ﬁ)1 T2
:arc‘canng -y !
x 1+ (4)2
1 1 1

Ds f(z,y) :x;1+ (%)2 = 1+(%)2

b.
The function is defined on R4 x R. and

V(.'E,y) € R'f"'r X Ra f(xvy) = eylnfc

Thus as exp and In are differentiable over their whole respective domain, we may compute the
partial derivatives :

Dif(z,y) = %ey“”” = yz¥~!

Dy f(z,y) = In(z)e’'"™® = In(x)zY
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flz,y) = (sin(z +y)) V7TV = eVrivibintetvl in (0,3).
We check that sin(0 4 3) > 0 so that the point belongs to the domain of the function. Both partial
derivatives in (z,y) have the same expression since f is symmetric with respect to = and y.

D1 f(a.9) = Daf(on) = | g lsina + )] + VAT geot(z +3)| Ginto +) 7.
and
D;£(0,3) = D2f(0,3) = [2—\1/3 In[sin(3)] + \/gtan(?))} (sin(3))V?
3.
a.
h.0) —
Drs (0,0) = i LEEL0D = i 2~
b.
0,k)— (0,0 0
D, 0.0 i LOB=TO0 0
C.

Consider the sequences (2, )nen and (Yn)nen such that Vn € N,: z, =y, = % We have that
lin%)(:zcn, Yn) = Ogz, but
n—

3~

f(xna yn> =1

n2

_|_

1

n2

Then )
Tllig})f(mmyn) = 3 # f(0,0) =0

Thus, f is not continuous in (0, 0).

4 .
. 1+ hoy, 1+ hag) — f(1,1
F((L,1): . 00)) = limy_ L0 L2 R0 (LD
lim 1 2+ h(og + az) 2]
"OR [T han)T+ (T +has)+1 3]~
_ o1t
B 9
5.
1st answer.

We will show the existence of a linear function 7\, ,0)(z,y) = a(z — o) + b(y — yo) such that
the definition of differential is satisfied. After substituting, we want to show that

i [2* — y* + 2y — 25 4+ y5 — Toyo — a(z — x0) — by — o)
(2,y)—=(z0,y0) V(@ —20)2+ (y — yo)?

=0.

Manipulate the numerator of the above to get NUM = |(z — zo)(x +x0 —a+y) — (v — yo)(y +
Yo + b — x0)|. Now the ratio R whose limit we are interested to obtain satisfies

|z —mollr + 20 —a+yl |y —yolly+yo+b—
V@ =202+ W —v)?> (@—z0)2+ (y—10)?

<z —xollr +20 —a+y|+ |y —yolly +yo +b— z0].

0<R<

For a = 2z¢ + yo and b = g — 2yy we get the limit of R equal zero as required.

2nd answer.
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As a polynomial function, we know that f is C'(R?) so we can “guess" that the derivative at
the point (z,y) is the following linear application:

df () RZ SR

u— (22 +y, —2y + ). (Z;)

In order to comply with the definition, we have to prove that

i £ (@) (012)) = £ (2,)) = ()

=0
u=0 [l

F(y) + (ur,u2)) = f ((2,9)) = dfay) (w) = (2 +u1)? = (y + u2)? + (& +u1)(y + u)
— 2?4y —ay— 2z +y, 2y +x). (Zl>
2
= 2zuq + u% — 2yug — u% + zuo + yui + ujus
— 2z +y)ur — (—2y + x)us
= u% — u% + urus
= O(|Jull*)

2
Or, we know that lir% O(““;Lll“ ) = 0. Then we have proven that the candidate was indeed the
uU—

derivative of f at point (x,y).

6 .

a) given zp € R™ we need to find T,,: R” — R™ linear and E,, with lim,_,g E,,(v) = 0. Take
T,, =l and E,, = 0. Then, the desired result follows.

b) projection is linear, so by a) is differentiable.

7.

From the definition of continuity, we want to show that Vaxy € R™, Ve > 0 30 > 0 such that
lx — xzol| < = ||l (x) —I(x0)]| < e. Defined [[] = A, we have that

11(2) = L (o)l = |14~ & — ol =

— |[B (A4) - (2~ 20) - B (A) - (2 — w0)| € S [B(A) - (2 — 20)]| © (20.11)

< LRI -l = zoll < m- (maxieq,.my {[[RT(A)]]}) - llz = ol

where (1) follows from Remark 56 and (2) from Proposition 53.4, i.e., Cauchy-Schwarz inequal-
ity. Take
€
m- (maxie{l,...,m} {R (A)}) .

Then we have that [z — ol < & implies that ||z — x|l - m - (max;eq1,...my {R" (A)}) < ¢, and
from (20.11), ||l (x) — I (x0)]| < &, as desired.

8.
cosrcosy —sinzxsiny
Df(x,y) = | cosxsiny sinx cos y
—sinzcosy —coszsiny
9.
g'(z)h(z) 0 g(x)h(z)
Df(z,y,2) = | g'(h(x))W (x)/y —g(h(@))/y*> 0
exp(zg(h(z))((9(h(x)) + g’ (h(x))W (x)z)) 0 0
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10 .

a.
f is differentiable over its domain since x + log x is differentiable over R . Then from Proposition
597, we know that

1 1 1
[df:] = Df (@) = [37) &z 73]
Then
[zl =[5 & 1]

By application of Remark 598, we have that

flaow) = Dfwou=—=[5 § 4.1 =

b.
As a polynomial expression, f is differentiable over its domain.

[dfz] = Df(z) = [2301 — 2%, 4x9 — 271 — 673, —2T3 — 6;102]

Then
and
_ 1
V2
f'(@o,u) = Df(m)u=1[2 4 2].[ 0 | =0
%
c.
[df.] = Df(x) = [e"7 + womre™2,  afe™1"2]
Then
[dfwo] - [1 O]
and
F/(zo,u) = Df(wo)u = [1, 0]. @) _9
11 .

Then since f is in C*°(R\{0}), we know that f admits partial derivative functions and that
these functions admit themselves partial derivatives in (z,y, z). Since, the function is symmetric in

2
its arguments, it is enough to compute explicitly %.

0
L (2,,2) = ~ala? 4y + )

Then
o*f
0x?

Then V(z,vy,2) € R3\{0},

(377%3) = _(‘rQ +y2 + 22)_% +3ZC2($2 +y2 +22)_g

0? 0? 0? 5
T @) + T @) + S 2) = =3+ )+ @4 4 3 o 4 2)

3
2

=—3(x2—|—y2—|—z2)_% —|—3(9U2—|—y2—|—z2)_
=0

12 .
g, h S CQ(R, R++)2

FiR SR, fla,y,2) = (33, g(h@) +ay, In(g(@) + h(2)))
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Since Im(g) C Ry, (z,y,2) — % is differentiable as the ratio of differentiable functions. And
since Im(g +h) C Ry and that In is differentiable over Ry 4, 2 — In(g(x) + h(x)) is differentiable

by proposition 619. Then

590 e
Df(z,y,z) = |W(z)g'(h(z)) +y =z 0
g’ () +h' (z) 0 0
g(@)+h(x)
13 .
a.
Since
[ e +g(x)
h(.T) - < eg(a;) +2 ) )
then )
B B e’ +g' (x
_ _ 1+4'(0)
[dhO} = Dh (0) - ( g/ (0) eg(O) 41 ;
b

Let us define [ : R — R?  [(z) = (z,9(z)). Then h = fol. As is differentiable on R and f is
differentiable on R? we may apply the “chain rule".

dho = dfl(O) O dlo

[dl.] = Dl(z) = [g’zf)}

umm:mmw=ﬁ ﬂ

Then
e 1 1] [ 1+4(0)
[dho] - {1 g(O):| [g/(O):| - [1 _i_g/(%)eg(o)]
14 .

Dy (boa)(x) = Dyb (y)\y—a(x) Dga ()

_ | Pug(y) Dyg(y) Dyg(y)

ppw=| pri D) %J@]Wm)
() Dayf(x) Da,

Dylg(f(:v),g(:v),zl) Dwg(f(z),g(z),wl) Dygg(f(w)7g(w)7zl)

Dy, f(£(2),9(x),01) Dy F(f(@),9(2),21)  Dyy f(F(),9(x),21) 1902 Papg(®) - Dago()

:| Daqf(a:) Dzzf(w) ngf(m)
1 0 0
Do f Doyf Dayf

Dy1g Dy2g Dy3g :|
= D, D, D, =
Dylf Dy2f Dy3f 119 02.9 039
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— Dylg'Dzlf+Dyngx19+Dy39 Dylg'Dzzf+Dy29'Dx29 Dylg'Dwg.f_"Dyzg'Dwsg .
Dylf'Dw1f+Dy2f'Dw1g+Dy3f Dylf'Dzaf+Dy2f'Dw29 Dylf'Dw3f+Dy2f'Dwag

15 .
By the sufficient condition of differentiability, it is enough to show that the function f € C!.

—2y + = — both are indeed continuous, so f is

0]
Partial derivatives are —f =2z +y and -
ox dy

differentiable.

16 .
i) feClas Df(z,y,2) = (1+4xy? +3yz, 3y* + 422y + 32, 1 + 3xy + 322) has continuous entries

(everywhere, in particular around (xq, yo, 20)))-

ii) f(xo,¥0,20) = 0 by direct calculation.

) o 9

i) 11 = Hlwowoze) = 7# 0, fy = 5Ll (@oiorz0) = 10 # 0 and f = G (g yp.20) = 8 # 0.
Therefore we can apply Implicit Function Theorem around (zg, 3o, 20) = (1,1, 1) to get

Ox !

dy .

9= " ~7/10
17 .
a)

_ 21‘1 721’2 2 3
Df_ |:.’172 I 1 —].:|

and each entry of Df is continuous; then f is C'. det D,f(z,t) = 22? + 223 # 0 except for

x1 = x2 = 0. Finally,

D (t) _ 25131 _2.’172 -t 2 3 _ 1 2.’171 =+ 2.’172 3$1 — 2$2
g - To T 1 =1 2$% + 23;% —2xo9 + 221 —2x1 — 3x2|

b)
2ry 211 1 2t ]

Df - |:2.§C1 21‘2 2t1 — 2t2 72t1 + 2t2
continuous, det D, f(z,t) = 423 — 422 # 0 except for |z1| = |z2|. Finally

—1
_ 2.%'2 2.’L‘1 1 2t2 _
Dg(t) o |:2.’E1 2$2:| |:2t1 - 2t2 —2751 + 2t2:| o

-1
T 4zi—da?

—4xqt1 + 41ty + 229 dxqt] — dxqte + dxots
—21’1 + 4$2t1 — 4$2t2 —41’1t2 — 4$2t1 + 41’2t2

c)
2 3 2 2
1 -1 t 4

continuous, det D, f(x,t) = —5 # 0 always. Finally
Doy =2 3 T2t 2] 1 [-2t —3t: 2t -3
T=701 1] |ta t | T 5|2t 42t 20 +26]
18.

As an application of the Implicit Function Theorem, we have that

8(2371273,/)

82_ 5 _ —z
Or  9G-wz—y) 32 _g

oz
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if 322 — 2 # 0. Then,

92z 8(#%)%):) B g—; (322 — 2) —62—;-22
drdy dy a (322 — )
Since, .
o
Oy —8(23*8‘:2*9) 322 — 2’
we get
0%z 32 (327 —2) — 63527 32—
dxdy (322 —z)° a (322 —z)?
19.

As an application of the Implicit Function Theorem, we have that the Marginal Rate of Substi-
tution in (zg,yo) is

O(u(z,y)—k
dy _ ( (ag) ) 0
A |(z,y)=(zo, Ou(z,y)—k)
|(z,y)=(z0,y0) By |(z)=(z0.30)
) N +) = O\
d2 0 (_gw“(xvy(w))) Doz + Dyyugy | Dyu = | Dayu+ Dyyugy | Dou
oy _ vuley(@) ) _ \ <0
dx? oz (Dyu)

(+)

and therefore the function y (x) describing indifference curves is convex.
20.
Adapt the proof for the case of the derivative of the product of functions from R to R.
21.
Differentiate both sides of
f(azy,azs) = a™f (x1, z2)

with respect to a and then replace a with 1.

20.4 Nonlinear Programming

1.
(a)

If 5 = 0, then f(x) = a. The constant function is concave and therefore pseudo-concave,
quasi-concave, not strictly concave.

If 6> 0, f'(z) = aBa’ ", f"(z) = aB (6 —1)z" 2

() <0=aB(f—-1)>0 azcgizo 0< B <1<« f concave = f quasi-concave.

f"(z) <0< (a>0and 8 €(0,1)) = f strictly concave.

(b)

The Hessian matrix of f is
arfy (By —1)zfr =2 0
D*f (z) =
0 anﬁn (/Bn - 1) xﬁn—Q
D?f (z) is negative semidefinite < (Vi, 8; € [0,1]) = f is concave.

D?f (z) is negative definitive < (Vi, o; > 0 and 3; € (0,1)) = f is strictly concave.
The border Hessian matrix is

0 oy fpfril — an B,z 1
B1—1 —1 B1—2 0
B(f(x)) = o fix o181 (By E .

anB,z° 1 0 anf, (8, —1)al~?
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The determinant of the significant leading principal minors are

0 o Byt 242 (B —1\2
det _ _ = —« 1 <0
ozt By (B — 1) a2 1P ( )
0 alﬁlzﬁl’l OzQBQ:Eﬁ‘fl
det | a18;2"71 By (B —1)2%72 0 =
asfyzP17t 0 asfy (By — 1) 272

== [a1519€61_1a151xﬂ1_10¢2ﬂ2 (By—1) 55[32_2] - [a2523751_1042523362_1a151 By =1 xﬂ1_2] =
= - (a1ﬂ10¢252xﬁ1+ﬁ2_4) [041511"82 (By — 1) + a252$'81 (B — 1)] =
= —ay1 B 00,z 274 [y B12P2 (B, — 1) + o fyz® (B, — 1)] > 0

iff fori=1,2, a; > 0and 3, € (0,1).

(c)

If 8 =0, then f () = min{a, —y} = 0.
If B8 > 0, we have

757

| | | |
t t t t {
-1.25 0 125 25 3.75 5

5

The intersection of the two line has coordinates =* : (: %i, a)

f is clearly not strictly concave, because it is constant in a subset of its domain. Let’s show it
is concave and therefore pseudo-concave and quasi-concave.
Given 7/,2"” € X, 3 cases are possible.
Case 1. o/, 2" < z*.
Case 2. 2/, z" > x*.
Case 3. 2’ < z* and 2" > z*.
The most difficult case is case 3: we want to show that (1 — X) f (z/)+Af (2”) < f((1 =Nz’ + \a”).
Then, we have

(1=X) f(2") + Af (") = (1 = N) min {a, B2’ — 7} + Amin {a, 82" — 7} = (1 = ) (B2" = 7) + Aa.
Since, by construction « > Bz’ — 7,

(1-=XN) (B2 =)+ a <

since, by construction a < gz’ — 7,

(1=X)(B2" =) +Aa < (1= X) (B2" —7) + A ((B" —7) = B[(1 = N) 2" + A"] — .
Then

(1=XNf(E@)+ (@) <min{a,B[(1 =N 2" +Xz"] -~} = fF((1 =N 2"+ \z"),
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as desired.
2.
a.
i. Canonical form.
For given 7 € (0,1), a € (0, +00),

MaX(y y)eR2 mou(@)+(1-—mu(y) st. a—3z—y>0 A1
26 —2x —y >0 A2
ZL’ZO )\3
y=>0 Ag
1
y=a—3x . . _g :z
{ y=2a—2z ° solution is [m— 3(1, 3a]
y 27
157
11
05T
0 } T } 1
0 0.5 1 15 2
X

ii. The set X and the functions f and g ( X open and convex; f and g at least differentiable).
a. The domain of all function is R%2. Take X = R? which is open and convex.
b. Df (z,y) = (7 -u' (z),(1 — ) v (y)).The Hessian matrix is

m-u” (z) 0
0 (1—m)u" (y)

Therefore, f and g are C? functions and f is strictly concave and the functions ¢’ are affine.

iii. Existence.

C' is closed and bounded below by (0,0) and above by (a,a) :

y<a-— %x <a

2¢ < 2a —y < 2a.

iv. Number of solutions.

The solution is unique because f is strictly concave and the functions g7 are affine and therefore
concave.

v. Necessity of K-T conditions.

The functions ¢’ are affine and therefore concave.

z = (30,30)

11 1.1

@ =330 50=730>0
2a—2§a—§a:§a>0
%a>0

§a>0

vi. Sufficiency of K-T conditions.
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The objective function is strictly concave and the functions ¢’ are affine
vii. K-T conditions.

1
L(x,y, A\, gyma)=m-u(z)+(1—m)u(y)+ X\ (a—ix—y) + X2 (20 — 22 — y) + A3 + A\gy.

7T~u/(.’17)—%)\1—2>\2+)\3 =0
(1—7T)u’(y)—)\1—)\2+)\4 =
min{)\l,a—%x—y} =
min {\y, 2a — 22 — y} =
min {3, x} =0
min {\y, y} =0

b. Inserting (z,y, A1, A2, Az, Ag) = (%a, %a,)\l,0,0,0), with Ay > 0, in the Kuhn-Tucker condi-
tions we get:

- (%a) Y 0
(2
(I1-7)u (;a%—)\l =0
a—33a—3a =
min 10, 2a — Q%CL* %a} =0
min O,%a =0
min 10, 2a 0
and
M =27 -u (%a)>0
— /(2

A1 (1-m)u (2a) >0

a— %%a — %a =0

min {0,0} =0

min 0,%@ =

min 10, 5a =0

Therefore, the proposed vector is a solution if
2 2
o - <§a> =(1-7)u <§a) >0,

1
2r=1—-m or ﬂ:gandforanya€R++.

i.e.,

c. If the first, third and fourth constraint hold with a strict inequality, and the multiplier
associated with the second constraint is strictly positive, Kuhn-Tucker conditions become:

meu (z) — 2A9 =0

(I-mu'(y) = =0

a—%x—y >0

20 — 22—y =0

T >0

Y >0

meu (z) — 2X9 =0

(I-mu'(y) = A =

20 — 2z — vy =0

z Y Ao a
meu (z) — 2)2 m-u'(z) 0 -2 W/ (z) O
(I-mu'(y)=A2 0 (1-mu’(y) —1 —u'(y) O

204 — 2z —y -2 -1 0 0 2
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m-u () 0 -2
det | 0 l1-mu'(y) -1 |=
-2 -1 0
_ " (1 - 7T) u (y) -1 . —2 _
= 7' (x) det 1 0 2det (1 yu' (y) —1
=—mu’ () —4(1—m)u" (y) >0
m-u (z) 0 217" (@) o
Dira) (,9,22) == | 0 (1=—mu’(y) —1 —u'(y) 0
-2 -1 0 0 2
Using maple:
m-u'(z) 0 —2 17!
0 A-mu'(y) 1| =
-2 -1 0
-1 2 2u" (y) — 2mu” (y)
= ST @A) 2 4 mu’ (z)

D(Tr,a) (:Ev Y, )\2) =

-1 2 2u" (y) (1 —m) w(z) O
1 " /
Qe ey g s g vy L2 —4 o mu(2) —u'(y) 0 | =
20" (y)(1—7) mu’(x) wu’ (x)u” (y)(1—m) 0 2
—u' (x) = 2u’ (y) 4u” (y) (1 — )
= ﬂ.uu(w)_;'_él(ll_ﬂ)uu(y) 2’U/ (SC) - 4UI (y) 27T’U// ([I,')

2u" (y) (L= m) -/ (z) + mu” (2) (—u' (y))  2mu” (z) " (y) (1 — )
3.

i. Canonical form.
For given 7 € (0,1) , w1, ws € Ry,

MAX (74 m)ER? | xR mlogz + (1 —m)logy s.t
wp—m—x>0 A
we+m—y>0 Ay

where A, and ), are the multipliers associated with the first and the second constraint respec-
tively.

ii. The set X and the functions f and ¢g ( X open and convex; f and g at least differentiable)

The set X = Ri 4 xR is open and convex. The constraint functions are affine and therefore c2.
The gradient and the hessian matrix of the objective function are computed below:

T y m
wlogz + (1 —7)logy z 177” 0
x y m
:oE 0 o
1—7” 0 —1;; 0
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Therefore, the objective function is C? and concave, but not strictly concave.
iii. Existence.
The problem has the same solution set as the following problem:

MAX (7, y.m)eR2 , xR mlogz + (1 —m)logy s.t
wi—m—xz>0 Az
wy+m—y >0 Ay
mlogx + (1 —m)logy > wlogwy + (1 — 7) log ws

whose constraint set is compact (details left to the reader).

iv. Number of solutions.

The objective function is concave and the constraint functions are affine; uniqueness is not
insured on the basis of the sufficient conditions presented in the notes.

v. Necessity of K-T conditions.

Constraint functions are affine and therefore pseudo-concave. Choose (z, y, m)+Jr = (%, =, 0) .

vi. Sufficiency of Kuhn-Tucker conditions.

f is concave and therefore pseudo-concave and constraint functions are affine and therefore
quasi-concave..

vii. K-T conditions.

D,L=0= Z-X,=0
D,L=0= L=\ —o
y °
DpL=0= —A+A\, =0
min{w; —m—xz, A} =0
min{ws +m —y, A\, } =0

viii. Solve the K-T conditions.
Constraints are binding: A\, = % >0 and A\, = 1*7” > 0. Then, we get

Az =2 and v = &

Ay = 1_T”and Y= 11;;
Az = Ay = A
w; —m—x =
wo +Mm—y=
Az =2 and = &
Ay = 1;’Tand Y= 11;_;
Az = Ay
wy —m — § =0
wy +m — %” =0
Then wy — § = —wy + PT“ and A = wl_}_wz .Therefore
iz = wlilez
Y witws
x =7 (w; + we)
y=1-m)(wy +ws)
b., c.
Computations of the desired derivatives are straightforward.
4.
i. Canonical form.
max(; y)cr? —2? —y? + 4x + 6y s.t. —x—y+6>0 A1
2—-y>0 A2
x>0 H
y=>0. Hy

ii. The set X and the functions f and ¢ ( X open and convex; f and g at least differentiable)
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X =R? is open and convex. The constraint functions are affine and therefore C2. The gradient
and hessian matrix of the objective function are computed below.

x Y
—z? —y? + 4z + 6y —2x+4 —2y+6
€ Y
—2x 44 -2 0

—2y+6 0 -2

Therefore the objective function is C? and strictly concave.
iii. Existence.
The constraint set C' is nonempty ( 0 belongs to it) and closed. It is bounded below by 0. y is

>

bounded above by 2. x is bounded above because of the first constraint:: + < 6 —y yio 6. Therefore
C is compact.

iv. Number of solutions.

Since the objective function is strictly concave (and therefore strictly quasi-concave) and the
constraint function are affine and therefore quasi-concave, the solution is unique.

v. Necessity of K-T conditions.

Constraints are affine and therefore pseudo-concave. Take (z7F,y*+) = (1,1).

vi. Sufficiency of K-T conditions.

The objective function is strictly concave and therefore pseudo-concave. Constraints are affine
and therefore quasi-concave.

vii. K-T conditions.

L (2,9, A, Mgy i i) = =22 =y + 4w+ 6y + A1 - (—2 =y +6) + +A2- (2—y) + p,@ + 1,y

—2r+4-XM+p, =0
—2y+6—)\1—/\2—|—uy20
min{-z—y+6,\} =0
min{2 —y, A2} =0
min{z, p,} =0
min{y,uy} =0

+4 — )\1 + My = 0
—2y+6—-XA2+p,=0
min{—-y+6,A1} =0
min{2 —y, A} =0
min {0, u,} =0
min {y, ,uy} =0
Since y < 2, we get —y + 6 > 0 and therefore Ay = 0. But then p, = —4, which contradicts the
Kuhn-Tucker conditions above.

C.
—44+4-M+p, =0

—4+6—/\2+My20
min{—4+6,A\} =0
min{2 —2,X2} =0

min {2, p, } =0
min{Q,uy} =0
—A1+p, =0
A1 =0
min {0, A2} =0
ty =0

ty =0
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py =0
+2—-X =0
A =0
min {0, A2} =0
fy =0
py =0
oy =0
Ao =2
A =0
ty =0
py =0

Therefore (CE*, Yo AT, AL, ;LZ) = (2,2,0,2,0) is a solution to the Kuhn-Tucker conditions
5 .2

5. a.

i. Canonical form.

For given § € (0,1),e € R4,

MAaX (e, ey kyers U (c1) + 0u(c2)
s.t.
e—C — k Z 0 )\1
f (k’) — C9 2 0 /\2

c1 20 1
c2 >0 o
k> 0. K

ii. The set X and the functions f and g ( X open and convex; f and g at least differentiable).
X = R3 is open and convex. Let’s compute the gradient and the Hessian matrix of the second

constraint:
C1 C2 k

C1 Co k
0 0 0 0
-1 0 0 0

frk) 0 0  f"(k)<O

Therefore the second constraint function is C? and concave; the other constraint functions are
affine.
Let’s compute the gradient and the Hessian matrix of the objective functions:

C1 Co k

u(c1) + du (c2) u' (e1) ou' (e2) 0

1 Co k

u (c1) u” (c1) 0 0
o’ (e2) 0 du" (eq) 0
0 0 0 0

Therefore the objective function is C? and concave.

2Exercise 7 and 8 are taken from David Cass’ problem sets for his Microeconomics course at the University of
Pennsylvania.
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iii. Existence.

The objective function is continuous on R3.

The constraint set is closed because inverse image of closed sets via continuous functions. It is
bounded below by 0. It is bounded above: suppose not then

if ¢ — +00, then from the first constraint it must be £k — —oo, which is impossible;

if cg — +o00, then from the second constraint and the fact that f’ > 0, it must be k — o0,
violating the first constraint;

if Kk — 400, then the first constraint is violated.

Therefore, as an application of the Extreme Value Theorem, a solution exists.
iv. Number of solutions.

Since the objective function is concave and the constraint functions are either concave or affine,
uniqueness is not insured on the basis of the sufficient conditions presented in the notes.
v. Necessity of K-T conditions.

The constraints are affine or concave. Take (cf"", céH', k++) = (i, %f (%) ,i) . Then the con-
straints are verified with strict inequality.
vi. Sufficiency of K-T conditions.

The objective function is concave and therefore pseudo-concave. The constraint functions are
either concave or affine and therefore quasi-concave.
vii. K-T conditions.

L (c1, e,k A1, A2, iy, pios pig) := u(c1) +0u (c2) + A1 (e — c1 — k) + A2 (f (k) — c2) +pyc1 + paca +
pzk.
w(c1) = A+ py =0
ou’ (ea) —Ag 4+ ey =0
=M1+ Aaf' (k) +p3 =0
min{e —c; —k, A} =0
Imn{f (k) — Ca, /\2} =0
min {Cla lul} =0
min {CQa :LLQ} =0
min {k, u3} =0

viii. Solve the K-T conditions.
Since we are looking for positive solution we get

’U/ (01) — )\1 =0

(SUI (Cg) — )\2 =0
“AM+Xf(k)=0
min{e —c; —k,A\1} =0
min {f (k) — c2, A2} =0

py =0
pa =0
ps3 =0
’U,/(Cl)—>\1:0

(S’U,I (02)_>\2:0
—)\1+)\2f/ (k‘):O
e—c1— k=0
f(k)—CQZO

Observe that from the first two equations of the above system, A1, A2 > 0.
5. b.

i. Canonical form.

For given p > 0, w > 0 and [ > 0,

maX(g,jerz U (xa l)
s.t.
—px —wl+wl >0
1-1>0
x>0
>0
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ii. The set X and the functions f and g ( X open and convex; f and g at least differentiable).

X =2 is open and convex.

The constraint functions are affine and therefore C2. The objective function is C? and differen-
tiably strictly quasi concave by assumption.

iii. Existence.

The objective function is continuous on R3.

The constraint set is closed because inverse image of closed sets via continuous functions. It is
bounded below by 0. It is bounded above: suppose not then

if 2 — +o00, then from the first constraint (pz+wl = wl),it must be [ — —oo, which is impossible.
Similar case is obtained, if [ — +o0.

Therefore, as an application of the Extreme Value Theorem, a solution exists.

iv. Number of solutions.

The budget set is convex. The function is differentiably strictly quasi concave and therefore
strictly quasi-concave and the solution is unique.

v. Necessity of K-T conditions.

The constraints are pseudo-concave (z++ [T+) = (
inequalities.

vi. Sufficiency of K-T conditions.

The objective function is differentiably strictly quasi-concave and therefore pseudo-concave. The
constraint functions are quasi-concave

,g) satisfies the constraints with strict

vii. K-T conditions.
L (c1,c2,k, A1, A2, Ag, /\4;p,w,7) i=u(z,1) + A\ (—pz —wl + wl) + Ao (Z — 1) + A3z + Mgl

Dzu—)\lp+)\3 =0

Diu— X Mw—A+XM =0
min{—px—wl—i—wi, )\1} =0
min {I — 1,2} =0

min {z, A3} =0

min {l, A4} =0

viii. Solve the K-T conditions.
Since we are looking for solutions at which z > 0 and 0 < I < I, we get

Dyu—XMp+2A3=0
Diu— X w—A+X=0
min{—px—wl—i—wz,)\l} =0

A =0
A3 =0
=0
Dyu—XMp=0
Dy — X \w=0

min{—px—wl—i—wz,)\l} =0

and then \; > 0 and

D,u—Xp=0
Dl’UJ*Al’LU:(_)
—pxr —wl+wl =0
7.
a.

Let’s apply the Implicit Function Theorem (:= IFT) to the conditions found in Exercise 7.(a).
Writing them in the usual informal way we have:
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C1 C2 k /\1 )\2 e a
W)= =0 u” (1) -1
du' (c2) — A2 =0 ou" (e2) -1
M+ Xf(k)=0 Xof" (k) =1 f'(k) Aok ™!
e—cp— k=0 -1 -1 1
f(k)—ca=0 -1 (k) ke
To apply the IFT, we need to check that the following matrix has full rank
u” (1) -1
du’ (o) -1
M = A f" (k) =1 f'(k)
-1 -1
—1 f (k)
Suppose not then there exists A := (Acy, Aca, Ak, AN, A)s) # 0 such that MA =0, i.e.,
" (Cl) Aci+ —A)\ =0
ou” (CQ) Aco+ AR =
Aof” (B) Ak+ —AM+ f(BE)AXy =0
7A01+ 7Ak = O
—Aco+ 1 (k) Ak+ =0

Recall that
[MA=0=A=0] iff M hasfull rank.

The idea of the proof is either you prove directly [MA =0 = A = 0], or you 1. assume MA =0
and A # 0 and you get a contradiction.

1
If we define Ac := (Acy, Acz), AN := (AN, ANy), D? := u(er) Ay ou" (c2) Acy |’ the
2 2
above system can be rewritten as
D2 Ac+ —A\ =0
Ao f" (k) Ak+ [-1,f (E)]AN =0
-1
AcTD?Ac+ —AcTAX =0 (1)
AkXof" (k) Ak+ Ak[-1,f" (K))AXN =0 (2)
T | -1 _

—AN Ac+ AN { (k) ]Ak = (3)
AT D?Ac Y ATAN = —ANTAc Y ANT { f,‘(}f) } Ak 2 Ak [-1, f (k)] AN =

= AkXo f" (k) Ak > 0,

while AcTD2Ac = (Acy)? u” (1) + (Acy)? 6u” (¢1) < 0. since we got a contradiction, M has full
rank.

Therefore, in a neighborhood of the solution we have

-1

u” (1) -1
du” (c2) -1
Dieay (c1,02,k, A1, A2) = — A f" (k) =1 f'(k) Aokt
-1 -1 1
W o

To compute the inverse of the above matrix, we can use the following fact about the inverse of
partitioned matrix (see Goldberger, (1964), page 27:
Let A be an n X n nonsingular matrix partitioned as
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G H
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where En,xnys Fnixngy Gnoxngs Hnoxn, and nq + ng = n. Suppose that £ and D := H —
GE~'F are non singular. Then

ATl =

[ E-'(I+FD'GE™)
~D'GE!

—E-'FD! ]
D1 '

In fact, using Maple, with obviously simplified notation, we get

-1

u; 0 0 -1 0
0 dus 0 0 -1
0 0 Aafa =1 f =
-1 0 -1 0 0
i 0 -1 f1 0 0
i N S I s _ 1 _ Susfi+dafe
uy+ouz fZ+A2 f2 u1+5u22f12+>\2f2 uy+ouz fZ+A2 f2 ur+ouz f2+A2 fo
_ f1 f1 f1 _f ug
u1+duz fE+Xz2 fo u1+dus f2+Xz2 fo u1+duz fE+Xz2 fo 1U1+5u2f12+>\2f2
_ 1 1 I o uq
ur+ouz fZ+A2 f2 ur+ouz fZ+A2 f2 ur+ouz fZ+A2 f2 ur+8us f2+ A2 fo
- §u2f12+)\2f2 7‘]1- uy - uy . Sua fL+A2fo
ur+oug fZ+A2 fo Lui+ous fZ4 s f2 w1 +0us fZ4+Xa fa L +ous f24 20 /2
— 1 _ uitAzfo 1 _ uy
6u2 u1+0us fE+Aa fo u1+0us f2+Xa2 fo 6u2 u1+0us fE+X2 fo 6u2fl uit+ouz ff+X2 f2
Therefore,
i Sua f14+A2 fo Aoak® 4 Sus f1k
u1+ouz f1+A2 f2 u1+0uz f1+Az2 f2
Decl Dacl f s *fl)\zaka_1+k”u1+ka)\2f2
Deco Dgca LuiFous fitrafo u1+5(zlz 1+A2 f2 .
— Ul _ Aoak® Housfik
Dek Dak w1 +0uz f1+A2 fo u1+6u21f1+)\2f2
DXy Dy U Suz f1+Aafo ” Aoak® P dus f1 k™
Do\ D\ LuiFouafit e fa 1w Fouafit e fa
ey N2 ay N2 5u f Ul 6u _f1A2Oék7a71+kQU1+k?aA2f2
L 2/l Fous fitra f2 2 w1 +0us f1+Ma2 f2
Sdua f14+Aafo EUHEC2)]J{/+)T2];/ ” —»
Then Decy = ur+duz fi+Aafa " U”(Cl)-‘riu”(cz)f'-‘r)ff” ==">0
) R _
u ?’U”ch) b2 9
_ 1 ._ ) _ =
Decz = fi ur+ouz fi+Aafa * ==">0

Dk =

 deak® '4ousfik®

uw(cr)+ou"(ca) f+raf”
— + - + + -

-+

N by 1 + 1" /+
Aoak® "+ ou' (ea) f kY

w1 +duz f1+A2 f2

- *u//(cl)+5u//(02)f/+>\2f//’
— + - + 4 =

+ o+ + -+ o+
which has sign equal to sign <)\2aka_1 + ou” (cz)f’k;a> .

b.

—ou

f1
2 ur+ous f2+A2 fo

_ w12 fo
u1+0us f2+X2 fo

(5’11,2

1
ur+ouz fZ+A2 fo

— Ul
5U2f1 u1+oug fZ+A2 fo
—ou

w1+ fo
2 u1+0uz fE+Aa fo

Let’s apply the Implicit Function Theorem to the conditions found in a previous exercise. Writ-

ing them in the usual informal

way we have:

T l Alp w l
D,u—XMp=0 D% Dgl -p =)\
Dy — Mw = 9 chl Dz2 —w _—)\1
—pzr—wl+wl=0 o T -1 -1l w

To apply the IFT, we need to check that the following matrix has full rank

D? D2l

x T

M = Dgl D12
- —w

-p
—w
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2 2 _ 2 _
DeﬁnedD2:—{Dm D””l],q:—[ p],wehaveM:—[_DqT q]
Suppose not then there exists A := (Ay, AX) € (R? x R) \ {0} such that MA =0, i.e.,

D?Ay  —qgAXN =0 (1)
—q" Ay =0 (2

We are going to show

Step 1. Ay # 0; Step 2. Du - Ay = 0; Step 3. It is not the case that Ay” D?Ay < 0.
These results contradict the assumption about wu.

Step 1.

Suppose Ay = 0. Since ¢ > 0, from (1), we get AX = 0, and therefore A = 0, a contradiction.
Step 2.

From the First Order Conditions, we have

Du—Xg=0 (3).

Duly © A1qAy @ 0.

Step 3.

AyTD2Ay 2 AyTear 2o,

Therefore, in a neighborhood of the solution we have
-1

Dg Dil —p —>\1
D(p,wj) (ZL’, l, )\1) = — Dz’l DZQ —Ww _—>\1
-p  —w -1 -1 w

Unfortunately, here we cannot use the formula seen in the Exercise 4 (a) because the Hessian of
the utility function is not necessarily nonsingular. We can invert the matrix using the definition of
inverse. (For the inverse of a partitioned matrix with this characteristics see also Dhrymes, P. J.,
(1978), Mathematics for Econometrics, 2nd edition, Springer-Verlag, New York, NY, Addendum
pages 142-144.

With obvious notation and using Ma;z)le, we get

—1 w _ w _ —dw+pd;
dw d —p d,w?—2dpw+p2d; pd1w272dpw+p2dl dyw?—2dpw—+p3d,;
d dl —w = —p w p? —dzw+dp
drw?—2dpw+p3d; dyw?—2dpw-+p3d; dzw?—2dpw+p2d;
—-p —w 0 B —dw+pd, —dyw+dp —dyd;+d?
dyw?—2dpw—+p3d; dyw?—2dpw-+p3d; dzw?—2dpw+p2d;
Therefore,
Dpw) (@1, M) =
w? _ w _ —dw+pd;
dyw?2—2dpw+p2d,; pdzw272dpw+p2dl dpw2—2dpw+p2d; A1 0 0
_ N w p2 —d.w+dp 0 -\ 0 _
pdmwQ—dew—l—pzdl dyw?—2dpw+p2d; dyw?—2dpw+p3d; M -
. —dw+pd; —dyw+dp —dydy+d? -1 -1 w
dyw?—2dpw+p3d; dzw?—2dpw+p3d; dyw?—2dpw+p3d;
__—w?\ —dw+tpd, __pwAi—ldw+lpd; —dw+pd;
dyw?—2dpw+p3d; d%w2 —2dpw-+p3d; dyw?—2dpw-+p3d; w
_ —pwAi —dzw+dp p A1 —ldyw+ldp —dyw+dp
- d,w?—2dpw+p3d; drw?—2dpw+p3d; T dyw?—2dpw+p2d; w
_ —Mdwt pditdedi—d®>  —MidpwtAidp—ldydi+ld® —dyd;+d?
dyw?—2dpw+p3d; dyw?—2dpw+p3d; dyw?2—2dpw-+p3d; w

_ —pwA; —dyw +dp
T dyw? — 2dpw + p2d;

D,l

p? A1 — ldyw + ldp
Dyl = .
dyw? — 2dpw + p2d;

The sign of these expressions is ambiguous, unless other assumptions are made.
7.

(=]

Since f is concave, then
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Since f is homogenous of degree 1, then

F(3atn) =g @,

Therefore,
flaty) = f@)+fy).

[<]
Since f is homogenous of degree 1, then for any z € R? and any a € R, we have

flaz) =af (2). (20.12)
By assumption, we have that
for any 2,y € B2, f(z+y) > [ (2) + f (3).- (20.13)
Then, for any A € [0,1],

F =Nz ) "2 F =N+ 0w LD (1N F @) +Af ),

as desired.
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