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Abstract

We study information design in global games of regime change. We consider both the case in

which the designer is constrained to disclose the same information to all market participants, as

well as the case in which discriminatory disclosures are possible. In both cases, we show that the

optimal policy has the “perfect coordination property”: it coordinates all market participants on

the same course of action. Importantly, while the optimal policy removes any “strategic uncer-

tainty,” it preserves (and in some cases, it enhances) heterogeneity in “structural uncertainty”.

Under the optimal policy, each agent can perfectly predict the actions of any other agent, but

not the beliefs that rationalize such actions. Preserving heterogeneity in structural uncertainty

is key to minimizing the risk of regime change. When the policy maker is constrained to public

disclosures, the optimal policy takes the form of a simple “pass/fail” test. More generally, it has

a “divide-and-conquer” flavor: It combines a pass/fail public announcement with discriminatory

disclosures that enhance the dispersion of beliefs among market participants about the underlying

economic fundamentals. Lastly, we identify primitive conditions under which the optimal test is

monotone i.e., it fails with certainty institutions with weak fundamentals and passes those with

strong ones.
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1 Introduction

Coordination plays a major role in many socio-economic environments. The damages to society

of mis-coordination can be severe and call for government intervention. Think of a major financial

institution such as MPS (Monte dei Paschi di Siena, the oldest bank on the planet) trying to convince

its creditors to refrain from pulling their money out of the troubled bank in response to rumors about

the size of the bank’s non-performing loans. The bank may be financially sound, but faced with a

large run, it is forced to liquidate most of its long-term investments. A default by a large financial

institution such as MPS, in turn, may trigger a sequence of “domino effects,” leading to a freeze in

credit, a collapse in financial markets, and ultimately a deep recession in the entire Eurozone (The

Economist, July 7, 2017).

Confronted with such prospects, a government has incentives to intervene. However, a gov-

ernment’s ability to calm the market by injecting liquidity into the troubled bank can be limited.

Regulations passed in 2015 prevent Eurozone member states from rescuing banks by purchasing toxic

assets or, more generally, by acting on banks’ balance sheets. In such situations, a government’s last

resort often takes the form of interventions aimed at influencing market beliefs, for example through

the design of stress tests, or other targeted information disclosures. The questions the government

faces are then (a) What type of disclosures minimize the risk of coordination failures? (b) Should all

the information collected through the stress test be passed on to the market, or should the govern-

ment commit to a coarser policy, for example one that simply announces whether or not the bank

under scrutiny passed the test? (c) Should the government be specific about the level or recapital-

ization asked to the bank, or simply announce that the bank needs further recapitalization, leaving

it to the market to figure out the details? (d) Are there benefits from discriminatory disclosures,

whereby different pieces of information are disclosed to different groups of market participants?

In this paper, we develop a framework that permits us to investigate the above questions. We

study the design of optimal information disclosures in markets in which a large number of agents

must choose whether to play a socially desirable action (e.g., roll over their loans), or “speculate”

against a status quo regime (e.g., pull the money out of the troubled bank). Market participants

are endowed with heterogenous private information about relevant economic fundamentals, such as

the size of the bank’s non-performing loans. A cash-constrained policy maker (e.g., a benevolent

government) can act on the agents’ information (for example, by designing a stress test), but does

not possess any other financial instrument to influence the market outcome.

While motivated by the design of stress tests, we abstain from many institutional details, and,

instead, cast the analysis in a broader class of games of regime change that can be used to shed light on

similar questions also in other applications. For example, in the context of currency crises, the policy

maker may represent a central bank attempting to convince speculators to refrain from short-selling

the domestic currency by releasing information about the bank’s reserves and/or about domestic

economic fundamentals. Alternatively, the policy maker may represent the owners of an intellectual
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property, or more broadly the sponsors of an idea, choosing among different certifiers in the attempt

to persuade heterogenous market users (buyers, developers, or other technology adopters) of the

merits of a new product, as in Lerner and Tirole (2006)’s analysis of forum shopping.

The key novelty relative to the rest of the persuasion literature is that we explicitly account for

the role that coordination plays among the receivers.1 Furthermore, the latter are allowed to possess

heterogenous private information prior to receiving additional information from the designer. At the

theoretical level, these properties imply that, to derive the optimal persuasion strategy, one needs to

study the effects of information disclosure not just on the agents’ first-order beliefs, but also on their

higher-order beliefs (that is, the agents’ beliefs about other agents’ beliefs, their beliefs about other

agents’ beliefs about their own beliefs, and so on). Equivalently, the optimal policy must be derived

by accounting for how different information disclosures affect both the agents’ structural uncertainty

(i.e., their beliefs about the underlying fundamentals), as well as the agents’ strategic uncertainty

(i.e., the agents’ beliefs about other agents’ behavior).

The backbone of the analysis is a flexible global game of regime change in which, prior to re-

ceiving information from the policy maker (the information designer), each agent is endowed with

an exogenous private signal about the strength of the regime (the critical size of attack above which

the status quo collapses). In the absence of additional information, such a game admits a unique

rationalizable strategy profile, whereby agents attack if, and only if, they assign sufficiently high

probability to the underlying fundamentals being weak, and whereby regime change occurs only for

sufficiently weak fundamentals.2

We take a “robust approach” to the design of the optimal information structure. We assume

that, when multiple rationalizable strategy profiles are consistent with the disclosed information,

the policy maker expects the agents to play according to the “most aggressive” strategy profile (the

one that minimizes the policy maker’s payoff over the entire set of rationalizable profiles). This is

an important departure from both the mechanism design and the persuasion literature, where the

designer is typically assumed to be able to coordinate the market on her most preferred continuation

equilibrium. Given the type of applications the analysis is meant for, such “robust approach” appears

more appropriate.3

1For models of persuasion with a single receiver, see, among others, Calzolari and Pavan (2006b), Kamenica and

Gentzkow (2011), Bergemann et al. (2015), Kolotilin et al. (2016), Ely (2017), and Mensch (2015). For models with

multiple receivers, see, among others, Calzolari and Pavan (2006b), Bergemann and Morris (2013), Chan et al. (2016),

Alonso and Camara (2015), Bardhi and Guo (2016), Bergemann and Morris (2016), Goldstein and Huang (2016),

Mathevet et al. (2016), Taneva (2016). We refer the reader to Bergemann and Morris (2017) for an excellent overview

of this literature.
2Games of regime change have been used to model, among other things, currency crises, debt crises, political change,

and standards adoption. See, among others, Morris and Shin (2006), Angeletos et al. (2006, 2007), and Angeletos and

Pavan (2013)for earlier references, and Szkup and Trevino (2015), Yang (2015), Denti (2015), and Morris and Yang

(2016), for recent developments.
3If the designer could choose the continuation equilibrium, she would fully disclose the fundamentals, and then

recommend that all agents refrain from attacking, unless the regime is bound to collapse irrespective of the agents’
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Our first result shows that the optimal policy has the “perfect coordination property.” It induces

all market participants to take the same action, despite heterogeneity in the agents’ first- and higher-

order beliefs. In other words, the optimal policy completely removes any strategic uncertainty, while

retaining heterogeneity in structural uncertainty. Under the optimal policy, each agent is able to

perfectly predict the actions of any other agent, but not the beliefs that rationalize such actions. In

particular, an agent who expects all other agents to refrain from attacking need not be able to predict

whether most other agents do so because it is dominant for them not to attack or simply because

they expect others to refrain from attacking. Such residual heterogeneity in structural uncertainty

is key to minimizing the probability of regime change, irrespective of equilibrium selection.

Our second result identifies primitive conditions under which the optimal policy can be imple-

mented by a simple “pass/fail” test that passes with certainty all institutions whose fundamentals

are strong and fails, with certainty, all institutions whose fundamentals are weak. In the context of

stress test design, the government simply announces whether the financial institution under scrutiny

is sound (meaning that default can be avoided if the bank succeeds in raising capital according to a

pre-specified recapitalization plan), without getting into the details of the institution’s balance sheet.

The above results pertain to situations in which the policy maker is constrained to disclose the

same information to all market participants which is empirically the most relevant case. In Section

4, however, we also investigate properties of optimal policies when the designer can disclose different

pieces of information to different market participants. We show that the optimality of the perfect-

coordination property extends to discriminatory policies. To see this note that starting from any

collection of beliefs (formally, from any subset of the universal type space), informing the agents that

the realized state (fundamentals and beliefs) is such that regime change does not occur under the

most aggressive rationalizable strategy profile consistent with the original type space leads to a new

collection of hierarchies of beliefs (formally, a new subset of the universal type space) in which all

agents refrain from attacking under any rationalizable profile. We use the above result to establish

that, starting from any (possibly discriminatory) policy there exists another policy that satisfies the

perfect coordination property and that improves weakly over the designer’s payoff. In general, such

new policy may involve discriminatory disclosures but always coordinates all market participants

on the same course of action. The proof for this result also makes clear that the optimality of

disclosure policies satisfying the perfect coordination property is a general feature of a large class of

supermodular games with binary aggregate outcomes (e.g., games of regime change). In particular,

the result extends to settings in which agents have arbitrary prior beliefs that need not be consistent

with a common prior, as well as to settings with finitely many agents with heterogenous payoffs and

more than two actions.

We also show that, while the optimal policy removes any strategic uncertainty, it may enhance

the dispersion of posterior beliefs about the underlying economic fundamentals among market partic-

ipants. In the case of stress tests, the government may need to combine a public disclosure about the

behavior. This is both uninteresting and unrealistic.
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soundness of the financial institution under scrutiny with targeted disclosures of the bank’s balance

sheet geared to different groups of investors. Importantly, the optimality of discriminatory disclosures

is not a mere consequence of the fact that agents are endowed with heterogenous prior beliefs. It also

holds in settings in which market participants are initially symmetrically informed. The intuition is

similar to the one for the divide-and-conquer strategy in the contracting-with-externalities literature

(e.g., Segal (2003)).4 The policy maker makes it dominant for certain agents not to attack, and then

leverages on such a property by making it iteratively dominant for all other agents to refrain from

attacking.

Discriminatory disclosures, while potentially advantageous, are more difficult to sustain in prac-

tice than their nondiscriminatory counterparts. We then investigate primitive conditions under which

non discriminatory disclosures are optimal. A precise characterization remains elusive. However, pre-

liminary investigations conducted by restricting attention to Gaussian information structures indicate

that whether discriminatory disclosures dominate non-discriminatory ones crucially depends on the

sensitivity of the agents’ payoffs to the underlying fundamentals in case of regime change vis-a-vis

in case the status quo is preserved.

The rest of the paper is organized as follows. Below, we wrap up the introduction by discussing

briefly the most pertinent literature. Section 2 presents the baseline model. Section 3 studies

properties of optimal policies. Section 4 extends the analysis to discriminatory disclosures. Section

5 concludes by discussing venues for future research. Proofs omitted in the text are in the Appendix

at the end of the document.

(Most) pertinent literature. The paper is related to different strands of the literature. The

first strand is the literature on information design. This literature traces back at least to Myerson

(1986), who introduced the idea that, in a persuasion setting, the sender can always restrict attention

to incentive-compatible private recommendations to the agents. More recent developments of this

literature include (Aumann and Maschler, 1995), Calzolari and Pavan (2006a), and Kamenica and

Gentzkow (2011). These papers consider persuasion with a single receiver. The case of multiple

receivers is less studied. Calzolari and Pavan (2006b) consider an auction setting in which the sender

is the initial owner of a good and where the different receivers are bidders in an upstream market

who then resell in a downstream market (see also Dworczak (2016) for the analysis of persuasion in

other mechanism design environments with aftermarkets). Alonso and Camara (2015) and Bardhi

and Guo (2016) consider persuasion in a voting context, whereas Mathevet et al. (2016) and Taneva

(2016) study persuasion in more general multi-receiver settings. Importantly, these papers assume

that the receivers are homogeneously informed (share a common prior) about the underlying payoff-

relevant parameters. Persuasion with ex-ante heterogeneously informed receivers is examined in

Bergemann and Morris (2016, a), Kolotilin et al., 2016, Alonso and Camara (2016) and Chan et al.

4See also Moriya et al. (2017) for an analysis of the benefits of discriminatory disclosures in team-production

problems.
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(2016). Bergemann and Morris (2016, a) characterize the set of outcome distributions that can be

sustained as a Bayesian Nash Equilibrium under arbitrary information structures consistent with a

given common prior. Alonso and Camara (2016) study public persuasion in a context of multiple

receivers with heterogeneous priors. Kolotilin et al., 2016 consider a screening environment whereby

the designer elicits the agents’ private information prior to disclosing further information to them.

Chan et al. (2016) study pivotal persuasion in a voting environment similar to the one in Alonso and

Camara (2015), but where the sender is allowed to communicate privately with the voters.5

The present paper contributes to the persuasion literature by illustrating the benefits of discrim-

inatory disclosures in a coordination environment. However, contrary to the works cited above, the

benefits of private persuasion do not stem from the possibility of tailoring the information disclosed

to each agent to the latter’s prior beliefs, but from the possibility to “divide-and-conquer” the market

by increasing the uncertainty each player faces about other players’ beliefs. The approach we follow

is also different. Instead of focusing on the sender’s most preferred continuation equilibrium, we

adopt a robust-design approach by which the sender expects the rationalizable strategy profile that

is worse for her.

The paper also contributes to the literature on regulatory disclosure in the financial system,

reviewed in Goldstein and Sapra (2014). Close in spirit to the present paper is the work by Goldstein

and Leitner (2015). That paper studies the design of stress tests by a regulator facing a competitive

market, where agents hold homogeneous beliefs about the bank’s balance sheet. In contrast, in

the present paper, we consider the design of stress tests by a policy maker facing a continuum of

investors with heterogenous private beliefs. We also model explicitly the coordination game among

the marker participants. Bouvard et al. (2015) study a setting similar to ours where a policy maker

must choose between transparency (full disclosure) and opacity (no disclosure) but cannot commit

to a disclosure policy. They find that a regulator with an informational advantage relative to the

market, (a) chooses excess financial opacity and (b) induces a non monotonic regime outcome with

respect to the aggregate level of non-performing loans. In contrast, we assume the policy maker

can fully commit to her disclosure policy and allow for flexible information structures. Related is

also Goldstein and Huang (2016). That paper studies persuasion in a coordination setting similar

to ours, but restricts the designer to announcing whether or not the fundamentals fall below a given

threshold. We allow for flexible information structures, but then also identify conditions under which

monotone persuasion is optimal.

The paper is also related to the literature on global games with endogenous information. Angele-

tos et al. (2006), and Angeletos and Pavan (2013) consider settings whereby a policy maker, endowed

with private information, engages in costly actions to influence the agents’ behavior. Edmond (2013)

considers a similar setting but assumes the cost of policy interventions is zero and agents receive

noisy signals of the policy maker’s action. Lastly, Angeletos et al. (2007) consider a dynamic model

5Discriminatory persuasion in a voting setting is also examined in Wang (2015). That paper, however, restricts the

sender to using conditionally i.i.d. signals.
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in which agents learn from the accumulation of private signals over time and from the (possibly

noisy) observation of past outcomes. The key difference relative to these works is that, in the present

paper, we assume the policy maker chooses the disclosure policy prior to observing the underlying

fundamentals and fully commits to it.

2 Model

Players and Actions . The economy is populated by a big player, the policy maker, who seeks to

influence the fate of a regime, and a (measure-one) continuum of atomistic agents, who must choose

whether or not to attack the regime. We index the agents by i and assume they are distributed

uniformly over [0, 1]. We denote by ai = 1 the decision by agent i ∈ [0, 1] to attack, and by ai = 0

the decision by the same agent to not attack. We then denote by A ∈ [0, 1] the aggregate size of the

attack.

Fundamentals. The payoff structure is parameterized by the random variable θ ∈ R. This

variable parametrizes both the strength of the status quo (i.e., the critical size of the aggregate

attack above which the status quo collapses) and the agents’ preferences. We will refer to θ as the

“underlying fundamentals.” It is common knowledge that θ is drawn from an absolutely continuous

distribution F , with a smooth density f strictly positive over R, and first and second moment given

by µθ and σ2
θ , respectively.

Exogenous information. Each agent i ∈ [0, 1] is endowed with a noisy private signal xi

about the underlying fundamentals. Conditional on θ, the signals xi are i.i.d. draws from the cdf

P (x|θ) with associated density p(x|θ) log-supermodular in (x, θ).6 The cross-sectional distribution of

exogenous signals in the population is denoted by φ ∈ R[0,1].

Regime outcome. Let r ∈ {0, 1} denote the regime outcome, with r = 1 in case the status quo

is abandoned, and r = 0 otherwise. Regime change occurs, i.e., r = 1, if, and only if, R(θ,A) < 0,

where R is a continuous function, strictly increasing in θ, and decreasing in A.

Dominance Regions. There exist thresholds θ, θ̄ ∈ R such that R(θ, 0) = R(θ̄, 1) = 0. Ir-

respective of the size of the attack, the status quo thus collapses when θ ≤ θ, and survives when

θ > θ̄.

Payoffs. The policy maker’s payoff is equal to W if R(θ,A) ≥ 0, and to L < W if R(θ,A) < 0,

where L,R ∈ R. The agents’ payoff from attacking is normalized to zero, whereas their payoff from

6Log-supermodularity trivially holds when the signals take the familiar additive form xi = θ+σεi, with {εi}i drawn

independently across agents, and independently from θ, from a log-concave distribution pε with E[ε] = 0.
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not attacking is equal to7

u(θ,A) =

g(θ,A) if R(θ,A) ≥ 0

b(θ,A) if R(θ,A) < 0.

The functions g and b are continuously differentiable and satisfy the following assumptions, for any

(θ,A):8 (a) gθ(θ,A), bθ(θ,A) ≥ 0 and gA(θ,A), bA(θ,A) ≤ 0 ; (b) g(θ,A) > 0 and b(θ,A) < 0. In

the context of stress-test design, the first assumption means that the payoff that a creditor expects

from leaving the money into the bank (weakly) increases with the bank’s size of performing loans

(the fundamentals) and with the number of creditors that also keep pledging to the bank (1 − A).

The second assumption says that leaving the money into the bank yields a payoff higher than taking

the money out from the bank in case default does not occur, whereas the opposite is true in case of

default. These assumptions readily extend to other applications.

Disclosure Policies. The only instrument the policy maker possesses to influence the regime

outcome is the design of a disclosure policy. Let S be a compact metric space defining the set of

possible disclosures to the agents. A disclosure policy Γ = (S, π) consists of a mapping π : Θ→ ∆(S)

specifying, for each fundamental θ, a probability distribution over the information disclosed to the

agents. Note that the formalization here assumes the disclosure policy is non-discriminatory; we

consider discriminatory disclosures in Section 4. As is standard in the literature, the disclosure

policy Γ itself does not convey any information about θ to the agents (in the context of stress test

design the assumption reflects the idea the policy maker does not possess private information about

the financial institution under scrutiny prior to conducting the test). Furthermore, the policy maker

can credibly commit not to modify Γ once the latter is announced.

Timing. The sequence of events is as follows:

1. The policy maker chooses a disclosure policy Γ = (S, π) and publicly announces it.

2. The fundamentals of the economy θ as well as the cross-sectional distribution of exogenous

information φ in the population are realized. Each agent i ∈ [0, 1] then privately observes his

own signal xi.

3. A public signal s ∈ supp[π(θ)] is drawn from the distribution π(θ)∈ ∆(S) and disclosed to all

market participants.

4. Agents simultaneously choose whether or not to attack.

5. The regime outcome is determined by (θ,A) and payoffs are realized.

7In case of currency attacks and political change, it is customary to normalize the payoff from not attacking to

0. That is, to assume the “safe action” is not-attacking. This can be accommodated by letting â = 1 − a and then

interpreting â = 1 (which corresponds to ai = 0) as the decision to attack (the risky action).
8The functions gθ(θ,A), bθ(θ,A) are partial derivatives with respect to the θ dimension. Similarly, gA(θ,A), bA(θ,A)

are partial derivatives with respect to A.
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3 Optimal Policies

In designing her disclosure policy, the policy maker adopts a conservative approach. She evaluates

the performance of any given policy on the basis of the “worse outcome” consistent with the agents

playing (interim correlated) rationalizable strategies. That is, for any given selected policy Γ, the

policy maker expects the market to play according to the “most aggressive rationalizable profile”

defined as follows.

Definition 1. Given any policy Γ, the most aggressive rationalizable profile (MARP) associated with

Γ is the strategy profile aΓ ≡ (aΓ
i )i∈[0,1] that minimizes the policy maker’s ex-ante expected payoff,

among all profiles surviving iterated deletion of interim strictly dominated strategies (henceforth

IDSDS).

As it will become clear in a moment, such strategy profile is, in fact, a Bayes-Nash equilibrium

(BNE) of the continuation game that follows the announcement of Γ, and minimizes the policy

maker’s payoff state-by-state, and not just in expectation.

3.1 Most aggressive rationalizable profile (MARP)

Fix Γ = (S, π) and, for any pair (x, s), let ΛΓ(θ|x, s) represent the endogenous posterior beliefs about

θ of each agent receiving exogenous information x and endogenous information s. Next, let

UΓ(x, s|k) =

∫ ∞
−∞

u(θ, P (k|θ))dΛΓ(θ|x, s),

denote the payoff from not attacking of an agent observing an exogenous private signal x and an

endogenous public signal s, when the rest of the agents follow a cut-off strategy with cut-off k (that

is, they attack if, and only if, their private signal falls short of the cut-off k). We then have the

following result:

Lemma 1. Given any policy Γ = (S, π), the most aggressive rationalizable strategy profile (MARP)

aΓ ≡ (aΓ
i )i∈[0,1] consistent with Γ is such that, for any s ∈ S, x ∈ R, i ∈ [0, 1],

aΓ
i (x, s) = 1{x ≤ ξ∞s }

with

ξ∞s = inf{x : UΓ(x, s|x) ≥ 0}, all s ∈ S.

Moreover, the strategy profile a∗ is a BNE of the continuation game that starts with the announcement

of the policy Γ.

The result follows from the fact that the aggregate size of attack at any (θ, s) is weakly higher

under the strategy profile aΓ ≡ (aΓ
i )i∈[0,1] than under any other (interim correlated) rationalizable

profile. The formal proof in the Appendix combines standard properties of supermodular games with

the fact that, when the densities p(x|θ) are log-supermodular, for any cut-off k, the payoff UΓ(·, s|k)

crosses zero only once and from below in x.
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3.2 Perfect Coordination Property

Equipped with the result in Lemma 1 above, we now proceed to the characterization of properties

of optimal policies.

Definition 2. A policy Γ = {S, π} satisfies the perfect-coordination property if, for any s ∈ S,

there exists rs ∈ {0, 1} such that a∗i (x, s) = rs, any i ∈ [0, 1], any x ∈ R, where a∗ is the most

aggressive rationalizable strategy profile consistent with the policy Γ.

Hence, a disclosure policy has the perfect-coordination property if it induces all market partici-

pants to follow the same course of action, after any signal it discloses.

Theorem 1. Given any policy Γ, there exists another policy Γ∗ = {S∗, π∗}, with S∗ = {0, 1} that

yields the policy maker a payoff weakly higher than Γ. The policy Γ∗ = {S∗, π∗} has the perfect-

coordination property. When signal s∗ = 1 is disclosed, all agents attack, whereas, when signal

s∗ = 0 is disclosed, all agents refrain from attacking, irrespective of their exogenous private informa-

tion.

The result is established in the Appendix by showing that, given any policy Γ, there exists a

binary policy Γ∗ = ({0, 1}, π∗) satisfying the perfect-coordination property that yields the policy

maker a payoff weakly higher than Γ. The proof is in two steps.

Step 1 shows that, starting from Γ, one can construct another policy Γ̂ that, for any θ, discloses

the same information s as the original policy Γ, along with the regime outcome that, under Γ, would

have prevailed at (θ, s), had the agents played according to MARP consistent with the original

policy Γ. Given the new policy Γ̂, under the most aggressive strategy profile consistent with Γ̂, no

agent attacks after receiving signal s and hearing that the underlying state θ is such that, at (θ, s),

under the original policy Γ, regime change would have not occurred under MARP consistent with

Γ. Likewise, under Γ̂, any agent attacks, irrespective of x, after receiving signal s and hearing that,

under Γ, regime change would have occurred, had the agents played according to MARP consistent

with Γ. Note that the policy Γ̂ so constructed satisfies the perfect-coordination property.

The second step then shows that, starting from Γ̂, one can drop the original signals s inherited

from Γ and disclose only the regime outcome that would have prevailed at each θ under MARP

consistent with Γ; dropping the signals s does not change the agents’ behavior. Formally, the proof

establishes existence of a binary policy Γ∗ that satisfies the perfect-coordination property and is such

that (a), for any θ, Γ∗ randomizes over only two signals, s∗ = 0 and s∗ = 1, (b) when signal s∗ = 1 is

disclosed, all agents attack, whereas when signal s∗ = 0 is disclosed, all agents refrain from attacking,

(c) at any θ, Γ∗ discloses signal s∗ = 1 (alternatively, s∗ = 0) with the same total probability the

original policy Γ would have disclosed signals s that, under MARP consistent with Γ, would have

led to regime change (alternatively, to the regime to survive).

The policy Γ∗ thus removes any strategic uncertainty. When the signal s∗ = 0 (alternatively,
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s∗ = 1) is disclosed, each agent knows that all other agents refrain from attacking (alternatively,

attack), irrespective of their exogenous private information, and finds it optimal to do the same.

Importantly, while the policy Γ∗ removes any strategic uncertainty, it preserves heterogeneity in

structural uncertainty. No matter the announcement, different agents holds different beliefs about the

underlying fundamentals. Preserving heterogeneity in posterior beliefs about θ is key to eliminating

the possibility of regime change. In fact, if agents knew the exact fundamentals, under the most

aggressive rationalizable profile, they would all attack for any θ ≤ θ̄. The policy Γ∗ eliminates

the possibility of regime change by leveraging on the fact that, when signal s∗ = 0 is announced,

agents remain uncertain as to whether other agents are refraining from attacking because they find

it dominant to do so, or because they expect others to refrain from attacking. As we show in

Section 4 below, the same property also explains why discriminatory disclosures may dominate non-

discriminatory ones when the primitive heterogeneity in structural beliefs does not minimize the

ex-ante probability of regime change.

The proof of Theorem 1 in the Appendix establishes the result in the theorem for a broader class

of policy maker’s payoffs of the form

UP (θ,A) =

W (θ,A) if R(θ,A) ≥ 0

L(θ) if R(θ,A) < 0,
(1)

with the function W continuously differentiable and satisfying the following properties, for any

(θ,A) ∈ R × [0, 1]: (a) WA(θ,A) ≤ 0; (b) W (θ,A) − L(θ,A) > 0 if R(θ,A) > 0. The first property

says that, conditional on the status quo surviving the attack, the payoff to the policy maker decreases

(weakly) with the size of the aggregate attack. The second property says that the policy maker would

never prefer to see the status quo collapse when it survives.9

In the context of stress test design, the assumption that, in case of regime change, L is invariant

in A means that, when default occurs, the government is indifferent as to the precise degree of

speculation that led the financial institution into bankruptcy. When this is the case, starting from

any policy Γ, one can construct another policy Γ∗ satisfying the perfect coordination property such

that (a), for any θ, the probability of regime change under Γ∗ is the same as under Γ, and (b) when

regime change does not occur, the size of the attack is zero. That Γ∗ improves upon Γ then follows

directly from the fact that L is invariant in A and W decreasing in A. The proof follows from the

same steps establishing Theorem 1 above and hence is omitted.

We conjecture, but did not prove, that the property that L is invariant in A identifies the maximal

domain of payoffs functions for the policy maker over which the perfect coordination property holds.

9This second property trivially holds when the fate of the regime is controlled directly by the policy maker, as in

certain applications.
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3.3 Monotone Disclosures

We now turn to the optimality of simple threshold policies. For any (θ, x), let B(θ, x) ≡ b(θ, P (x|θ))
denote the agents’ payoff from refraining from attacking when regime change occurs, the fundamentals

are θ, and the aggregate size of attack is A(θ, x) = P (x|θ).

Condition 1. The function B(θ, x) is log-supermodular. Furthermore, for any x, the function

Y (θ;x) ≡ ∆P (θ)/[p(x|θ)|B(θ, x)|] is nondecreasing over [θ, θ̂(x)], where θ̂(x) is the regime threshold

when agents follow cut-off strategies with cut-off x (i.e., θ̂(x) solves R(θ̂(x), P (x|θ̂(x))) = 0).

Theorem 2. Suppose (a) the policy maker’s payoff is consistent with the representation in (1) with

the payoff differential ∆P (θ) ≡ W (θ, 0) − L(θ) nondecreasing in θ, and (b) Condition (1) holds.

Given any policy Γ, there exists another policy Γ∗ = ({0, 1}, π∗) satisfying the perfect-coordination

property that yields the policy maker a payoff weakly higher than Γ. The policy Γ∗ = ({0, 1}, π∗) has

a threshold structure: There exists θ∗ ∈ [θ, θ̄] such that, for all θ ≤ θ∗, π∗(1|θ) = 1, whereas, for all

θ > θ∗ , π∗(0|θ) = 1.

That ∆P (θ) is nondecreasing means that the net benefit of moving the economy away from

regime change towards a situation in which no agent attacks is monotone in the fundamentals. This

condition alone implies that, starting from any non-monotone, and possibly stochastic policy, there

exists a deterministic monotone policy that yields the policy maker a higher payoff. In games with

a single receiver sharing the same prior as the policy maker, such condition suffices to guarantee the

optimality of threshold policies. This, however, is not necessarily the case with multiple receivers with

heterogeneous private information. The extra condition in the theorem guarantees the possibility of

constructing perturbations of the original policy by swapping the probability of saving the regime

from low to high states while also preserving the agents’ incentives not to attack when recommended

to do so.

In the context of stress test design, the assumption that ∆P (θ) is non-decreasing means that the

benefit of convincing investors to maintain their money into the bank increases with the size of the

bank’s performing loans, or, more generally, with the value and profitability of the bank’s assets.

Importantly, stronger supermodularity conditions such as those requiring W to be supermodular,

and/or, L to be non-decreasing are not essential to the result.

The monotonicity of the optimal disclosure policy contrasts with the results in the literature on

signaling in global games (see, e.g., among others, Angeletos et al. (2006), Angeletos and Pavan

(2013), and Edmond (2013)). In that literature, intermediate types intervene, whereas the rest pool

on the cost-minimizing level. Because interventions are costly, the policy maker chooses to intervene

only when (a) the benefit of saving the status quo is large enough to compensate for the cost of the

intervention and (b), in the absence of intervention, the size of attack is large enough to make the

policy maker prefer the cost of intervention to the cost of facing a large, but unsuccessful, attack.

Under the conditions of Theorem (2), the choice of the optimal policy reduces to the choice of
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the largest θ∗ such that, for all x ∈ R,∫ ∞
θ∗

u(θ, P (x|θ))p(x|θ)f(θ)dθ > 0.

The above problem does not have a formal solution. Notwithstanding these complications, with

abuse, hereafter, we refer to the threshold policy Γ∗ with cut-off

θ∗ ≡ inf{θ′ :
∫ ∞
θ′

u(θ, P (x|θ))p(x|θ)f(θ)dθ > 0 for all x ∈ R}

as to the optimal monotone policy.10

4 Discriminatory Disclosures

We now turn to situations in which the policy maker can disclose different pieces of information to

different market participants. In this section, we assume the policy maker’s payoff is consistent with

the representation in (1), and Condition (1) holds.

We start by considering a completely unconstrained situation, in which the policy maker can

choose any disclosure policy of her choice, and show that the optimal policy continues to satisfy

the perfect coordination property. We then proceed by discussing the benefits of discriminatory

disclosures. Finally, we turn to situations in which the policy maker can disclose arbitrary public

signals, but is constrained to Gaussian signals when communicating privately with the agents.

In order to show the full generality of the perfect coordination property we generalize the type

space so far considered. Let φ = {φi}i∈[0,1] ∈ Φ denote the agents’ exogeneous belief profile with

φi ∈ ∆(Θ × Φ). That is, φi represents agent i’s beliefs about θ and the beliefs of other agents φ−i.

The state of nature in this environment ω = (θ, φ) ∈ Ω ≡ R × Φ is thus given by the realization of

the fundamentals θ and the exogeneous collection of agents’ beliefs φ. Let m : [0, 1] → S denote a

message function, specifying, for each individual i ∈ [0, 1], the endogenous signal mi ∈ S disclosed

to the individual. Let M(S) denote the set of all possible message functions with range S. A

discriminatory disclosure policy Γ = (S, π) consists of a measurable set S along with a mapping

π : Ω → ∆(M(S)) specifying, for each state ω = (θ, φ), a lottery whose realization yields the

message function used to communicate with the agents.

4.1 On the optimality of the perfect-coordination property

In case of discriminatory disclosures, the definition of the perfect-coordination property is naturally

adjusted as follows.

Definition 3. A discriminatory policy Γ = {S, π} satisfies the perfect-coordination property if,

for any ω = (θ, φ), any message function m ∈ supp(π(ω)), any i, j ∈ [0, 1], aΓ
i (φi,mi) = aΓ

j (φj ,mj),

10That the above problem does not admit a solution was first noticed in Goldstein and Huang (2016).

13



where aΓ ≡ (a∗i )i∈[0,1] is the most aggressive rationalizable profile (MARP) consistent with the policy

Γ.11

Theorem 3. Given any discriminatory policy Γ, there exists another policy Γ∗ satisfying the perfect

coordination property that yields the policy maker an expected payoff weakly higher than Γ.

The proof in the Appendix shares certain similarities with the proof of Theorem 1. Starting from

any disclosure policy Γ, one can construct another policy Γ∗ that, in addition to the signals disclosed

privately to the agents under the original policy Γ, it announces publicly the regime outcome that,

at each (ω,m), would have prevailed, under Γ, when agents play according to MARP consistent

with the original policy Γ. Relative to the case of non-discriminatory policies, the key difficulty is

in establishing the result is that agents’ posterior beliefs with and without the extra public piece of

information described above cannot be easily ranked (e.g., according to FOSD). Furthermore, the

announcement that the regime would have survived under MARP consistent with the original policy

Γ carries information not only about θ, but also about the distribution of first- and higher-order

beliefs in the population. In case of non-discriminatory policies, the cross-sectional distribution of

the agents’ beliefs depends only on θ. This is not necessarily the case under discriminatory policies.

The key property that guarantees the optimality of policies satisfying the perfect coordination

property is the “truncation” of beliefs induced by the new signal structure Γ∗. The announcement

that the state (ω,m) is such that the regime change would not have occurred under MARP consistent

with the original policy Γ makes it common certainty among the agents that the state does not belong

to a subset of the initial state space. In addition, the new policy preserves the likelihood ratio of

any two states (ω,m) and (ω′,m′) for which regime change would not have occurred under MARP

consistent with the original policy Γ. Leveraging on these properties, we show in the Appendix

that at any step in the sequence defining rationalizability, any agent who would have refrained from

attacking under the original policy also refrains from attacking under the new one. The combination

of the fact that the new policy makes it common certainty among the agents that regime change

would not have occurred under the most aggressive rationalizable profile associated with the original

policy together with the fact that agents are weakly less aggressive under the new policy then implies

that the unique rationalizable profile induced by the new policy is such that no agent attacks.

Similarly, the announcement that the underlying state (ω,m) is such that regime change would

have occurred under the original policy Γ makes it common certainty among the agents that θ < θ̄.

Therefore the most aggressive rationalizable profile following such announcement features all agents

attacking. That the new policy Γ∗ improves over the original one then follows from the fact that it

maintains invariant the probability regime change occurs at any θ, while minimizing the size of the

attack for each θ for which regime change does not occur.

11The most aggressive rationalizable profile continues to be defined as the one that minimizes the policy maker’s

ex-ante payoff over all rationalizable strategy profiles. Its characterization, however, is significantly more complex than

in the case of non-discriminatory policies. In particular, Lemma 1 does not extend to discriminatory policies.
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Importantly, note that the result above holds for arbitrary discriminatory policies. Because the

structure of beliefs under such policies is arbitrary, the result implies that the optimality of the

perfect coordination property extends to a fairly general class of supermodular games with binary

outcomes (e.g., regime change games) in which the designer’s payoff is invariant in the size of attack

when regime change occurs. In particular, the result extends to settings in which agents’ prior beliefs

need not be consistent with a common prior, as well as to settings with finitely many agents with

heterogenous payoffs and an arbitrary number of actions.

4.2 On the benefits of discriminatory disclosures

We now show why, in general, discriminatory disclosures improve upon non-discriminatory ones. Im-

portantly, the optimality of discriminatory disclosures does not come from the possibility of tailoring

the information disclosed to each agent to his prior beliefs. To illustrate, consider an economy in

which the agents’ prior beliefs are homogenous (formally, this amounts to assuming the exogenous

private signals x are completely uninformative). Next notice that, for any θ̂ such that∫
u(θ, 1)dF (θ|θ > θ̂) ≤ 0,

the most aggressive rationalizable strategy profile following the public announcement that θ > θ̂ is

such that every agent attacks.12 Hereafter, we follow the same convention as in Subsection 3.3 by

referring to the optimal non-discriminatory policy as to the threshold policy with cut-off given by13

θ̂∗ = inf{θ̂ ∈ R s.t.

∫
u(θ, 1)dF (θ|θ > θ̂) > 0}. (2)

Suppose now the policy maker, in addition to announcing whether θ is above or below some cut-

off threshold θ̂, sends to each individual a private signal of the form mi = θ+σξi, where σ ∈ R+ is a

scalar, and where the idiosyncratic terms (ξi) are drawn from a smooth distribution over the entire

real line (e.g., a standard Normal distribution), independently across agents, and independently from

θ. From standard results in the global games literature, as the private messages become infinitely

precise (formally, as σ → 0), in the absence of any public disclosure, under the most aggressive

rationalizable profile, all agents attack if, and only if, their endogenous private signals fall below a

threshold θMS ∈ (θ, θ̄) that is implicitly defined as the unique solution to14∫ 1

0
u(θMS , l)dl = 0. (3)

12The notation F (θ|θ > θ̂) stands for the common posterior obtained from the prior F by conditioning on the event

that θ > θ̂.
13Recall that, by virtue of Theorem 2, any non-discriminatory policy Γ can be weakly improved upon by a non-

discriminatory policy Γ∗ satisfying the perfect coordination property and with a threshold structure. Hence, hereafter,

when comparing discriminatory policies to non-discriminatory ones, we restrict attention to non-discriminatory policies

satisfying the perfect coordination property and with a threshold structure.
14See Morris and Shin (2006).
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The threshold θMS corresponds to the highest value of the fundamentals θ for which an agent who

knows θ and holds Laplacian beliefs with respect to the size of the attack15 is indifferent between

attacking and not attacking. Importantly, θMS is independent of the initial common prior and of

the distribution of the noise terms ξ in the agents’ signals. The above result thus implies that, with

discriminatory disclosures, the policy maker can always guarantee that regime change never occurs

for any θ > θMS .

Proposition 1. Assume the agents possess no exogenous private information about the underlying

fundamentals. Let θ̂∗ be the threshold in (2) and θMS be the threshold in (3). Assume θMS < θ̂∗.

Then discriminatory policies strictly improve upon non-discriminatory ones.

The result follows directly from the arguments preceding the proposition. Because θ̂∗ can be

arbitrarily close to θ for particular prior distributions, and because θMS is invariant in the prior

distribution from which θ is drawn, the result in Proposition 1 is relevant in many cases of interest.

The reason why discriminatory policies improve upon non-discriminatory ones is that they permit

the policy maker to increase the dispersion in the agents’ first- and higher-order beliefs about the

underlying fundamentals. A higher dispersion in turn makes it difficult for the agents to coordinate

on a successful attack. Formally speaking, when beliefs are sufficiently dispersed, an agent receiv-

ing a private signal indicating that the regime may collapse under a sufficiently large attack may

nonetheless refrain from attacking because he is concerned that many other agents may have received

more extreme signals indicating that the fundamentals are strong enough to survive an attack of any

size. In this case, refraining from attacking may become iteratively dominant for this individual.

The optimality of discriminatory policies thus follows from a “divide-and-conquer” logic reminiscent

to the one in the vertical contracting literature (see, e.g., Segal (2003) and the references therein).

Hence, when discriminatory policies dominate over non-discriminatory ones, this is not because they

mis-coordinate market participants on different actions (recall that the optimal policy satisfies the

perfect-coordination property), but because they increase heterogeneity in structural uncertainty.

4.3 Sufficient Conditions for the Optimality of Non-discriminatory Policies

Despite their advantages, discriminatory policies are more difficult to sustain than their non-discriminatory

counterparts. It is thus important to identify markets in which non-discriminatory policies are opti-

mal. A complete characterization of such markets is elusive at the moment. However, to get some

traction, consider a special environment where the policy maker can engineer any public disclosure

of her choice but is constrained to use Gaussian private signals of the form

m̃i = θ + σξξi, with ξi ∼ N (0, 1)

when communicating privately with the agents. In each state (θ, φ), the endogenous information

mi = (s̃, m̃i) disclosed to each agent i thus comprises a public signal s̃, along with the private signal

15This means that the agent believes that the proportion of agents attacking is uniformly distributed over [0, 1].
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m̃i. The quality of the private signals is conveniently parametrized by the variance σ2
ξ > 0 of the

noise terms.16

Further assume that the prior distribution F from which θ is drawn is an improper prior over

the entire real line and the agents’ exogenous private signals are given by17

xi = θ + σηηi, with ηi ∼ N (0, 1).

Also assume the agents’ payoff from not attacking is invariant in A, which amounts to assuming that

there exist strictly increasing functions ḡ(θ) and b(θ) such that g(θ,A) = ḡ(θ) and b(θ,A) = b̄(θ),

all (θ,A). Finally, assume the function R determining the regime outcome takes the linear form

R(θ,A) = θ −A.18

Now observe that the information contained in each pair (xi, m̃i) is the same as the information

contained in the sufficient statistics

zi ≡
σ2
ξxi + σ2

ηmi

σ2
η + σ2

ξ

, (4)

which, given θ, is normally distributed with mean θ and variance σ2
z ≡

(
σ2
ησ

2
ξ

)
/
(
σ2
η + σ2

ξ

)
. Hence,

the policy maker’s choice of the discriminatory component of her disclosure policy can be conveniently

reduced to the choice of the standard deviation σz of the sufficient statistics zi, with σz ∈ (0, ση].

Arguments analogous to those establishing Lemma 1 above then imply that, for any realization s

of the endogenous public signal, the most aggressive rationalizable strategy profile a∗ is characterized

by a unique cut-off z̄(s) (whose value depends on the distribution from which the public signal is

drawn) such that, for all i ∈ [0, 1], a∗i (xi, (s,mi)) = 1 {zi ≤ z̄(s)}. Moreover, arguments similar to

those establishing Theorem 1 above imply that, for any given choice of σ2
z , the optimal public message

is binary with s ∈ {0, 1}. Finally, from Theorem 3, the optimal policy has the perfect-coordination

property which means that, given σ2
z , z̄(0) = −∞, and z̄(1) = +∞. That is, all agents attack when

s = 1, and they all refrain from attacking when s = 0.

Next, let Φ denotes the cdf of the standard Normal distribution, and define

z∗σz(θ) = θ + σzΦ
−1(θ), (5)

to be the private statistics threshold such that, when all agents attack for zi < z∗σz(θ) and refrain

16As in Section 3, we assume the distribution from which the public signal is drawn is independent of the distribution

φ describing the exogenous private signal xi received by each agent i. This is consistent with the idea that public

disclosures cannot condition on individual private information.
17The assumption that F is improper is standard in the global-game literature. It simplifies the formulas below,

without any serious effect on the results. Note that, given any proper Gaussian distribution F , when the agents’

exogenous signals xi and Gaussian, and the policy maker is constrained to use Gaussian private messages mi when

communicating privately to the market, the policy Γ∗ that maximizes the policy maker’s payoff has a threshold structure.

Under an improper prior, we thus let the optimal policy be the one under which the regime threshold is the lowest.
18The results below extend to more general payoff functions, as long as the agents’ exogenous signals x are sufficiently

precise.
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from attacking for zi > z∗σz(θ), regime change occurs when the fundamentals fall below θ and does

not occur when they are above θ.19

Let

ψ(θ0, θ̂, σz)

denote the payoff from not attacking of an agent with private statistics z∗σz(θ0), when the total

precision of private information is σ−2
z , regime change occurs for all θ ≤ θ0 ∈ [0, 1], and public

information reveals that θ ≥ θ̂. Then let

θinfσz ≡ inf
{
θ̂ : ψ(θ0, θ̂, σz) > 0 all θ0

}
.

Note that, for any θ̂ > θinfσz , under the most aggressive rationalizable strategy profile, no agent attacks

after the public signal reveals that θ ≥ θ̂. Hereafter, we assume that all agents refrain from attacking

also when public disclosures reveal that θ ≥ θinfσz . This simplifies the exposition below by permitting

us to talk about the “optimal policy.” As discussed above, the latter does not formally exist when

agents are expected to play according to the most aggressive rationalizable profile. However, because

the policy maker can always guarantee that, no matter the selection of the rationalizable strategy

profile, no agent attacks for any θ > θinfσz , we find the abuse justified.

Proposition 2. Suppose the policy maker is constrained to use Gaussian private signals when com-

municating privately with the market. Let

σ∗z ≡ argminσz∈(0,ση ]θ
inf
σz

The optimal disclosure policy has the following structure. The policy maker publicly announces

whether θ < θinfσ∗z
, or whether θ ≥ θinfσ∗z

. In addition, when θ ≥ θinfσ∗z
, the policy maker sends a

Gaussian private signal to each agent of precision σ−2
ξ = [σ2

η − (σ∗z)
2]/(σ∗z)

2σ2
η.

The result follows from the arguments preceding the proposition – note that the precision of the

endogenous private information σ−2
ξ in the proposition is the one that, together with the precision of

the exogenous signals σ−2
η yields a total precision σ−2

z for the sufficient statistics zi that minimizes

the threshold θinfσz .

The value of Proposition 2 is in illustrating how one can use this type of results to identify

primitive conditions under which the optimal policy is non-discriminatory. Given the result in

Proposition 2, discriminatory disclosures dominate non-discriminatory ones if, and only if, σ∗z < ση

(equivalently, if, and only if, there exists σz < ση such that θinfσz < θinfση ). For any precision σ−2
z of

the agents’ private statistics, let θ#
σz denote the unique solution to the equation

ψ(θ#
σz , θ

inf
σz , σz) = 0.

19Given that R(θ,A) = θ −A, z∗σz (θ) is implicitly defined by the equation Φ
(
z∗−θ
σz

)
= θ.
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Note that θ#
σz identifies the threshold below which regime change occurs when the total precision of

the agents’ private information is σ−2
z , and the endogenous disclosure of public information reveals

that θ ≥ θinfσz . Let20

D(θ, θ#
σz) ≡

b̄′(θ) if θ < θ#
σz

ḡ′(θ) if θ ≥ θ#
σz .

Proposition 3. Suppose that, for any σz ∈ [0, ση],

E[D(θ, θ#
σz)(θ − θ

#
σz)|z

∗(θ#
σz), θ ≥ θ

inf
σz ] > 0. (6)

Then the optimal policy is non-discriminatory.

The condition in Proposition 3 is a measure of the sensitivity of the marginal agent’s net payoff

from not attacking to the underlying fundamentals.21 To see this, note that the condition is equivalent

to
E[ḡ′(θ)(θ − θ#

σz)|z∗(θ
#
σz), θ ≥ θ

#
σz ]

E[ḡ(θ)|z∗(θ#
σz), θ ≥ θ

#
σz ]

>
E[b̄′(θ)(θ − θ#

σz)|z∗(θ
#
σz), θ ∈ (θinfσz , θ

#
σz)]

E[|̄b(θ)||z∗(θ#
σz), θ ∈ (θinfσz , θ

#
σz)]

.

The left-hand side is the elasticity of the marginal agent’s expected net payoff from attacking with

respect to the underlying fundamentals in case the status quo is preserved, whereas the right-hand

side is the corresponding elasticity in case of regime change. 22

To gather some intuition, consider the case in which, when the regime collapses, the payoff

differential between not attacking and attacking is constant in the underlying fundamentals (i.e.,

b̄′(θ) = 0 for all θ). In this case, the marginal agent faces only upside risk. Hence, when the quality

of private information decreases (which amounts to a mean-preserving increase in risk), the agent’s

expected net payoff from not attacking increases. Starting from any policy that discloses private

information to the agents (i.e., for which σz < ση), the policy maker can then do better by reducing

the precision of the agents’ private information. In this case, the optimal policy is non-discriminatory.

In the context of stress test design, the above condition holds, for example, when investors are

equity holders. In this case, when regime change occurs (i.e., when the bank defaults), their claims are

junior (i.e., subordinated) with respect to those from other stake holders with higher seniority (e.g.,

bond holders). In case of default, their payoff then amounts to a liquidation value that is typically

little sensitive to the exact amount of the bank’s performing loans (the bank’s fundamentals). On the

contrary, when regime change does not occur (i.e., when the government succeeds in persuading the

bank’s equity holders to stay put), the value of the equity-holders’ claims reflect the bank’s long-term

profitability, which is sensitive to the amount of the bank’s performing loans.

20Here b′ and g′ denote the derivatives of the b and g functions, respectively.
21See Iachan and Nenov (2015) for a similar condition in a related class of games of regime change.
22Recall that, for the marginal agent with signal z∗(θ#

ση ), E[ḡ(θ)|z∗(θ#
ση ), θ ≥ θ#

ση ] = E[|b̄(θ)||z∗(θ#
ση ), θ ∈ (θinfση , θ

#
ση )].
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5 Conclusions

The above results thus indicate that, in a large class of games of regime change, the optimal policy

completely removes any strategic uncertainty, while retaining, and, in some cases, enhancing struc-

tural uncertainty (that is, the dispersion of beliefs about the underlying fundamentals). Under the

optimal policy, each agent can perfectly predict the actions of any other agent, but not the beliefs that

rationalize such actions. We also identify situations in which the optimal policy can be implemented

with a simple deterministic test that fails institutions with weak fundamentals and saves those with

strong ones. Finally, we document the benefits of disclosing different information to different market

participants, and discuss instances in which public disclosures are optimal.

We conclude with a few lines for future research. The analysis in this paper presumes that

the designer knows the distribution of market beliefs when choosing her disclosure policy. Such

information may come from polls, data on professional forecasters, the IOWA betting markets,

and the like. While this is a useful benchmark, there are many environments in which it is more

appropriate to assume that the designer lacks information about market beliefs. In future work, it

would be interesting to investigate the optimal disclosure policy in such situations. The idea is to

apply a robust (i.e., undominated max-min) approach to the designer’s problem, whereby the designer

expects (a) Nature to select the information structure that minimizes the planner’s payoff, and (b)

the market to coordinate on the most-aggressive rationalizable strategy profile. The emphasis on

the designer’s policy to be undominated is key here. Given any disclosure policy, the policy maker’s

payoff always attains its minimum when the fundamentals are common knowledge among market

participants. A policy is undominated if there exists no other policy that yields a weakly higher

payoff across all possible market beliefs. The characterization of the set of undominated policies is

highly relevant both from a theoretical standpoint and for the associated policy implications.

The analysis above is also static. However, many of the applications of interest are intrinsically

dynamic, with agents coordinating on multiple attacks over time and learning from past attacks (see

the discussion in Angeletos et al. (2007)). In future work, it would be interesting to extend the

analysis in this direction. When the fundamentals are partially persistent over time, the optimal

policy must specify the timing of information disclosures and how the information at each period

depends on the agents’ behavior in previous periods. Furthermore, an unsuccessful attack in one

period may make the status quo more vulnerable in subsequent periods. There are difficulties in

extending the analysis to dynamic environments, but the returns are worth the effort.

Finally, the analysis in this paper is conducted by assuming that the fundamentals can be observed

by the information designer at no cost. When θ represents information that is private to the financial

institution under scrutiny, such an assumption need not be appropriate. In future work, it would also

be interesting to investigate the problem of a designer who must solicit information from the financial

institution prior to communicating with the market. This creates an interesting screening+persuasion

problem in the spirit of what examined in the literature on privacy in sequential contacting (e.g.,
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Calzolari and Pavan (2006a,b))

Appendix

Proof of Lemma 1. We first establish the following property:

Property 1. Assume the function g(x, θ) with domain R2 and codomain R is log-supermodular in

(x, θ) and the real-valued function h(θ) crosses 0 only once from below. Choose any subset Ω ⊆ R.

Define Ψ(x; Ω) ≡
∫

Ω h(θ)g(x, θ)dθ. Suppose there exists x? such that Ψ(x?; Ω) = 0. Then, necessarily

Ψ(x; Ω) > 0 for all x > x?.

Proof of Property 1. Let θ0 denote the unique solution to h(θ) = 0. Pick any x > x?. Observe

that:

Ψ(x; Ω) =

∫
Ω∩(−∞,θ0)

h(θ)g(x, θ)dθ +

∫
Ω∩(θ0,∞)

h(θ)g(x, θ)dθ

=

∫
Ω∩(−∞,θ0)

h(θ)g(x?, θ)
g(x, θ)

g(x?, θ)
dθ +

∫
Ω∩(θ0,∞)

h(θ)g(x?, θ)
g(x, θ)

g(x?, θ)
dθ

≥ g(x, θ0)

g(x?, θ0)

(∫
Ω∩(−∞,θ0)

h(θ)g(x?, θ)dθ +

∫
Ω∩(θ0,∞)

h(θ)g(x?, θ)dθ

)

=
g(x, θ0)

g(x?, θ0)
Ψ(x?; Ω)

where the inequality follows from the that that g(x,θ)
g(x?,θ) is increasing in θ as a consequence of the fact

that g(x, θ) is log-supermodular. 2

Now fix the policy Γ. For any s ∈ S, then let

ξ1
s ≡ inf{x : UΓ(x, s|∞) ≥ 0}.

Given the public signal s, it is dominant for any agent with private signal x exceeding ξ1
s not to

attack. This follows from the fact that the expected payoff differential
∫
u(θ, 1)dΛΓ(θ|x, s) between

not attacking and attacking crosses 0 only once and from below (in x). The single crossing property

of
∫
u(θ, 1)dΛΓ(θ|x, s) in turn is a consequence of Property 1 above. In fact, for any A ∈ [0, 1],

u(θ,A) crosses 0 only once and from below (in θ), and the density p(x|θ) is log-supermodular.

Next, let T 1
s denote the set of strategy profiles that, given the public signal s, survive the first

round of IDISDS and denote by ā ≡ (ā1
i )i∈[0,1] the most aggressive strategy profile in T 1

s , that is, the

strategy profile in T 1
s that maximizes the ex-ante probability of regime change (clearly, ā depends

not only on s but also on Γ; we drop the dependence on Γ to ease the notation). Then observe that

such a strategy profile is given by

ā1
i (x, s) = 1{x ≤ ξ1

s}, all x ∈ R, all i ∈ [0, 1],
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and that such a profile maximizes the probability of regime change, not just in expectation, but state

by state, i.e., for any θ.

For any n > 1, then let Tns denote the set of strategy profiles that survive n rounds of IDISDS

and ān ≡ (āni )i∈[0,1] the most aggressive strategy profile in Tns (that is, the strategy profile in Tns that

maximizes the ex-ante probability of regime change). That the continuation game is supermodular

implies that there exists a unique sequence {ξns }n such that, for any n ≥ 1,

āni (x, s) = 1{x ≤ ξns }, all x ∈ R, all i ∈ [0, 1],

with ξ1
s as defined above, and with all other cut-offs ξns , n > 1, defined inductively by23

ξns ≡ inf{x : UΓ(x, s|ξn−1
s ) ≥ 0}.

Next, let T∞s ≡ ∩∞n=1T
n
s denote the set of strategy profiles that, given s, are rationalizable for

the agents given the public signal s. The most aggressive strategy profile in T∞s is then given by

ā∞i (x, s) ≡ 1{x ≤ ξ∞s }, all x ∈ R, all i ∈ [0, 1],

where ξ∞s ≡ lim
n→∞

ξns . The sequence (ξns ) is monotone and its limit is given by

ξ∞s = inf{x : UΓ(x, s|x) ≥ 0}.

Now let T∞ denote the entire set of rationalizable strategy profile in the continuation game that

starts with the policy maker’s selection of the policy Γ = (S, π).24 Given the properties above, the

most aggressive strategy profile in T∞ is given:

aΓ
i (x, s) = ā∞i (x, s) = 1{x ≤ ξ∞s }, all i ∈ [0, 1], x ∈ R, s ∈ S.

This establishes the first part of the lemma. That the profile aΓ is a BNE for the continuation game

that starts with the announcement of the policy Γ follows from the fact that, given any s∈ S, when

all agents follow a cut-off strategy with cutoff ξ∞s , each agent i ∈ [0, 1] finds it optimal to attack for

xi < ξ∞s and to not attack for xi > ξ∞s (he is indifferent for xi = ξ∞s ). Q.E.D.

Proof of Theorem 1. As explained in the main text, the proof below establishes the result in

the theorem for a broader class of policy maker’s payoffs consistent with the representation in (1). We

proceed in two steps. Step 1 shows that, starting from Γ, one can construct another policy Γ̂ that, for

any θ, discloses the same information as the original policy Γ, along with the regime outcome that,

under Γ, would have prevailed at θ, when agents play the most aggressive rationalizable strategy

profile consistent with the original policy Γ. The second step then shows that, starting from Γ̂, one

23Again, such a characterization follows from the fact that, at any θ, the payoff differential between not attacking

and attacking is decreasing in the size of the aggregate attack, along with the fact that the density p(x|θ) is log-

supermodular, which implies that if, for some z ∈ R, UΓ(z, s; ξn−1
s ) ≤ 0, then UΓ(x, s; ξn−1

s ) < 0 for any x < z.
24A strategy profile a = (ai(·))i∈[0,1] ∈ T∞ if, and only if, (ai(·, s))i∈[0,1]∈ T∞s , all s ∈ S.
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can drop the original signals s in Γ and disclose only rs ∈ {0, 1}, while preserving the same regime

outcome at each θ.

Step 1. Fix Γ = (S, π). For any θ ∈ R, any public signal s ∈ supp[π(θ)], let r(θ, s; Γ) ∈ {0, 1}
denote the (deterministic) regime outcome that prevails at θ when agents play the most aggressive

rationalizable strategy profile a∗s(·) consistent with the policy Γ (as characterized in Lemma 1). Then

let Γ̂ = (Ŝ, π̂) be the policy constructed from Γ by replacing each signal s disclosed at each state θ,

with the signal ŝ = (s, r(θ, s; Γ)). Note that, for any θ, Γ̂ discloses the signal ŝ = (s, r(θ, s; Γ)) with

the same probability that Γ would have disclosed the signal s. In words, at any θ, the new policy Γ̂

randomizes over the same signals as the original policy Γ, but then amends each signal realization

s by adding to the signal the description of the regime outcome that would have prevailed at (θ, s)

under Γ, when the agents play the most aggressive rationalizable profile aΓ consistent with Γ.

Observe that, for any x ∈ R, any s ∈ S, the posterior belief distribution ΛΓ̂(θ|x, (s, 0)) �FOSD
ΛΓ(θ|x, s), where ΛΓ(θ|x, s) denotes the posterior belief under the original policy Γ, whereas

ΛΓ̂(θ|x, (s, 0))

denotes the posterior belief under the new policy Γ̂. The result follows from Milgrom (82). In fact,

the information in the signal ŝ = (s, 0) is either equivalent to the information in the signal s (this

occurs when {θ : r(θ, s; Γ) = 0} = {θ : π(s|θ) > 0}), or there exists θ̂ > θ such that the extra

information in the signal ŝ = (s, 0) is equivalent to the announcement that θ ≥ θ̂, which is “good

news” in the sense of Milgrom (1982) representation theorems.25

Consider now the set of rationalizable strategy profiles under Γ̂. For any n ≥ 1, any s ∈ S,

let T̂n(s,0) denote the set of strategy profiles surviving n rounds of IDISDS following the announce-

ment of the signal ŝ = (s, 0), and (âni (·, (s, 0))i∈[0,1] denote the most aggressive strategy profile in

T̂n(s,0) (the formal definition of the sets T̂n(s,0) and of the strategy profiles (âni (·, (s, 0))i∈[0,1] is as

in the proof of Lemma 1 above). Let {ξ̂ns }n denote the sequence of thresholds characterizing the

strategy profiles (âni (·, (s, 0))i∈[0,1], as in the proof of Lemma 1. Because, for any x ∈ R, any s ∈ S,

ΛΓ̂(θ|x, (s, 0)) �FOSD ΛΓ(θ|x, s), we have that ξ̂1
(s,0) ≤ ξ

1
s . Now, suppose that ξ̂j(s,0) ≤ ξ

j
s for all j ≤ n.

Recall that this means that, for any j ≤ n, the most aggressive strategy profile (âji (·, (s, 0))i∈[0,1]

surviving j rounds of IDISDS under Γ̂ is less aggressive than the corresponding strategy profile

(̄a
j
i (·, s))i∈[0,1] under Γ. This property, together with the fact that ΛΓ̂(θ|x, (s, 0)) �FOSD ΛΓ(θ|x, s),

implies that, for any x ∈ R for which UΓ(x, s; ξns ) ≥ 0 it is also the case that U Γ̂(x, (s, 0); ξ̂n(s,0)) ≥ 0.

In turn, this implies that ξ̂n+1
(s,0) ≤ ξ

n+1
s . Thus,

ξ̂∞(s,0) ≤ ξ
∞
s . (7)

By the way the policy Γ̂ is constructed, each agent with private signal x ∈ R observing the public

signal ŝ = (s, 0) knows that the underlying state θ is such that, if agents were to follow the most

25Observe that, by virtue of Lemma 1, given any signal s, the regime outcome is monotone under the most aggressive

strategy profile consistent consistent with the original policy Γ.
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aggressive strategy profile under the original policy Γ, then regime change would not occur. By (7),

under the new policy Γ̂, the most aggressive strategy profile following the announcement ŝ = (s, 0)

is less aggressive than under the original policy Γ. By definition of ξ∞s , for any x < ξ∞s ,

U Γ̂(x, (s, 0);x) ≥ U Γ̂(x, (s, 0); ξ∞s ) > 0.

This means that, necessarily, ξ̂∞(s,0) = −∞, meaning that no agent attacks after the signal ŝ = (s, 0)

is disclosed.

It is also easy to see that, given the original policy Γ, for any signal s, the announcement that

the fundamentals θ are such that, under the most aggressive rationalizable profile (āΓ
i (·, s))i∈[0,1],

regime change occurs, makes it common certainty among the agents that θ < θ. It is then easy to

see that, given the new policy Γ̂, under the most aggressive rationalizable profile, all agents attack,

irrespective of their private signals x, after any signal ŝ = (s, 1) is disclosed.

Because, for any θ, the new policy Γ̂ sends each signal (s, r(θ, s; Γ)) with the same probability

the original policy Γ would have sent the signal s, we then have that, under the new policy Γ̂, for

any θ, (a) the probability of regime change under Γ̂ is the same as under Γ. It is then immediate

that the new policy Γ̂ yields the policy maker the same payoff as the original policy Γ.

Step 2. Next, let

S0(θ; Γ̂) ≡ {s ∈ S : π̂((s, 0)|θ) > 0}

denote the set of signals disclosed with positive probability in conjunction with the announcement

of R = 0, under the policy Γ̂ constructed in Step 1, when the fundamentals are θ. Note that, by the

way the policy Γ̂ is constructed, S0(θ; Γ̂) also coincides with the set of signals

{s ∈ S : π(s|θ) > 0 and r(θ, s; Γ) = 0}

disclosed by the original policy Γ with positive probability at θ which, under the most aggressive

rationalizable profile consistent with Γ, would have resulted in no regime change.

Now consider the policy Γ∗ = ({0, 1}, π∗) constructed from the policy Γ̂ = (Ŝ, π̂) by letting

S∗ = {0, 1} and then letting

π∗(0|θ) = π̂
(
S0(θ; Γ̂)|θ

)
.

That is, the policy Γ∗ is a stochastic “pass/fail” policy that, for each θ, randomizes over the regime

outcome and then perfectly informs market participants of whether or not regime change is to

be expected. For each θ, the probability the policy Γ∗ recommends to attack coincides with the

probability the original policy Γ would have selected signals leading to regime change under the

most aggressive strategy profile consistent with Γ.

Next, let S0 ≡ {s ∈ S : ∃θ s.t. s ∈ S0(θ; Γ̂)} denote the set of signals disclosed with positive

probability under the policy Γ̂ at some θ, in conjunction with the announcement of r = 0. Again,

note that, by the way the policy Γ̂ is constructed, S0 also coincides with the set of signals

{s ∈ S : ∃θ s.t. π(s|θ) > 0 and r(θ, s; Γ) = 0}
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disclosed with positive probability at some θ such that, when agents play according to the most

aggressive rationalizable strategy profile consistent with Γ, regime change would not have occurred

at that θ.

Next, observe that, under Γ∗, for any cutoff k, any private signal x, the payoff UΓ∗(x, 0|k) that

any agent with private signal x expects from refraining from attacking after the public signal s∗ = 0

is disclosed, when all other agents follow a cut-off strategy with cut-off k, is equal to

UΓ∗(x, 0|k) =

∫
S0

U Γ̂(x, (s, 0)|k)dQΓ̂(s|x, 0) (8)

where QΓ̂(·|x, 0) is the probability distribution over S0 obtained by conditioning on the event (x, 0),

under the policy Γ̂. From Step 1, under the policy Γ̂, for any signal ŝ = (s, 0) in the range of π̂

(equivalently, for any signal ŝ = (s, 0) with s ∈ S0), the set T̂∞(s,0) of rationalizable strategy profiles

contains only the profile (aΓ
i (·, (s, 0))i∈[0,1] that prescribes

aΓ
i (x, (s, 0)) = 0 all x ∈ R.

This implies that, for all s ∈ S0, all k ∈ R , U Γ̂(k, (s, 0)|k) > 0. From (8), we then have that, for

all all k ∈ R ,

UΓ∗(k, 0|k) > 0.

In turn, this implies, given the policy Γ∗, when the signal s∗ = 0 is disclosed, the unique rationalizable

profile is such that no agent attacks, which implies that aΓ∗
i (x, 0) = 0 all x, all i ∈ [0, 1].

It is also easy to see that, under the most aggressive rationalizable profile consistent with Γ∗,

when the signal disclosed is s∗ = 1, all agents attack. The policy Γ∗ so constructed thus (a) satisfies

the perfect-coordination property, (b) is such that, at any θ, the probability of regime change under

Γ∗ is the same as under Γ̂, and (c), in case of no regime change, the size of attack under Γ∗ is zero.

The statement in the theorem then follows from the above properties. Q.E.D.

Proof of Theorem 2. Without loss of generality, assume the policy Γ = ({0, 1}, π) satisfies the

perfect coordination property and is such that (a) π(0|θ) = 0 for all θ < θ, and (b) π(0|θ) = 1 for all

θ > θ̄. Note that arguments similar to those establishing Theorem 1 above but adapted to the fact

that the policy maker’s payoff satisfies the more general structure in (1) imply that, if Γ does not

satisfy these properties, there exists another policy Γ′ that does satisfy these properties and yields

the policy maker a payoff weakly higher than Γ. The proof then follows from applying the arguments

below to Γ′ instead of Γ.

Clearly, if the original policy Γ = ({0, 1}, π) is such that there exists θ∗ ∈ [θ, θ̄] such that

π(0|θ) = 0 for F -almost all θ ≤ θ∗ and π(0|θ) = 1 for F -almost all θ ≥ θ∗, then the threshold policy

Γ∗ = ({0, 1}, π∗) such that π∗(0|θ) = 0 for all θ ≤ θ∗ and π(0|θ) = 1 for all θ ≥ θ∗ also satisfies the

perfect coordination property and yields the policy maker the same payoff as Γ, in which case the

result holds.
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Suppose, instead, that Γ is such that there exists no θ∗ such that π(0|θ) = 0 for F -almost all

θ ≤ θ∗ and π(0|θ) = 1 for F -almost all θ ≥ θ∗. We then establish the result by showing that there

exist a threshold policy Γ∗ satisfying the perfect coordination property that yields the policy maker’s

a payoff at least as high as Γ.

Now recall that, for the policy Γ to satisfy the perfect coordination property, it must be that

UΓ(x, 0|x) > 0 all x. Now let G denote the set of all policies with range S = {0, 1} that, in addition

to properties (a) and (b) above, satisfy the additional property that UΓ(x, 0|x) ≥ 0, all x. Let

Γ̃ ∈ argmaxΓ′∈GU
P [Γ′] be any policy that maximizes the policy maker’s payoff over the set G. Note

that such a policy need not satisfy the perfect coordination property for, under Γ̃, there may exist

x such that U Γ̃(x, 0|x) = 0. It is also immediate to see that, because the original policy Γ ∈ G, the

policy maker’s payoff under the original policy Γ cannot be greater than under Γ̃.

Below, we first show that, necessarily, under Γ̃ = ({0, 1}, π̃) , there exists θ∗ such that π̃(0|θ) = 0

for F -almost all θ ≤ θ∗ and π̃(0|θ) = 1 for F -almost all θ ≥ θ∗. We then show that the policy maker’s

payoff under Γ̃ can be approximated arbitrarily well by a threshold policy Γ∗ ∈ G that satisfies the

perfect coordination property.

First observe that, under any policy Γ′ ∈ G, the function UΓ′(x, 0|x) is continuous in x. Now let

X ≡
{
x : U Γ̃(x, 0|x) = 0

}
and then denote by

x̄ ≡ supX and x ≡ inf X .

That U Γ̃(x, 0|x) is continuous in x implies that X 6= ∅ for, otherwise, the policy maker could increase

her payoff by increasing π(0|θ) over a set of F -positive measure, thus contradicting the optimality of

Γ̃.

Now suppose that, under Γ̃ , there exists no θ∗ such that π̃(0|θ) = 0 for F -almost all θ ≤ θ∗ and

π̃(0|θ) = 1 for F -almost all θ ≥ θ∗. We then show that there exists another policy in G that strictly

improves upon Γ̃, thus contradicting the assumption that Γ̃ maximizes the policy maker’s payoff over

G.

Let

θ0 ≡ inf{θ : ∃δ > 0 s.t. π̃(0|θ′) > 0 forF -almost all θ′ ∈ [θ, θ + δ)}

and, similarly,

θ1 = sup{θ : ∃δ > 0 s.t. π̃(0|θ′) < 1 forF -almost all θ′ ∈ [θ, θ + δ)}.

That, under Γ̃, there exists no θ∗ with the aforementioned properties implies that θ0 < θ1. Further-

more, [θ0, θ1] ⊂ [θ, θ̄].

First, suppose that θ̂(x̄) < θ1, where, recall that, for any x, θ̂(x) is the regime threshold when

all agents follow a cut-off strategy with cut-off x (i.e., θ̂(x) is the regime threshold such that, when
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agents attack when their signal falls below x and refrain from attacking otherwise, regime change

occurs if, and only if, θ ≤ θ̂(x)).

Consider the policy Γε = ({0, 1}, πε) defined by: (a) πε(θ) = π̃(θ) for all θ /∈ [θ0, θ0 + ε]
⋃

[θ1 −
δ(ε), θ1]; (b) πε(0|θ) = 0 for all θ ∈ [θ0, θ0 + ε], and πε(0|θ) = 1 for all θ ∈ [θ1 − δ(ε), θ1]; (c) δ(ε)

solves ∫ θ0+ε

θ0

π̃(0|θ)dF (θ) =

∫ θ1

θ1−δ(ε)
(1− π̃(0|θ))dF (θ). (9)

Provided ε is small, such a policy exists and θ1 − δ(ε) > θ̂(x̄). Also note that the policy Γε improves

the policy maker’s payoff upon Γ̃. This follows from the fact that the policy Γε preserves the ex-ante

probability the status quo survives, along with the fact that the policy maker’s payoff differential

∆P (θ) is nondecreasing. To establish the result in the theorem it then suffices to show that the

new policy Γε satisfies the perfect coordination property. To see this, let B(θ, x) ≡ b(θ, P (x|θ)) and

G(θ, x) ≡ g(θ, P (x|θ)), and then let

pΓ̃(x, 0) ≡
∫
π̃(0|θ)p(x|θ)dF (θ) and pΓε(x, 0) ≡

∫
πε(0|θ)p(x|θ)dF (θ)

denote the total probability of (x, 0) under Γ̃ and Γε, respectively. Next, observe that, for any

x ≤ θ̂−1(θ0 + ε) (i.e., for any x such that θ̂(x) < θ0 + ε), UΓε(x, 0|x) > 0, whereas for any x ∈
[θ̂−1(θ0 + ε), x̄],

UΓε(x, 0|x)pΓε(x, 0) =

∫ θ̂(x)

θ0+ε
B(θ, x)πε(0|θ)p(x|θ)dF (θ) +

∫ +∞

θ̂(x)
G(θ, x)πε(0|θ)p(x|θ)dF (θ)

>

∫ θ̂(x)

θ0

B(θ, x)π̃(0|θ)p(x|θ)dF (θ) +

∫ +∞

θ̂(x)
G(θ, x)π(0|θ)p(x|θ)dF (θ)

= U Γ̃(x, 0|x)pΓ̃(x, 0)

≥ 0.

The first inequality follows from the fact that, for any θ ∈ [θ0 + ε, θ̂(x)], πε(θ) = π̃(θ), along

with the properties that, for any (θ, x), B(θ, x) < 0 < G(θ, x), and the fact that, for all θ ≥ θ̂(x),

πε(θ) ≥ π̃(θ). Hence, for all x ≤ x̄, UΓε(x, 0|x) > 0. Now recall that, by definition of x̄, U Γ̃(x, 0|x) > 0

for all x > x̄. That UΓε(x, 0|x) is continuous in x, along with the fact that UΓε(x̄, 0|x̄) > 0, then also

implies that, for ε strictly positive, but small enough, UΓε(x, 0|x) > 0 for all x > x̄. The new policy

Γε thus satisfies the perfect coordination property, as claimed above.

Next, suppose that θ̂(x̄) ≥ θ1. Consider the policy Γε = ({0, 1}, πε} defined by the following

properties: (a) πε(θ) = π̃(θ) for all θ /∈ [θ0, θ0 + ε]
⋃

[θ1 − δ(ε), θ1] with θ0 + ε < θ1 − δ(ε); (b)

πε(0|θ) = 0 for all θ ∈ [θ0, θ0 + ε], and πε(0|θ) = 1 for all θ ∈ [θ1 − δ(ε), θ1]; (c) with δ(ε) implicitly

defined by ∫ θ0+ε

θ0

B(θ, x̄)π̃(0|θ)p(x̄|θ)dF (θ) =

∫ θ1

θ1−δ(ε)
B(θ, x̄)(1− π̃(0|θ))p(x̄|θ)dF (θ). (10)
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Note that, for ε strictly positive but small, such policy exists. Also note that property (c) implies

that, under the new policy Γε, the payoff from not attacking of an agent with signal x̄ who expects

all other agents to follow a cut-off strategy with cutoff x̄ is the same as under the original policy Γ.

Formally, UΓε(x̄, 0|x̄) = U Γ̃(x̄, 0|x̄). To see this, recall that, by definition of x̄, U Γ̃(x̄, 0|x̄) = 0, or

equivalently, ∫ θ̂(x̄)

θ0

B(θ, x̄)π̃(0|θ)p(x̄|θ)dF (θ) +

∫ +∞

θ̂(x̄)
G(θ, x̄)π̃(0|θ)p(x̄|θ)dF (θ) = 0.

Condition (10), along with properties (a) and (b) above, imply that∫ θ̂(x̄)

θ0+ε
B(θ,X)πε(0|θ)p(x̄|θ)dF (θ) +

∫ +∞

θ̂(x̄)
G(θ,X)πε(0|θ)p(x̄|θ)dF (θ) = 0.

Because

UΓε(x̄, 0|x̄) =

∫ θ̂(x̄)
θ0+εB(θ, x̄)πε(0|θ)p(x̄|θ)dF (θ) +

∫ +∞
θ̂(x̄)

G(θ, x̄)πε(0|θ)p(x̄|θ)dF (θ)

pΓε(0, x̄)
.

we conclude that UΓε(x̄, 0|x̄) = 0, as claimed.

We now establish that, for ε sufficiently small, under the new policy Γε, UΓε(x, 0|x) > 0 for any

x ∈ X , with x 6= x̄. A necessary and sufficient condition for this to be the case is that, for any such

x,

lim
ε→0+

∂

∂ε
UΓε(x, 0|x) > 0. (11)

Condition (11) holds if, and only if, for any x ∈ X , x 6= x̄,

lim
ε→0+

∂

∂ε

{
UΓε(x, 0|x)pΓε(0, x)

}
> 0. (12)

To see that (12) holds, implicitly differentiate the equation in Condition (10) with respect to ε

and then take the limit as ε→ 0 to observe that

lim
ε→0+

δ′(ε) =
π̃(0|θ0)f(θ0)p(x̄|θ0)|B(θ0, x̄)|

(1− π̃(0|θ1))f(θ1)p(x̄|θ1)|B(θ1, x̄)|
.

Now take first any x ∈ [θ̂−1(θ1), x̄) ∩ X and observe that, for any such x,

UΓε(x, 0|x) =

∫ θ1−δ
θ0+ε B(θ,x)π̃(0|θ)p(x|θ)dF (θ)+

∫ θ1
θ1−δ

B(θ,x)p(x|θ)dF (θ)

pΓε (0,x)

+

∫ θ̂(x)
θ1

B(θ,x)π̃(0|θ)p(x|θ)dF (θ)+
∫ +∞
θ̂(x)

G(θ,x)π̃(0|θ)p(x|θ)dF (θ)

pΓε (0,x)
.

(13)

Now use (13) to observe that, for any x ∈ [θ̂−1(θ1), x̄) ∩ X ,

lim
ε→0+

∂
∂ε

{
UΓε(x, 0|x)pΓε(0, x)

}
= −B(θ0, x)π̃(0|θ0)p(x|θ0)f(θ0)

+B(θ1, x)(1− π̃(0|θ1))p(x|θ1)f(θ1)lim
ε→0

δ′(ε)

= π̃(0|θ0)f(θ0)p(x̄|θ0)|B(θ0, x̄)|
(
p(x|θ0)
p(x̄|θ0)

|B(θ0,x)|
|B(θ0,x̄)| −

p(x|θ1)
p(x̄|θ1)

|B(θ1,x)|
|B(θ1,x̄)|

)
> 0,
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where the inequality follows from the log-supermodularity of p(x|θ) and B(θ, x).

Finally, consider any x ∈ [x, θ̂−1(θ1)] ∩ X . That U Γ̃(x, 0|x) = 0 implies that θ̂(x) > θ0. Hence,

for any x ∈ [x, θ̂−1(θ1)] ∩ X , θ̂(x) > θ0, which means that

UΓε(x, 0|x)pΓε(0, x) = I(θ̂(x) > θ0 + ε)

∫
[θ0+ε,θ̂(x)]

B(θ, x)π̃(0|θ)p(x|θ)dF (θ)

+

∫
[max{θ̂(x),θ0+ε},θ1−δ(ε)]

G(θ, x)π̃(0|θ)p(x|θ)dF (θ) (14)

+

∫ θ1

θ1−δ(ε)
G(θ, x)p(x|θ)dF (θ) +

∫ +∞

θ1

G(θ, x)π̃(0|θ)p(x|θ)dF (θ)

> U Γ̃(x, 0|x)pΓ̃(0, x)

≥ 0, (15)

where I(θ̂(x) > θ0 + ε) is the indicator function, taking value 1 when θ̂(x) > θ0 + ε, and 0 otherwise.

We conclude that, when ε is small, under the new policy Γε, for all x ∈ X , x 6= x̄, UΓε(x, 0|x) > 0.

That, under the same policy, UΓε,θ
s

(x, 0|x) > 0 also for x /∈ X follows from the fact that UΓε(x, 0|x)

is continuous in (x, ε).

From the arguments above, we have that the new policy Γε ∈ G. We now show that, when, in

addition, Condition (1) holds, the new policy strictly improves the policy maker’s expected payoff

relative to Γ̃. To see this, observe that, for any ε ≥ 0, the policy maker’s payoff under the policy Γε

is equal to

UP [Γε] =

∫ θ0+ε

−∞
L(θ)dF (θ) +

∫ θ1

θ1−δ(ε)
W (θ, 0)dF (θ)

+

∫
(θ0+ε,θ1−δ(ε))

⋃
(θ1,+∞)

(π̃(0|θ)W (θ, 0) + (1− π̃(0|θ))L(θ)) dF (θ)

Differentiating UP [Γε] with respect to ε and taking the limit as ε→ 0, we have that:

lim
ε→0+

dUP [Γε]
dε = f(θ1)(1− π̃(0|θ1))∆P (θ1)

(
lim
ε→0

δ′(ε)
)
− f(θ0)π̃(0|θ0)∆P (θ0)

= f(θ0)π̃(0|θ0)
(

∆P (θ1)p(x̄|θ0)|B(θ0,x̄)|
p(x̄|θ1)|B(θ1,x̄)| −∆P (θ0)

)
.

Therefore, a sufficient condition for lim
ε→0+

dUP [Γε]
dε > 0 is that

∆P (θ)

p(X|θ)|B(θ,X)|

is nondecreasing over [θ0, θ1]. Condition (M) guarantees this is the case.

We conclude that, no matter whether, under the original policy Γ̃, θ̂(X) ≥ θ1, or θ̂(X) <

θ1, starting from Γ̃, there exist policies in G that strictly improve upon Γ, which contradicts the

optimality of Γ̃. This means that any policy that maximizes the policy maker’s payoff over G is such
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that there exists θ∗ such that π̃(0|θ) = 0 for F -almost all θ ≤ θ∗ and π̃(0|θ) = 1 for F -almost all

θ ≥ θ∗.
Now recall that the original policy Γ = ({0, 1}, π) is such that there exists no θ∗ such that

π(0|θ) = 0 for F -almost all θ ≤ θ∗ and π(0|θ) = 1 for F -almost all θ ≥ θ∗. This means that any

threshold policy Γ̃ that maximizes the policy maker’s payoff over G yields a payoff strictly higher

than Γ. The result in the theorem then follows from observing that, given Γ̃, there exists a nearby

threshold policy Γ∗ ∈ G with cut-off θ∗∗arbitrarily close θ∗ that satisfies the perfect coordination

property (i.e., such that UΓ∗(x, 0|x) > 0 all x) and that yields the policy maker a payoff arbitrarily

close to that of Γ̃. To see this, it suffices to note that the threshold θ∗ that defines π̃ in Γ̃ is given by

θ∗ ≡ inf{θ′ :
∫ ∞
θ′

u(θ, P (x|θ))p(x|θ)f(θ)dθ > 0 for all x ∈ R}.

The policy maker’s payoff under Γ̃ can then be approximated arbitrarily well by any threshold policy

with cut-off equal to θ∗ + ε. Because any such policy satisfies the perfect coordination policy, we

then have that the result in the theorem holds. Q.E.D.

Proof of Theorem 3. The proof parallels the arguments in Step 1 in the proof of Theorem

1. Take an arbitrary policy Γ = (S, π), and for any ω = (θ, φ) ∈ R× Φ, any message function

m ∈ supp [π(ω)], let r(ω,m; a) ∈ {0, 1} denote the regime outcome that prevails at θ when the

collection of exogenous beliefs is φ, the distribution of endogenous signals is m, and agents play

according to the strategy profile a. Note that, under arbitrary policies, such a profile need not be

monotone in the agents’ exogenous, or endogenous, signals.

For any n ≥ 1, let Tn be the set of strategies surviving n rounds of IDISDS under the original

policy Γ, and āΓ
(n) ≡ (āΓ

(n),i(·))i∈[0,1])∈ Tn the profile in Tn that minimizes the policy maker’s ex-ante

payoff (as in the case of non-discriminatory policies, such a profile also minimizes the policy maker’s

interim payoff, as it will become clear from the arguments below). Hereafter, we refer to this profile as

the most aggressive profile surviving n rounds of IDISDS. The profiles (āΓ
(n))n∈N can be constructed

inductively as follows. The profile āΓ
(0) ≡ (āΓ

(0),i(·))i∈[0,1]) prescribes that agents attack irrespective

of their exogenous and endogenous signals; that is, each āΓ
(0),i(·) is such that āΓ

(0),i(φi, s) = 1, all

(φi, s) ∈ Φ × S.26 With an abuse of notation, for any n ≥ 1, then let UΓ
i ((φi, s); a

n−1) denote the

payoff that each agent i obtains from not attacking, with exogenous beliefs φi and the endogenous

signal s, when all other agents follow the strategy in the profile an−1. The most aggressive strategy

profile surviving n rounds of IDISDS is the one specifying, for each agent i ∈ [0, 1], āΓ
(n),i(φi, s) = 0 if

UΓ
i ((x, s); āΓ

(n−1)) > 0 and āΓ
(n),i(φi, s) = 1 if UΓ

i ((x, s); āΓ
(n−1)) ≤ 0. The most aggressive rationaliz-

able strategy profile (MARP) consistent with the policy Γ is then the profile āΓ = (āΓ
i (·))i∈[0,1])∈ T∞

given by

āΓ
i (·) = āΓ

(∞)(·) ≡ limn→∞ā
Γ
(n),i(·), all i ∈ [0, 1].

26Note that, to ease the notation, we let each individual strategy prescribe an action for all (x, s) ∈ R×S, including

those that are possibly inconsistent with the policy Γ.
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Next, consider the policy Γ+ obtained from the original policy Γ by replacing each message

function m : [0, 1]→ S in the support of each π(ω) with the message function m+ : [0, 1]→ S×{0, 1}
that discloses to each agent i ∈ [0, 1] the same message mi disclosed by the original policy Γ,

along with the regime outcome r(ω,m; āΓ) that would have prevailed at θ when the collection of

exogenousbeliefs is φ, the distribution of endogenous signals is m, and all agents play according to

the most aggressive rationalizable strategy profile (MARP) āΓ consistent with the original policy Γ

(that is, m+
i = (mi, r(ω,m; āΓ))). Note that the new policy Γ+ = (S+, π+) selects, for each ω, the

message function m+ with the same probability as the original policy Γ selects the function m.

Now let Tn+ denote the set of strategies surviving n rounds of IDISDS under the new policy

Γ+, and āΓ+

(n) ≡ (āΓ+

(n),i(·))i∈[0,1]) ∈ Tn+ the profile in Tn+ that minimizes the policy maker’s ex-ante

payoff, where āΓ+

(0) ≡ (āΓ+

(0),i(·))i∈[0,1]) prescribe that all agents attack irrespective of their exogenous

an endogenous signals.

Step 1. First, we prove that

{(φi,mi) : UΓ
i (φi,mi; a) > 0 ∀a : R× S →{0, 1}} ⊆ {(φi,mi) : UΓ+

i (φi, (mi, 0); a) > 0∀a : R× S →{0, 1}}.

To see this, first use the fact that the game is supermodular to observe that, given any policy Γ,

{(φi,mi) : UΓ
i (φi,mi; a) > 0 ∀a : R× S →{0, 1}} = {(φi,mi) : UΓ

i (φi,mi; ā
Γ
(0)) > 0}.

Likewise,

{(φi,mi) : UΓ+

i (φi, (mi, 0); a) > 0 ∀a : R× S →{0, 1}} = {(φi,mi) : UΓ+

i (φi, (mi, 0); āΓ+

(0)) > 0}.

Next, recall that, under āΓ
(0) = āΓ+

(0) , all agents attack regardless of their exogenous and endogenous

information and therefore, under āΓ
(0) = āΓ+

(0) , regime change occurs if, and only if, θ ≤ θ̄.
Take any (φi,mi) ∈ Φ× S such that

UΓ
i ((φi,mi); ā

Γ
(0)) =

∫
(ω,m)

(
b(θ, 1)1{θ≤θ̄} + g(θ, 1)1{θ>θ̄}

)
dΛΓ

i (ω,m|φi,mi) > 0.

Then, note that, under Γ+,

∂ΛΓ+

i (ω,m|φi, (mi, 0)) =
1{r(ω,m;āΓ)=0}

πΓ
i (0|φi,mi)

∂ΛΓ(ω,m|φi,mi) (16)

where

πΓ
i (0|φi,mi) ≡

∫
{ω,m):r(ω,m;āΓ)=0}

dΛΓ(ω,m|φi,mi)

is the total probability assigned by agent i to the event {(ω,m) : r(ω,m; āΓ) = 0} for an agent with

information given by (φi,mi) under Γ and when expecting all agents to play according to the most

aggressive rationalizable profile consistent with Γ. At an intuitive level, the agents’ beliefs under the
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new policy policy Γ+ corresponds to “truncations” of the posteriors beliefs under the original policy

Γ. In turn, this property implies that, given any (φi,mi) ∈ Φ× S such that UΓ
i ((φi,mi); ā

Γ
(0)) > 0,

UΓ+

i (φi, (mi, 0); āΓ+

(0)) =
1

πΓ
i (0|φi,mi)

∫
(ω,m)

(
b(θ, 1)1{θ≤θ̄} + g(θ, 1)1{θ>θ̄}

)
×

×1{r(ω,m;āΓ)=0}dΛΓ
i (ω,m|φi,mi)

>
1

πΓ
i (0|φi,mi)

∫
(ω,m)

(
b(θ, 1)1{θ≤θ̄} + g(θ, 1)1{θ>θ̄}

)
dΛΓ

i (ω,m|φi,mi)

=
1

πΓ
i (0|xi,mi)

UΓ
i ((φi,mi); ā

Γ
(0))

> 0

where the first equality follows from the truncation property introduced above, the first inequality

from the fact that, for all (ω,m) such that r(ω,m; āΓ) = 1,

b(θ, 1)1{θ≤θ̄} + g(θ, 1)1{θ>θ̄} = b(θ, 1) < 0,

the second equality follows from the definition of UΓ
i ((xi,mi); ā

Γ
(0)), and the second inequality from

the assumption that UΓ
i ((xi,mi); ā

Γ
(0)) > 0.

This means that, any an agent for whom not attacking is dominant under Γ, continue to find it

dominant not to attack after observing (φi, (mi, 0)) under Γ+.

Step 2. Next, take any n > 0. Assume that, for any 0 ≤ k ≤ n− 1, any i ∈ [0, 1],

{(φi,mi) : UΓ
i (φi,mi; a) > 0 ∀a ∈ T k} ⊆ {(φi,mi) : UΓ+

i (φi, (mi, 0); a) > 0, ∀a ∈ T k+}. (17)

Recall that this means that any agent who finds it optimal not to attack when his opponents play

any strategy surviving k rounds of IDISDS under Γ continues to find it optimal not to attack when

expecting his opponents to play any strategy surviving k rounds of IDISDS under Γ+. Below we

show that that the same property extends to strategies surviving n rounds of IDISDS. That is,

{(φi,mi) : UΓ
i (φi,mi; a) > 0 ∀a ∈ Tn} ⊆ {(φi,mi) : UΓ+

i (φi, (mi, 0); a) > 0, ∀a ∈ Tn+}. (18)

To see this, use again the fact that the game is supermodular, to observe that

{(φi,mi) : UΓ
i (φi,mi; a) > 0 ∀a ∈ Tn} = {(φi,mi) : UΓ

i (φi,mi; ā
Γ
(n)) > 0}

and, likewise,

{(φi,mi) : UΓ+

i (φi, (mi, 0); a) > 0, ∀a ∈ Tn+} = {(φi,mi) : UΓ+

i (φi,mi; ā
Γ+

(n)) > 0},

where recall that āΓ
(n) (alternatively, āΓ+

(n)) is the most aggressive profile surviving n rounds of IDSIDS

under Γ (alternatively, Γ+).

32



Now let A(ω,m; a) and r(ω,m; a) denote, respectively, the aggregate size of attack and the regime

outcome that prevail at (ω,m) when agents play according to a. Then take any i∈ [0, 1] and any

(φi,mi) ∈ Φ× S such that

UΓ
i ((φi,mi); ā

Γ
(n)) =

∫
(ω,m)

u(θ,A(ω,m; āΓ
(n)))dΛΓ

i (ω,m|φi,mi) > 0.

Because āΓ
(n) is more aggressive than āΓ, for all (ω,m),

r(ω,m; āΓ) = 1⇒ r(ω,m; āΓ
(n)) = 1.

This implies that ∫
(ω,m)

u(θ,A(ω,m; āΓ
(n)))1{r(ω,m;āΓ)=1}dΛΓ

i (ω,m|φi,mi) =∫
(ω,m)

b(θ,A(ω,m; āΓ
(n)))1{r(ω,m;āΓ)=1}dΛΓ

i (ω,m|φi,mi) < 0. (19)

This observation, together with the truncation property in (16), imply that

UΓ+

i (φi, (mi, 0); āΓ
(n)) =

∫
(ω,m)

u(θ,A(ω,m; āΓ
(n)))dΛΓ+

i (ω,m|φi,mi) (20)

=
1

πΓ
i (0|φi,mi)

∫
(ω,m)

u(θ,A(ω,m; āΓ
(n)))1{r(ω,m;āΓ

(n)
)=0}dΛΓ

i (ω,m|φi,mi)

>
1

πΓ
i (0|φi,mi)

∫
(ω,m)

u(θ,A(ω,m; āΓ
(n)))dΛΓ

i (ω,m|φi,mi)

=
1

πΓ
i (0|φi,mi)

UΓ
i ((φi,mi); ā

Γ
(n))

> 0,

where the first and third equalities are by definition, the second equality follows from (16), the first

inequality follows from (19), and the last inequality is by assumption.

Next, note that āΓ
(n) and āΓ+

(n) are such that, for all i ∈ [0, 1], all (φi,mi) ∈ Φ×S, āΓ
(n),i(φi,mi), ā

Γ+

(n),i(φi,mi) ∈
{0, 1} and

{(φi,mi) : āΓ
(n),i(φi,mi) = 0} = {(φi,mi) : UΓ

i (φi,mi; ā
Γ
(n−1)) > 0}

and

{(φi,mi) : āΓ+

(n),i(φi,mi) = 0} = {(φi,mi) : UΓ+

i (φi,mi; ā
Γ+

(n−1)) > 0}.

The result in Step 1, along with (17), thus imply that āΓ
(n−1) and āΓ+

(n−1) are thus such that, for

all i ∈ [0, 1], all (φi,mi) ∈ Φ× S,

āΓ
(n−1),i(φi,mi) = 0⇒ āΓ+

(n−1),i(φi,mi) = 0. (21)

Condition (21), along with the fact that the game is supermodular, implies that

UΓ+

i (φi, (mi, 0); āΓ
(n)) > 0⇒ UΓ+

i (φi, (mi, 0); āΓ+

(n)) > 0. (22)
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Together (20) and (22) imply the property in (18).

Step 3. Equipped with the results in steps 1 and 2 above, we now prove that, for all i ∈ [0, 1],

all (φi,mi) ∈ Φ× S,

āΓ+

i (φi, (mi, 0)) ≡ lim
n→∞

āΓ+

(n),i(φi, (mi, 0)) = 0.

This follows directly from the fact that, for all i ∈ [0, 1], all (xi,mi) ∈ R× S,

āΓ
i (φi,mi) = 0⇒ āΓ+

i (φi, (mi, 0)) = 0. (23)

which, in turn implies that, for any (ω,m),

r(ω,m; āΓ) = 0⇒ r(ω,m; āΓ+
) = 0.

The announcement that r = 0 thus reveals to the agent that (ω,m) is such that r(ω,m; āΓ+
) = 0.

Because the payoff from refraining from attacking is strictly positive when the regime survives, any

agent i receiving a signal (mi, 0) thus necessarily refrains from attacking. Under the new signal

structure Γ+, all agents thus refrain from attacking, regardless of their exogenous and endogenous

private signals, when they learn that r = 0. That they all attack when they learn that r = 1 follows

from the fact that r = 1 makes it common certainty that θ ≤ θ̄.
We conclude that the new policy Γ+ satisfies the perfect coordination property. That such a

policy improves upon the original policy Γ follows from the fact that, for any ω, the probability of

regime change under Γ+ is the same as under Γ, but, in case the status quo survives, the aggregate

attack is smaller under Γ+ than under Γ. Q.E.D.

Proof of Proposition 3. We establish the result by showing that, when Condition (6) holds,

for any fixed θ̂, the function Ψ(θ̂, σz) ≡ minθ0ψ(θ0, θ̂, σz) is increasing in σz. Moreover, in this

case, the regime threshold in the absence of any public disclosure, θ∗σz , is decreasing in σz, and

limσz→0+ θ
∗
σz = θMS .

To ease the notation, let σ = σz. By the envelope theorem, we have that

Ψσ(θ̂, σ) = ψσ(θ̄σ, θ̂, σ),

where recall that θ̄σ = arg minθ0 ψ(θ0, θ̂, σ).

Note that, for any θ0 > θ̂, any σ,

ψσ(θ0, θ̂, σ) =
∂

∂σ

∫ ∞
θ̂

(
b̄(θ)1θ<θ0 + ḡ(θ)1θ≥θ0

) φ
(
z∗σ(θ0)−θ

σ

)
σΦ
(
z∗σ(θ0)−θ̂

σ

)dθ

=
∂

∂σ

∫ Φ

(
z∗σ(θ0)−θ̂

σ

)
0

(
b̄(z∗σ(θ0)− σΦ−1(A))1A>θ0 + ḡ(z∗σ(θ0)− σΦ−1(A))1A≤θ0

)
dA

Φ
(
z∗σ(θ0)−θ̂

σ

)

=

∫ Φ

(
z∗σ(θ0)−θ̂

σ

)
0

(
b̄′(z∗σ(θ0)− σΦ−1(A))1A>θ0 + ḡ′(z∗σ(θ0)− σΦ−1(A))1A≤θ0

)
(Φ−1(θ0)− Φ−1(A))dA

Φ
(
z∗σ(θ0)−θ̂

σ

)
+

(ψ(θ0, θ̂, σ)− b(θ̂))φ
(
z∗σ(θ0)−θ̂

σ

)
(θ0 − θ̂)

σ2Φ
(
z∗σ(θ0)−θ̂

σ

)
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where the second equality follows from the change of variables A = Φ
(
z∗σ(θ0)−θ

σ

)
and the third

equality from recalling that z∗σ(θ) = θ + σΦ−1(θ). Lastly, by reverting the change of variables we

have:

ψσ(θ0, θ̂, σ) =

∫∞
θ̂ D(θ, θ0)(θ − θ0)φ

(
z∗σ(θ0)−θ

σ

)
dθ + (ψ(θ0, θ̂, σ)− b(θ̂))φ

(
z∗σ(θ0)−θ̂

σ

)(
θ0 − θ̂

)
σ2Φ

(
z∗σ(θ0)−θ̂

σ

)
= σ−1E[D(θ, θ0)(θ − θ0)|z∗σ(θ0), θ > θ̂] +

(ψ(θ0, θ̂, σ)− b(θ̂))φ
(
z∗σ(θ0)−θ̂

σ

)(
θ0 − θ̂

)
σ2Φ

(
z∗σ(θ0)−θ̂

σ

) ,

Thus, when evaluated at θ̂ = θinfσ and at θ0 = θ#
σ , the above expression becomes

ψσ(θ#
σ , θ

inf
σ , σ) = σ−1E[D(θ, θ#

σ )(θ − θ#
σ )|z∗σ(θ#

σ ), θ > θinfσ }+
|b(θinfσ )|φ

(
z∗σ(θ#

σ )−θinfσ

σ

)(
θ#
σ − θinfσ

)
σ2Φ

(
z∗σ(θ#

σ )−θinfσ

σ

) .

(24)

It is now easy to see that Condition (6) implies that ψσ(θ#
σ , θ

inf
σ , σ) > 0.

The above property implies that, for fixed θinfσz , an increase in σz increases Ψσz(θ
inf
σz , σz). Fur-

thermore, because the threshold θ#
σz solves ψ(θ#

σz , θ
inf
σz , σz) = 0, we have that, by increasing σz while

keeping θinfσz fixed, the policy maker guarantees that, for any θ > θinfσz , ψ(θ, θinfσz , σz) > 0. That

θinfσz is decreasing in then follows from the fact that, for any σz, any θ > θ̂, ψ(θ, θ̂, σz) is strictly

increasing in θ̂ (this property follows from Lemma 2 in Angeletos et al. (2007)). Starting from any

discriminatory policy, a reduction in the precision of the agents’ private information (i.e., an increase

in σz) lowers the fundamental threshold θinfσz below which regime change occurs, thus improving the

policy maker’s payoff. Q.E.D.
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