
Programming with MATLAB

Clodomiro Ferreira Aleksei Netsunajev

EUI

February 10, 2011

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 1 / 75

Preliminaries (I)

MATLAB knowledge we assume: very basic - basic
operations and matrix manipulation, feeling confortable with the
main MATLAB windows...

Objective of the tutorial: Allowing you to feel confortable
when solving computational and numerical problems in MATLAB

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 2 / 75

Preliminaries (II)

Levels of programming:
Mathematica / Maple
MATLAB /Gauss
Fortran / C++

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 3 / 75

Tentative Outline

1 Before we begin

2 M-files, Scripts and Functions

3 Control of Flow: if, for, while, ...

4 Programming: general issues

5 Graphics in MATLAB

6 MATLAB Help

7 Applications
Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 4 / 75

Working environment

Command Window
Command History
Workspace
Current Directory

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 6 / 75

Working environment

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 7 / 75

Variables in MATLAB: Matrices or Arrays

(Most) objects you define are understood as n-dimensional
arrays by MATLAB
You do need to: define a name for the object.
You dont need to: define the dimensions of the object.
Example: write in the command window

a = 3

MATLAB creates a 1x1 array named a. Check: write

size(a)

Tip: use the function size(·)!

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 9 / 75

Defining Matrices explicitly
More...

M = [1, 2; 3, 4; 5, 6] is a 3x2 matrix

M =
1 2
3 4
5 6

M = [low : step : high] creates a row vector with first element
low, last element high and distance between elements step
M = linspace(0,1,5) creates a row vector with 5 elements

M = (0, 0.25, 0.5, 0.75, 1)

Remember: use the semi-colon ";" after a command in order
to tell MATLAB not to show output on the Command window.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 10 / 75

Accessing sections of a Matrix

More...

M =
1 2
3 4
5 6

Accessing element (i , j): M (i , j). Type

b = M (1, 2)

b = 2
Accessing row i : M (i , :)
Accessing a particular range: M (i1 : i2, j1 : j2)

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 11 / 75

Useful Matrices and operations
More...

N1 × N2 matrix of ones: ones(N1,N2)
N1 × N2 matrix of zeros: zeros(N1,N2)
N1 × N2 identity matrix : eye(N1,N2)
If M is an n ×m matrix, many common operations are available
as MATLAB commands: inv(·), det(·), eig(·)

Useful 1: MATLAB allows you to work on an "element by element"
basis. Just add a "dot" n front of the operator:

M.∗M =
1 4
9 16
25 36

Useful 2: Multidimensional arrays. MATLAB allows you to create
arrays with more than two dimensions. For example,
A=zeros(2,2,3) creates a "cube" formed by three 2× 2 arrays.
Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 12 / 75

M-files & Scripts: writing your own programs

Main tool for writing code in MATLAB.
For simple problems, entering your requests at the Matlab
prompt is fast and efficient. However, as the number of
commands increases typing the commands over and over at the
Matlab prompt becomes tedious.
Similar advantages to a .do file in Stata.
All built-in commands (i.e. mean(.), sqrt(.), inv(.), etc) are
.m files.
Two types of .m files:

I Script files: do not take imput or retur/output arguments
I function files: may take imput / return arguments

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 14 / 75

M-files & Scripts: writing your own programs

In order to create and run an .m file, you need to:
I File→New →M-file. File with a .m extension.
I Give it a name. Be sure the name is not an existing function!!

>‌> help clodo
clodo.m not found.

I Write your program / instructions.
F Inside an .m file, you can "call" other .m files.
F Write comments on your program!

I Save it on the current directory (cd).
I "call it": type on the Command Window clodo (or run clodo)

Variables and output created when running the .m file will be
stored on the Workspace.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 15 / 75

Script File: simple example

This program generates pseudo-random sequence of 0 and 1
clc
clear all
L = 10 ;
x = rand(1,L) ;
y = round(x) ;
z = sum(y,2) ;
y
z

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 17 / 75

Script File: simple example

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 18 / 75

Built-in & own Functions

Functions: .m files that can accept imput arguments and
return output arguments.

I Built-in: functions already existing in MATLAB. Example:
inv(.), regress(.), plot(.), etc.

I Own functions: functions created by you

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 20 / 75

Built-in function: regress

Type help regress

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 21 / 75

Built-in function: regress

Two things to note: More useful functions...

1 Imput arguments (X , y), can have different dimensions
2 A function can have one or more imput arguments (with a

maximum) and one or more output arguments.
1 b=regress(y,X)
2 [b,bint,r,rint,stats]=regress(y,X)

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 22 / 75

Own Functions
Useful when we want to automatize a particular set of operations
which require imput arguments from another set of operations.

General structure:
function f = myfun(x,y, ...)
commands
...
f = expression;

or with more output arguments

function [f1,f2] = myfun(x,y, ...)
commands
...
f1 = expression;
f2 = expression;

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 23 / 75

Own Functions: key features

All function .m files start with the command function
f is the output. Can be replaced by [f,z,w,...], i.e. more than
one outputs
Unless you specify it explicitely (using local and global
commands, variables (and their names) used within the function
are are not stored in the workspace, and are just recognized
inside this function.
Key: You need to save the .m file with the name myfun
After you specified a set of commands, you need to explicitely
specify the output; hence the last line f=...

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 24 / 75

Own Functions: example 1

Lets create a function that evaluates the expression

f (x , y) = x2 + y 3 +

√
x + y
2

function result = funct1 (x , y) imputs: x,y ; output:
result
result = x^2 + y^3 + sqrt(x+y) / 2 ;

Then, if we type in the Command Window (or we call it from
another .m file) funct1(1,2) we get
ans =
9.8660

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 25 / 75

Own Functions: example 1

More remarks:
The name of the imputs, x and y, are only valid within the
function.
Usually, such imputs come fro previous calculations or
parameters defined within a "main" program.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 26 / 75

Control of Flow

MATLAB has four basic decives a programmer can use to
control de flow of commands:

I for loops
I if-else-end constructions
I while loops
I switch-case constructions

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 28 / 75

Repeating with for loops

For loop repeats a group of statements a fixed, predetermined
number of times.

General structure:
for k=array
...
end

Simple example
x=zeros(1,5) row of zeros to store
for n=1:5
x(n)=n^2;
end

x= 1 4 9 16 25
Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 30 / 75

You can nest for loops...

for loops can be nested:
for i=1:4

I for j=1:4
F x(i,j)= i * j ;

I end

end

this will generate the following matrix:

x =

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 31 / 75

... but should avoid nesting whenever possible!!

MATLAB comparative advantage: vectorization and working
with matrices.
Nested loops are much slower than working with vectors
the previous nested loop can be simplified:

i=1:4; row vector 1 2 3 4
x=i ’ * i ; vector multiplication. Careful with dimensions

Also: always predefine the matrix where you want to store

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 32 / 75

Repeating with while loops

This loop is used when the programmer does not know the
number of repetitions a priori

General structure:
d = d0 Initialize variable d
while expression with d
...
d = ... update d
end

Useful for iterations on recursive probems...

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 34 / 75

Repeating with while loops: example

Simple fixed point problem:
x0=0.5; initial value
d=1 ; distance. Will be updated
tol=0.0001 ; tolerance value
while d>tol

x1 = sqrt (x0) ;
d = abs (x1-x0) ; update of distance
x0 = x1

end

x1=0.9999
d=8.4602e-005

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 35 / 75

Repeating with while loops: example

Figure: Fixed point

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 36 / 75

if-else-end constructions

Do some operations if some conditions hold.

General structure:
One alternative
if expression
...
end
More than one alternative
if expression 1
...
elseif expression 2
...
else
...
end

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 38 / 75

Relational and logical operators

Operator Description
Relational

>, < greater / lower than
>=, <= greater / less or equal

== equal
~= not equal

Logical
& and
| or
~ not

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 39 / 75

Example: Simulating a Markov chain w/ 2 states

T=10; no. of periods
P=[0.7,0.3;0.4,0.6]; transition matrix
Y=[0.9,1.1]; possible values of state
u=rand(1,T); draws from a U(0,1)
z=zeros(1,T);
t=1; initialization
z(1)=Y(1); initialization
index0=1; index for current state

while t<T

I if u(t)<P(index0,1)
z(t)=Y(1);
index0=1;
else
z(t)=Y(2);
index0=2;
end

t=t+1;
end

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 40 / 75

Theswitch-case construction

Switch compares the input expression to each case value. Once
the match is found it executes the associated commands.
For most practical cases, it achieves similar results to
if-elseif-else constructions

General structure:
switch expression scalar or string
case value1 executes if expression = value1
commands...
case value2
commands...
...
otherwise
commands
end

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 42 / 75

Control of flow: programming tips

Try to program “inside out”: start with the inner section of your
code, check it produces the desired results, and proceed towards
the “outer” loops. In this way, you keep track of each step and
possible errors.
“Ask” MATLAB to print intermediate results / variable
values. This is a good way to know exactly what is going on
inside your code.
Check the Workspace window: sometimes, either the
dimensions of your matrices are not the ones you though... or
matrices are just empty!!!

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 43 / 75

(Some) "common" error messages

???Error using ==> minus
Matrix dimensions must agree. : Often it is an indexing mistake
that causes the terms to be of different size.
??? Error using ==> mtimes
Inner matrix dimensions must agree.: Note the difference
between this error and the previous one. This error often occurs
because of indexing issues OR because you meant to use
componentwise multiplication but forgot the dot.
Error: Unbalanced or misused parentheses or brackets. : for a
complex expression you have to go through it very carefully to
find your typo.
??? Error using ==>
Too many input arguments. : Input arguments must be in a
format expected by the function. This will be very
function-specific.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 44 / 75

Logical Addressing in MATLAB

You can solve some tricky problems using some logical
addressing.
Two useful functions / operations:

I find(.) finds indices of non-zero elements in an array
I (expression) acts as an indicator function: it takes value = 1

if expression holds

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 45 / 75

Logical Addressing: example

A =
1 1 3
5 9 2
4 4 6

x =rand(1,3) = 0.1576 0.9706 0.9572

1 Find the indices where A>=4: ind1 = find(A >= 4)
ind1 = 2 3 5 6 9

2 Operate over values of x that satisfy certain condition:

z = (x.^2) . ∗ (x > 0.2)

z = (0, 0.9421, 0.9162)

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 46 / 75

Basic commands

Be careful with function sqrt() using matrices. Consider example:

A =

[
2 2
2 2

]
;

B = sqrt(A)

B =

[
1.4142 1.4142
1.4142 1.4142

]
;

B ′ ∗ B =

[
4 4
4 4

]
C = chol(A);

C ′ ∗ C =

[
2 2
2 2

]

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 48 / 75

Programming

A variable is a tag that you assign to a value while that value remains
in memory. You refer to the value using the the tag.

You do not need to type or declare variables.
MATLAB variable names must begin with a letter. MATLAB is
case sensitive, so A and a are two different variables!
Do not name a variable using a reserved names, such as
i , j ,mode, char , size and path.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 49 / 75

Programming. Structures

Structures are multidimensional MATLAB arrays. This is very much
like a database entity. Structures are useful to group variables.

Let structure consist of 3 variables: Student.name, Student.score,
Student.grade. The whole structure could be an input for user-define
function. It is convenient to use the structures when you have a lots
of variables and you use your own functions. You won’t need to pass
all 3 variables to the function, but just the whole structure

See provided example.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 51 / 75

Programming. Local variables

Each MATLAB function has its own variables. These are separate
from those of other functions, and from those of the base workspace,
hence they are called local.They ’live’ only while the function is
running.

Scripts do not have a separate workspace. They store variables in a
workspace that is shared with the caller of the script. When called
from the command line, they share the base workspace. When called
from a function, they share that function’s workspace. If you run a
script that alters a variable that already exists in the workspace, that
variable is overwritten by the script.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 53 / 75

Programming. Global variables

If several functions, and the base workspace, all declare a particular
name as a global variable, then they all share a single copy of that
variable. Any assignment to that variable, in any function, is available
to all the other functions declaring it as global.

Instead of using a global variable, you may want to pass the variable
to other functions as an additional argument. In this way, you make
sure that any shared access to the variable is intentional.

If you have to pass a number of additional variables, you can
conveniently put them into a structure and pass it as one argument.

See provided example.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 54 / 75

Programming. Debugging

Do you think your program is not producing the results that you
expected? Then you can debug your program and see what’s wrong.

The standard debug tool are the breakpoints. Set breakpoints to
pause execution of your program so you can examine values of
variables where you think the problem can be.

After setting breakpoints, run the file

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 56 / 75

Programming. Debugging
Then the Debug menu allows to:

Run Commence execution of file and run until completion or
until a breakpoint is met.

Go Until Cursor Continue execution of file until the line
where the cursor is positioned. Also available on the
context menu.

Step Execute the current line of the file.
Step In Execute the current line of the file and, if the line is a

call to another function, step into that function.
Continue Resume execution of file until completion or until

another breakpoint is encountered.
Step Out After stepping in, run the rest of the called function

or subfunction, leave the called function, and pause.
Exit Debug Mode Exits debug mode.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 57 / 75

2D Plots
There are many tools and ways for creating and editing your plots,
both from the command line and by using the menus of Matlab
(interface in the Figure window). It is possible to export your graph
to nearly all conventional formats (.pcx, .bmp, .jpg, .pdf) via Save As
option.

See provided example on plots and subplots.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 59 / 75

3D Plots
The primary method to create the 3D plot is the surf command which
is used in combination with the meshgrid command. Meshgrid creates
a matrix of (x , y) points over which the surface is to be plotted.

See provided example on 3D plots.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 61 / 75

MATLAB help

Matlab has the very user-friendly and extensive built-in and on-line
help system. To access built-in help

Type help in the Command Window
Press F1
Go to Help menu

Online user’s guide is available at
http://www.mathworks.com/help/techdoc/matlab_product_
page.html

Google the function you need end exploiting the web resourses
available

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 62 / 75

http://www.mathworks.com/help/techdoc/matlab_product_page.html
http://www.mathworks.com/help/techdoc/matlab_product_page.html

Application 1: Bisection Algorithm

We have a consumption saving problem with idiosyncratic
uncertainty (but no aggregate uncertainty), borrowing
constraints and no labor decision. The standard euler equation is
given by

u
′
(ct) = β(1 + r)Et

(
u

′
(ct+1)

)
(1)

and the period budget constraint

ct = stwt + (1 + r)kt − kt+1

Here, given no labor decisions and no aggregate uncertainty, w
(labor wage) and r (net real interest rate) are time invariant. st
is the current labor productivity state.
(1) is usually non-linear. We wish to find the value of kt+1 that,
for given kt,st solves the Euler equation.
To do this, one strategy is using a bisection algorithm

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 64 / 75

Optimization toolbox: FMINCON

FMINCON is the function with the most features hence we base the
example on it. Other optimization functions are less complex and
work in a similar way.
The function is designed to find minimum of constrained nonlinear
multivariate function:

minx f (x)s.t.


c(x) ≤ 0

ceq(x) = 0
Ax ≤ b

Aeq · x = beq
lb ≤ x ≤ ub

where x , b, beq, lb, ub are vectors, A and Aeq are matrices, c(x) and
ceq(x) are functions that return vectors, and f (x) is a function that
returns a scalar.
Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 66 / 75

Optimization toolbox: FMINCON. Examples

Example 1. Find values of x that minimize f (x) = −x1x2x3,
starting at the point x = [10; 10; 10], subject to the constraints:
0 ≤ x1 + 2x2 + 2x3 ≤ 72.

Example 2. Minimize log-likelihood function:

l(B ,Λ2, ..., ,ΛM) = T log det(B) + 1
2

(
B ′−1B−1

T∑
t=1

ξ1t|T ût û′t

)
+

M∑
m=2

[
Tm
2 log det(Λm) + 1

2tr
(

B ′−1Λ−1
m B−1

T∑
t=1

ξmt|T ût û′t

)]
with respect to matrices B ,Λm and taking other parameter as given,

possibly subject to B =

 ∗ 0 0
∗ 0
∗ ∗


and all elements of diag(Λm) are ≥ 0.01.
Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 67 / 75

Optimization toolbox: FSOLVE

The function fsolve is meant to solve system of nonlinear equations

Syntax:
[X , fval] = fsolve(fun, x0, options)
fsolve finds a root (zero) of a system of nonlinear equations.

Example:

Find a matrix x that satisfies the equation xxx =

[
1 2
3 4

]
starting

at the point strt0 =

[
1 1
1 1

]
.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 68 / 75

Defining matrices

Return

Input Output Comments
x = [1 2 3] x = 1 2 3 row vector

x = [1;2;3] x =
1
2
3

column vector

A = [1 2 3; 4 5 6] A =
1 2 3
4 5 6 2 x 3 matrix

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 69 / 75

Accessing matrices

Return

Input Output Comments

A =
[1 2 3;
4 5 6;
7 8 9];

supressed create matrix

A(2,3) ans = 6 element in 2nd row, 3rd col

A(:,3) ans =
3
6
9

3rd col

A(2,:) ans = 4 5 6 2nd row

A(1:2,2:3) ans =
2 3
5 6 block

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 70 / 75

Special matrices

Return

Input Output Comments

x = zeros(2,4) x =
0 0 0 0
0 0 0 0 2x4 matrix of zeros

x = ones(2,3) x =
1 1 1
1 1 1 2x3 matrix of ones

A = eye(3) A =
1 0 0
0 1 0
0 0 1

3x3 identity matrix

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 71 / 75

Useful Built-in functions (I)

error(’error message’): displays error message and abort
function when a certain condition is satisfied
tic: starts a time counter. t = tic assigns the current time to
the variable t
toc: this will display time elapsed since tic was called.
fprint(’abc’): prints text abc on the Command Window
size(.) : rturns matrix / array dimensions
rand(n,m): generates an n ×m matrix of pseudo-random
numbers from a U[0, 1]

sort(X,dim): sorts elements of array X along dimension dim

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 72 / 75

Useful Built-in functions (II)

floor(x): rounds x towards minus infinity
ceil(x): rounds x towards plus infinity
round(x): rounds x towards nearest integer

Let x = [0.2234 , -1.4434 , 5.3789]. Then:
floor(x) = [0 , -2 , 5].
ceil(x) = [1 , -1 , 6].
round(x) = [0 , -1 , 5].

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 73 / 75

(Pseudo-) Random Numbers in MATLAB (I)

Two built-in functions to generate pseudo-random numbers:
1 rand(.); uniformly [0,1] distirbuted pseudo rn.

1 a = rand; generates a scalar-random number
2 A = rand(n,m) generates an nxm matrix of random numbers

2 randn(.); (standard) normally distributed pseudo-rn
3 rand(’state’,0) or randn(’state’,0) useful to repeat a

computation using the same sequence of pseudo- random
numbers.

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 74 / 75

(Pseudo-) Random Numbers in MATLAB (II)

Return

Two alternative ways of generating normally distributed (pseudo) rn:
1 probability integral transform property: if U is distributed

uniformly on (0,1), then Φ−1(U) will have the standard normal
distribution.

2 (approximation) Central Limit Theorem! Generate 12
U ∼ [0, 1] , add them up, and substract 6. (11th order
polynomial approx. to the normal distribution)

Ferreira, C. and A. Netsunajev () MATLAB Tutorial 2011 February 10, 2011 75 / 75

	Before we begin
	Working Environment
	Variable efinition: Matrices

	M-files, Scripts and Functions
	Creating an M-file
	Script
	Built-in and own fuctions

	Control of Flow: if, for, while, ...
	Possible alternatives
	for loops
	while loops
	if-else-end constructions
	switch-case construction

	Programming: general issues
	Variables
	Structures
	Local and Global Variables
	Debugging

	Graphics in MATLAB
	2D
	3D

	MATLAB Help
	Applications
	Bisection AAlgorithm
	Optimization Toolbox

	Appendix

