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Abstract

We provide su¢ cient conditions for the validity of the �rst-order approach for two-period dy-

namic moral hazard problems where the agent can save and borrow secretly. The �rst-order ap-

proach is valid if the following conditions hold: i) the agent has nonincreasing absolute risk aversion

utility (NIARA), ii) the output technology has monotone likelihood ratios (MLR), and iii) the dis-

tribution function of output is log-convex in e¤ort (LCDF). Moreover, under these three conditions,

the optimal contract is monotone in output. We also investigate a few possibilities of relaxing these

requirements.
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1 Introduction

The present paper derives general conditions for the validity of the �rst-order approach (FOA) for two-

period dynamic moral hazard problems where the agent can save and borrow secretly, and characterizes

the optimal contract. We show that the �rst-order approach is valid if the agent has nonincreasing

absolute risk aversion (NIARA) utility, the output technology has monotone likelihood ratios (MLR),

and the distribution function of output is log-convex in e¤ort (LCDF).1

Recently, dynamic principal-agent models became very popular instruments to study several diverse

issues such as design of optimal social insurance schemes (e.g. unemployment insurance, and disability

insurance), bank-�rm �nancing relationships, e¢ cient compensation contracts, and optimal capital

taxation. Most of these models assume that the agent�s consumption-savings decision is observable

(and fully contractable) by the principal. However, it is also well-known that this assumption is

potentially very dangerous, because if the agent is given a hidden (or not contractable) opportunity

to save then he would deviate from the optimal contract by saving (and possibly exerting less e¤ort)

(Rogerson [33]). Therefore, the possibility of hidden asset accumulation will lead to a di¤erent optimal

contract. This problem is also relevant empirically, as in most of the above-mentioned applications,

the contractability and observability of asset accumulation cannot be guaranteed.

The �rst-order approach (FOA) replaces the incentive compatibility constraints of the agent by the

corresponding �rst-order necessary conditions from the agent�s decision problem. Since the seminal

works by Mirrlees [27] and Holmström [21] it became obvious that the study of the moral hazard

models is much easier if one can rely on the FOA. It becomes even more important to simplify the

incentive compatibility constraint in a dynamic environment when the principal faces an additional

information problem because the agent has secret access to the credit market. Among others, Rogerson

[34], Jewitt [23], and Conlon [13] provide conditions for the validity of the FOA for the static principal-

agent model. Their strategy is to show that when facing the optimal contract, the agent�s problem

is concave, hence the �rst-order conditions are actually not only necessary but also su¢ cient for the

optimality of the agent�s decisions. This paper follows a similar strategy for dynamic principal agent

models with hidden savings.

This extension is important, because it is not known under what conditions the FOA can be applied

to principal-agent problems with hidden asset accumulation. In fact, Kocherlakota [25] �nds cases

(linearity of both the e¤ort cost and the e¤ort�s impact on output) where - although the standard

conditions that guarantee the validity of the �rst-order approach in the static model are veri�ed -

the agent�s problem is not concave when he is allowed to enter the credit market. Intuitively, the

1A function is called log-convex if the logarithm of that function is convex. Any log-convex functions is convex, but

not vice versa.
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non-concavity is a consequence of potential bene�ts from jointly decreasing e¤ort and increasing

savings. The necessary �rst-order conditions may not capture these second-order gains. In this paper,

we provide su¢ cient conditions for the two-period model under which these second-order gains are

small enough and therefore the incentive compatibility constraint for the agent�s decisions can be

replaced by its necessary and su¢ cient �rst-order conditions. In particular, we show that, within

the family of non-increasing absolute risk aversion (NIARA) utility functions in consumption, a log-

convex distribution function (LCDF) of output guarantees that the FOA is applicable. This is the

case whenever the optimal consumption scheme is monotone in output, which is in turn guaranteed

by the usual monotone likelihood ratio (MLR) condition together with NIARA utility. We also show

that the log-convexity condition we impose on the probability distribution is essentially identical to a

requirement on the utility function of leisure. In particular, in standard models of labor supply the

requirement would be equivalent to the Frisch elasticity of leisure being less than unity. Our conditions

imply that most of the (additively separable) utility functions and many e¤ort speci�cations used in

applications allow for a �rst-order condition representation of the problem. Further, empirical studies

seem to con�rm both the NIARA and the Frisch elasticity condition.

Intuitively, the link from the NIARA and LCDF conditions to the concavity of the agent�s problem

is as follows. First of all, one can show that NIARA utility is equivalent to log-convex marginal utility

of consumption. It is also immediate that the two variables subject to private information and under

the agent�s control - e¤ort and savings - enter multiplicatively into the objective of the agent, hence the

aforementioned di¢ culties in verifying incentive-compatibility. One can show that - after integrating by

parts the expected utility of the agent - the key function for the concavity of the agent�s problem is the

product of the marginal utility of consumption and the cumulative distribution of output. Moreover,

this product is multiplied by a negative constant. At this point, the concept of log-convexity proves

helpful. In contrast to convexity, log-convexity is not only preserved under summation, but also under

multiplication. Therefore, log-convexity of the agent�s marginal utility of consumption in combination

with log-convexity of the distribution function of output implies that the agent�s problem is jointly

log-convex (and hence convex) in e¤ort and savings when multiplied by a negative constant. Clearly,

this implies that the agent�s problem is jointly concave in his decision variables.

We also derive alternative su¢ cient conditions for the validity of the �rst-order approach. An

important insight of the previous argument is the trade-o¤ between convexity assumptions on the

marginal utility of consumption on the one hand and convexity assumptions on the distribution func-

tion on the other hand. If one of the two functions is more convex than log-linear, then the assumption

on the other function can be weakened. For a large class of utility functions, including CRRA utility,

for example, this allows a relaxation of the LCDF condition. Finally, we show how to relax the LCDF
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condition by exploiting the curvature of the consumption scheme. This allows us to validate the �rst-

order approach for some important cases in which the LCDF property and even Rogerson�s [34] CDF

condition fail.

In the present paper we also provide two main characterization results. First, we show that, as

opposed to hidden information moral hazard models (see Allen [4] and Cole and Kocherlakota [12]),

self-insurance is not optimal in this environment. This result is general in the sense that it does

not even require the validity of the FOA. Second, thanks to the use of the �rst-order approach, we

are able to show that, similarly to the pure moral hazard case with observable assets, under the

standard monotone likelihood ratio condition consumption is monotone increasing in output whenever

preferences are NIARA. In this environment, the NIARA property plays two crucial and interdependent

roles. First, it implies that the marginal utility of consumption is log-convex. Hence, we can apply

the FOA when consumption is monotone in output and our assumption on the distribution function is

satis�ed. Second, given the �rst-order approach, NIARA implies that consumption is monotone when

the MLR condition holds.

In addition to allowing a characterization of the optimal contract, �nding conditions for the validity

of the �rst-order approach is important for a number of other reasons. First, as explained in Ábrahám

and Pavoni [2], Werning [37, 38], and Kocherlakota [25], the �rst-order approach is crucial for being

able to write the problem in a tractable recursive form. Second, it can be shown that whenever the

�rst-order approach is valid the optimal tax on asset holdings takes a simple form. In particular,

imposing linear taxes on savings which are uniform across ex-post shocks is optimal.2

Unfortunately, our analytical results for the two-period model cannot be easily extended to a

framework with more than two periods.3 This paper however constitutes a �rst step toward the

analytical study of this class of dynamic moral hazard models. Pointing out the multiplicative structure

of the agent�s problem and explaining the role played by log-convexity already constitutes an important

insight about the problem. Moreover, we do believe that many important economic insights coming

from the presence of hidden savings into moral hazard problems can be gained by just looking at

two period problems. In fact, our conditions for the applicability of the �rst-order approach in two-

period models already proved to be useful in answering several theoretical and applied questions. For

example, Raith [32] uses an extension of our framework to study dynamic performance measurement

under non-contractible borrowing and lending. Chade [10] applies the FOA to show that, as opposed

to the discrete e¤ort case studied by Chiappori et al. [11] and Park [31], an e¤ort level strictly higher

2This observation is somewhat implicit in Kocherlakota [26], and it has been shown to be true for a wide set of assets

by Gottardi and Pavoni [17]. In the latter, it is also shown that this simple tax system implies a positive (expected) tax

on capital.
3For a numerical veri�cation technique of the FOA in more general problems, see Ábrahám and Pavoni [2].
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than the minimal one can be implemented in the case of no commitment. Bertola and Koeniger [6] use

our environment to study the optimal provision of public insurance when privately provided insurance

schemes are available as well. In Ábrahám, Koehne, and Pavoni [3] we study the progressivity of

the optimal income tax policy in the framework of the present paper. We show that hidden asset

accumulation forces the optimal tax policy to become less progressive (or more regressive). Finally,

we would like to remark that virtually all existing papers that study the moral hazard problem with

hidden asset trade or storage analytically either use very special closed form solutions or use two-period

models.4

To the best of our knowledge, there is only one other paper which studies systematically the issue of

the validity of the �rst-order approach in this class of models. Williams [36] gives su¢ cient conditions

for the validity of the FOA for a large set of continuous time principal-agents models. There are a

number of important di¤erences between our approach and that of Williams that make the two papers

complementary to each other. First, although his conditions are stated for a very large set of models

and for any time horizon, they are not satis�ed in a context where there is a linear return/storage

technology for assets such as assumed here. Second, - as most of the literature with continuous time

models - Williams considers a stochastic production technology with normally distributed shocks (the

Brownian model). We focus on the two-period problem with shocks on a bounded support but allow

for virtually any distribution function and any pattern for the likelihood ratios over the support.5

This dimension of generality might be of importance, especially when one aims at characterizing the

4 In a two-period principal agent relationship, Bizer and DeMarzo [8] show that hidden access to the credit market

reduces total welfare with respect to the no asset market case. They focus on the possibility of increasing welfare by

allowing the entrepreneur to default on the debt. Bisin and Rampini [7] study the e¤ect of bankruptcy provision, in a

two-period model similar to that of Bizer and DeMarzo, where agents have hidden access to insurance contracts and can

default on the principal insurer as well. In addition to no-default, we do not allow agents to secretly trade assets other

than a risk free bond. Chiappori et al. [11] and more recently Park [31] analyze the optimal contract with discrete e¤ort.

They �nd that - under some conditions - a renegotiation-proof contract always implements the minimum level of e¤ort.

We consider a continuous-e¤ort model, where the planner can commit not to renegotiate the contract ex post.

Kocherlakota [25] and Mitchell and Zhang [30] characterize the optimal UI transfer scheme in an in�nite horizon two-

output moral hazard model with hidden savings, where agents�preferences are linear in e¤ort, and e¤ort a¤ects linearly

job-�nding probabilities. Werning [38] solves analytically a similar two-output model with multiplicative separable CARA

utility. In the present paper, we consider a two-period model which allows for both a general class of preferences and a

much more general production technology.
5Schattler and Sung [35] discuss how removing the assumption of Brownian motion in the standard principal-agent

model in continuos time changes the properties of the optimal contract. Schattler and Sung also con�rm the �nding in

Mirrlees [29] and show that for any �discretization�of the continuous time model, the problem with normally distributed

shocks is not well de�ned. In particular, the optimal contract approximates arbitrarily well the �rst best allocation by

imposing extreme punishments and rewards upon events with very small probability.
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pattern of consumption across income levels (e.g., see Ábrahám, Koehne, and Pavoni [3]).

The next section presents the model and derives a minimal condition for optimality. Then we

introduce the �rst-order approach and provide conditions for the concavity of the agent�s problem

in the optimum in Section 3. There we also show that - under the same conditions - the optimal

consumption scheme is monotonically increasing in output. Section 4 discusses extensions, while

Section 5 concludes.

2 Model

Consider a relationship between a risk neutral principal/planner and a risk averse agent that lasts for

two periods: t = 0; 1. The model builds on the typical dynamic moral hazard problem and assumes

that consumption occurs at the beginning of each period (together with the e¤ort decision).6

Preferences The agent derives utility from consumption ct � c � �1 and e¤ort 1 � �e �
et � 0 according to: u(ct) � v(et); where both u and v are strictly increasing and twice continuously
di¤erentiable functions, and u is strictly concave whereas v is convex. We normalize v(0) = 0. The

agent�s discount factor will be denoted by � > 0:

Production and endowments At date t = 0; the agent has a �xed endowment y0: At date

t = 1; there are N possible output levels Y := fy1; :::; yNg with yi < yi+1. Since our leading example
is social insurance, we adopt the convention that output accrues to the agent. The realization yi 2 Y
is publicly observable, while the probability distribution over Y is a¤ected by the agent�s unobservable

e¤ort level e0 that is exerted at t = 0. The conditional probabilities are de�ned by the smooth

functions:7 pi(e0) := Pr fy = yi j e0g : As in most of the the optimal contracting literature, we assume
full support, that is pi(e0) > 0 for all i = 1; :::; N; and all e0: There is no production or any other

action at t � 2:

Markets At each date, the agent can buy or (short)-sell a risk-free bond bt which costs q � 0

consumption units today and pays one unit of consumption tomorrow. The agent has no access to

any other insurance market other than that delivered by the planner (exclusivity). We assume that

asset decisions and consumption levels are private information to the agent.

6This timing is very common, for example, in the optimal unemployment insurance literature (e.g., Hopenhayn and

Nicolini [22]).
7 In particular, we require the function p : E ! �N to be continuous and continuously di¤erentiable. Here,

�N :=
�
x 2 RN j x � 0 and

P
i xi = 1

	
.
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Given the structure of the problem, the agent will never be able to borrow at t = 1, hence we

have b1 � 0: Monotonicity of preferences guarantees that the agent will not want to leave any positive
amount of assets at date 1 either. So, b1 = 0 for all states i. Similarly, since v is strictly increasing,

e1 = 0 for all states i:

Contracts A contract W := (� ;�) speci�es a transfer scheme � :=
�
�0; f� igNi=1

�
, where �0 and

� i represent the transfers the individual receives in period t = 0 and in period t = 1 conditional on

realization yi, respectively. To simplify the analysis, we separate the planner�s transfer plan from the

components of the allocation under the agent�s control, which are � := (e0; b0). Given W; the agent�s
utility is

U(e0; b0; � ) := u(y0 + �0 � qb0)� v(e0) + �
NX
i=1

pi(e0)u(yi + � i + b0): (1)

Recall that a key assumption in our model is that the planner cannot observe how the agent allocates his

income y0+�0 between consumption c0 and asset accumulation qb0: As usual, to guarantee solvency of

the agent for every contingency, we impose the �natural�borrowing limit: b0 � c�mini=1;::N fyi + � ig :8

The risk neutral planner faces the same credit market as the agent, therefore her discount rate is

q. Her preferences/pro�ts are

V (e0; b0; � ) := ��0 + q
NX
i=1

pi(e0) (�� i) : (2)

E¢ ciency An optimal contract is a contract that solves9

V (U0) := max
W

V (e0; b0; � ); (3)

subject to the participation constraint

U(e0; b0; � ) � U0; (4)

and the incentive compatibility constraint

(e0; b0) 2 arg
�
max
e;b

U(e; b; � ) s.t. e � 0; y0 + �0 � c � qb � �qmin
i
fyi + � i � cg

�
: (5)

We will denote this problem as (P). In order to make the problem of some interest, we assume that

U0 > �1:
8The enforceability of the repayment of debt obtained through anonymous credit lines is an important and delicate

issue, which is common to many environments and that we do not address here. With minor modi�cations to the

analysis, one could just impose b0 � 0; which could be enforced in an anonymous credit market. In this this case, asset
accumulation could also be interpreted as a private storage technology.

9Existence can be shown, for example, by a simple extension to Grossman and Hart [18].
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Note that there is indeterminacy in the contract between �0 and b0. The planner can imple-

ment the same allocation to the agent with a contract
n
�0; f� igNi=1 ; e0; b0

o
and with a contractn

�0 � "; f� i + "=qgNi=1 ; e0; b0 � "=q
o
: In other words, since the planner and the agent face the same

return in the credit market, there is a continuum of optimal contracts. In this paper, without a loss of

generality, we will study the one speci�c optimal contract which implements b0 = 0: Because of these

observations, we will sometimes refer to the combination of e¤ort e0 and consumption

c0 := y0 + �0

ci := yi + � i; i = 1; :::; N;

as a contract.

We can interpret this setup in several di¤erent ways. For example, the previously described

principal-agent relationship can be interpreted as an optimal tax/transfer provision problem (social

insurance). The principal is a benevolent social planner whose objective is to maximize the welfare

of the citizens. The (small open) economy contains a continuum of ex ante identical agents who face

the above contract and can in�uence their date-1 income realizations yi by working hard or shirking.

The planner o¤ers a transfer system � to insure them against idiosyncratic risk and, at the same

time, provide them appropriate incentives for working hard. In this case, setting U0 such a way that

V (U0) = 0 would be the socially optimal allocation. The objective (2) can be interpreted as the social

planner�s dynamic budget constraint; by the law of large numbers V (U0) = 0 is equivalent to an (in-

tertemporally) balanced budget requirement. In what follows, we will take the value of ex-ante utility

U0 as given and derive the optimal transfer scheme by minimizing expected discounted costs.

This framework may also describe a private insurance relationship, where y0 is the agent�s (veri�-

able) initial net wealth and he can a¤ect future outcomes by his action e0. The insurance company is

the principal, who o¤ers a contract consisting of an initial fee (��0) and an insurance payment (� i)
dependent on the realized state. In this case, if we set U0 such that V (U0) = 0; the insurance contract

will deliver zero pro�ts to the insurance company. When designing the conditions of the contract, the

insurer has to take into account that the agent can secretly in�uence the likelihood of the di¤erent

events. In addition, in our environment, the insurer cannot observe the agent�s consumption either,

therefore the optimal insurance contract has to take into account that the agent is able to transfer

resources intertemporally through the credit market.

Another interpretation is a two-period compensation contract, where yi is the surplus which can

be divided by a risk-neutral owner/shareholder and a risk-averse worker/manager. In this case, yi+ � i

is the wage of the worker in a given state and date, while V (U0) is the pro�t of the owner. Here,

again, the wages have to provide the right incentives for the agent to exert high e¤ort. Moreover, high
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punishments (low consumption levels) for low second period surpluses may not be incentive compatible,

because the worker can save against them at date t = 0:

The main implications of this framework are known when hidden borrowing and lending are not

allowed. We will brie�y review them below. However, Rogerson [33] has shown for that setup that the

agent is left with incentives to save in the optimal contract. This implies that the optimal allocation of

the present model is di¤erent from the one where asset accumulation is observable and contractable or

not allowed. Moreover, in all of the three above examples, private (non-observable, non-contractable or

non-taxable) savings are empirically relevant. Neither insurance companies nor shareholders/owners

can control the agent�s consumption saving decision, however their wealth level a¤ects the e¤ectiveness

of the incentive scheme. Also, typically governments cannot have full control over agents�consumption

saving decisions either, because agents can keep their savings in low-interest (and not observable)

instruments such as local and foreign currency or they can have access to foreign accounts.

Finally, as we discuss in the Conclusions section, it is not di¢ cult to show that our analysis

would carry over to the case where the agent has a private storage technology that allows q units of

consumption at time 0 to be transformed into one unit of consumption at time 1. This is the case,

because in this model the agent�s relevant deviation is to transfer resources from period 0 to period 1,

hence borrowing constraints matter less.

2.1 Preliminary Characterization and Self-insurance

Under very general conditions (in particular without requiring that the �rst-order approach is valid)

one can prove that transfers � i cannot uniformly increase with yi:10

Proposition 1 (Minimal Insurance) If u is unbounded below or above, and c > �1; then � i
cannot be monotone increasing (not even weakly increasing) with yi for all i.

The intuition is as follows. A transfer scheme with � i increasing for all i cannot be optimal, since

the planner could twist the scheme so that to decrease � i in states with large yi and increase it in bad

states (states with low yi). Since the agent is risk averse and the planner is risk neutral, we expect

the planner to gain by absorbing some of the risk the agent faces. In particular, the planner should be

able to provide more insurance to the agent than he can achieve without the planner�s participation.

Proposition 1 has a somewhat important consequence. Allen [4] and Cole and Kocherlakota [12]

study the e¤ect of hidden asset accumulation in a hidden information model. They �nd that the

constrained e¢ cient allocation does not di¤er from that in a pure bond economy, i.e., the allocation

the agents could obtain by insuring themselves through borrowing and lending, without the planner�s

10All the proofs not shown in the main text can be found in the Appendix.
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provision of additional insurance. In terms of our optimal taxation interpretation, this result would

imply that the planner has no role in enhancing welfare, as the optimal allocation will provide no

additional insurance to the agents compared to a pure bond economy.

Note that a pure bond economy would correspond to a situation of constant � i = � for i = 1; 2; ::N:

Proposition 1 shows that this is cannot be the case for the moral hazard model.

Corollary to Proposition 1 (Impossibility of Self-Insurance) Under the assumptions in Propo-

sition 1, the optimal contract never delivers the self insurance allocation.

Since the contract � i � � is available to the planner, an equivalent way of stating the result is

as follows. If we let U0 be the utility value obtainable by the agents under self-insurance, we have

V (U0) > 0. What is then the key di¤erence between the hidden information models and the moral

hazard models that generates these contrasting implications? As it is clear from our line of proof,

the full support assumption plays a major role in the result. Under this condition, the agent has

incomplete control over the realizations yi: Hence, the planner can implement schemes that impose a

tax payment in some states and a transfer in others in such a way that the agent is not able to avoid

paying the taxes with certainty. Clearly, this result extends to any multi-period setting.11

It is very unlikely that we would be able to characterize the optimal contract much further analyt-

ically without the use of the �rst-order approach. In the next section, we will introduce this approach

and provide su¢ cient conditions for its validity.

3 The First-Order Approach

It is not di¢ cult to see that the incentive constraint (5) describes a complicated set of constraints: it

is equivalent to a bidimensional continuum of inequalities. The �rst-order approach replaces (5) by

the �rst-order conditions of the agent�s maximization problem with respect to e0 and b0: This strategy

brings the number of inequality constraints down to only two.

In what follows, we will assume interiority of the optimal contract, that is we assume that the

original problem (P) has a solution such that all consumption levels are strictly above c in both dates

and for all states and that e0 > 0. It is easy to see that the moral hazard problem is not interesting

if the optimal e¤ort is the minimal e¤ort.12 We will follow Rogerson [34] and replace the incentive

11Moreover, consistently with the previous intuition, in Ábrahám and Pavoni [1] we show that, in fact, the full-support

assumption is not required. It su¢ ces to exclude the possibility of distributions over Y which are degenerate at one state

i for some e.
12 Interiority may be required for a more technical reason. As emphasized by Mirrlees [28], when the solution to

the original problem is at the corner then the �rst-order approach might fail to deliver even necessary conditions for
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constraint with the following necessary conditions for optimality of the decisions for e0 and b0(= 0) :

Ue(e0; 0; � ) � 0

and (6)

Ub(e0; 0; � ) � 0:

The intuition for the above conditions is simple. There are two key restrictions we impose on the

contract. First, we guarantee that the agent is not willing to reduce his e¤ort level or shirk. The

second condition is the usual inequality version of the Euler equation: we require the agent not willing

to save. Clearly, both conditions have a local nature.

Notice, that both above constraints depend on the agent�s equilibrium choices of consumption and

e¤ort alone. Given our normalization on b0 = 0; it will indeed be convenient to describe the principal-

agent relationship as one where the planner decides directly the consumption level of the agent at each

state. We de�ne c := fcigNi=0 ; where ci := yi + � i; and rewrite the planner�s problem as

max
e0;c

y0 � c0 + q
NX
i=1

pi(e0) (yi � ci) ;

subject to ci � c; e0 � 0; the relaxed incentive constraint (6), which can be written as follows:

�v0(e0) + �
X
i

p0i(e0)u(ci) � 0; (7)

qu0(c0)� �
X
i

pi(e0)u
0(ci) � 0; (8)

and the participation constraint (4)

u(c0)� v(e0) + �
NX
i=1

pi(e0)u(ci) � U0:

This problem will be denoted by (R). We refer to this second problem as relaxed, because the set of

contracts that satisfy the constraints of (R) contains the set of contracts that satisfy the constraints of

the original problem (P). The remainder of this section is devoted to provide conditions under which

the solution to the relaxed problem (R) is identical to the solution of the original (unrelaxed) problem

(P) given by conditions (3) to (5).

Until now, there were not known any conditions under which the above �rst-order conditions are

necessary and su¢ cient for incentive compatibility. In Ábrahám and Pavoni [2], we approach this

an optimum. In our case, we could guarantee interiority in e¤ort by assuming that e is taken within an open set.

Alternatively, we could avoid the complications due to the corner solution by assuming that v0 (0) = 0: Interiority

with respect to consumption can be guaranteed by imposing that consumption is chosen within an open interval (as in

Grossman and Hart [18]), or by requiring that limc!c u
0(c) = +1:
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issue by a numerical ex-post veri�cation procedure for generic multi-period problems. However, that

procedure requires a numerical solution of the problem.

Williams [36] provides su¢ cient conditions for concavity for a class of continuous time models with

and without hidden savings. The key distinction between his approach and the one followed here, is

that he provides su¢ cient conditions for the cases where either the price of the bond q is not constant

but a convex function of b; or q is constant but the agent�s utility directly depends on wealth in a

strictly concave way.

We will �nd su¢ cient conditions for concavity in two steps. First, we will characterize the �relaxed�

optimal contract (R) by imposing the agent�s �rst-order conditions instead of (5). Then, we prove

that, under appropriate conditions, in the relaxed optimal contract date-1 consumption ci is changing

monotonically with the agent�s output yi. Finally, we show that, under somewhat stricter conditions,

monotonicity of consumption implies that the agent�s problem is concave at the relaxed optimal

contract. This will imply that, under this set of stricter conditions, our use of the �rst-order approach

is actually justi�ed, as the solution to (R) also constitutes a solution to (P).

3.1 Monotonicity of Consumption

We start by analyzing the properties of consumption based on the relaxed problem (R). We �rst

introduce some well known properties of the probability shifting functions p and the utility function,

which we will use extensively later. We will make use of the following assumptions.

NIARA. The utility function u exhibits non-increasing absolute risk aversion, that is, the ratio

a(c) := �u00(c)
u0(c) is non-increasing in c:

MLR. The probability shifting function p has the monotone likelihood ratio property, that is, for each

e � 0 the ratio p0i(e)
pi(e)

is non-decreasing in i.

We can now state our second characterization result.

Proposition 2 (Monotonicity) Assume NIARA and let (c; e0) be a solution to (R). (i) Either

ci = c, or ci moves together with the likelihood ratio
p0i(e0)
pi(e0)

. (ii) Under MLR, ci is nondecreasing

in i for i = 1; 2; ::; N:

Proof. Consider problem (R), and denote by �; � and � the Kuhn-Tucker multipliers associated

to the constraints (7), (8), and (4) respectively. By standard conditions, they are all nonnegative. The

necessary conditions for optimality (with respect to c0 and ci) are:

1

u0(c0)
� �+ � qu

00(c0)

u0(c0)
, with equality if c0 > c: (9)
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And, for i = 1; ::; N , we either have ci = c; or:

q

�u0(ci)
= �+ �

p0i(e0)

pi(e0)
� � u

00(ci)

u0(ci)
= �+ �

p0i(e0)

pi(e0)
+ �a(ci): (10)

Note that from (10) and � � 0, the expression q
�u0(ci)

� a(ci)� must move together with the
likelihood ratio p0i(e0)

pi(e0)
. By concavity of u and NIARA, both 1

u0 and �a(ci) =
u00

u0 increase with ci: Since

� � 0, consumption must move with i in the same direction as p
0
i(e0)
pi(e0)

. Q.E.D.

Proposition 2 replicates a standard result in the contract theory literature with no (or observable

and fully contractable) access to the credit market.13 In terms of the compensation contracts example,

this result says that the wages are weakly increasing with the observed output of the agent. More

generally, the �rst part of Proposition 2 emphasizes that in our environment consumption varies across

states in proportion to p
0
i(e0)
pi(e0)

alone. That is, consumption only responds to the informational content of

the outcome realization yi on the e¤ort level e0. Note that this contrasts the self-insurance allocation

where, since transfers � are constant across states, ci moves one to one with yi regardless of the

informational content of output levels. All the above properties are strict as long as MLR holds in a

strict version and both � and � are strictly positive. The next Lemma establishes this latter fact when

e0 > 0:

Lemma 1 Assume NIARA and let (c; e0) be a solution to (R). Then (i) If ci > c for i = 1; 2; :::N

then Ue = Ub = 0, that is, constraints (7) and (8) are both satis�ed with equality. (ii) If

both ci > c for all i and e0 > 0; then both � > 0 and � > 0. (iii) If u satis�es the Inada

condition limc!c u0(c) =1; then (i) holds under NIARA without the interiority requirement on
consumption.

Of course, if u is unbounded below or c = �1, the interiority condition ci > c can be guaranteed
a priori. Lemma 1 shows that, whenever we are using the �rst-order approach, under mild regularity

conditions we can in fact impose (6) with equality. If, in addition, we are looking for interior solutions

for e¤ort, then the multipliers associated with the �rst-order incentive constraints are positive. The

following remark shows that the multiplier associated with the participation constraint is positive

whenever we have an interior solution for c0.

Remark 1 It is easy to see that whenever c0 > c we have � > 0. This is so since whenever

U(e0; 0; � ) > U0 the planner could always reduce c0: This modi�cation of the contract does

not a¤ect the e¤ort incentive constraint, relaxes the Euler equation, and increases the planner�s

net returns.
13Note that the properties of the optimal contract, in the case when the agent has no access to the credit market, can

be recovered from the above optimality conditions by assuming � = 0:
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We now move to the concavity of the agent�s problem.

3.2 Su¢ cient Conditions for Global Concavity of the Agent�s Problem

Lemma 1 guarantees that the �rst-order condition (6) in the relaxed problem (R) holds with equality.

Whenever the solution to the original problem (P) is interior, a necessary condition for incentive

compatibility is to have (6) satis�ed with equality, of course. Since (R) is a relaxed problem, the value

associated to it cannot be lower than that associated to (P). Therefore, if we show that the contract

solving (R) is actually incentive compatible, then we have in fact derived the optimal contract. We

hence say that the �rst-order approach is valid whenever a solution to the relaxed problem (R) delivers

a correct solution to the original problem (P). If the agent�s problem is globally jointly concave in e

and b when facing the optimal transfer scheme � ; the use of the �rst-order approach is valid as the

�rst-order conditions of the agent�s problem become su¢ cient conditions for incentive compatibility.

Recall that, given � ; the utility of the agent for each choice (e; b) is

U(e; b; � ) = u(y0 + �0 � qb)� v(e) + �
NX
i=1

pi(e)u(yi + � i + b); (11)

Global concavity is obviously guaranteed if the associated Hessian matrix is negative semide�nite

for all e and b, where the Hessian is given by (ci is de�ned by yi + � i)

H :=

24 �v00(e) + �Pi p
00
i (e)u(ci + b) �

P
i p
0
i(e)u

0(ci + b)

�
P
i p
0
i(e)u

0(ci + b) q2u00(c0 � qb) + �
P
i pi(e)u

00(ci + b)

35 : (12)

By the concavity of the utility function u, it is easy to see that problem is concave in b alone.

Rogerson [34] shows that if the distribution function is convex in e¤ort (CDF),14 the problem is also

concave in e alone, whenever the consumption scheme is monotone in output (which is guaranteed by

MLR and NIARA).15 Unfortunately, the CDF and MLR conditions will not guarantee the concavity

of the agent�s problem jointly in (e; b); that will require a stronger assumption.

Joint concavity requires that the Hessian is negative semide�nite. This is not true in general, not

even under CDF and MLR.16 The previous discussion however guarantees that, under NIARA, CDF

14The de�nition is standard. The functions fpi(e)gNi=1 satisfy the CDF condition if F
00
i (e) is non-negative for every e

and i � N; where Fi(e) =
Pi

k=1 pk(e):
15Note, importantly, that monotonicity of consumption is not a¤ected by borrowing or lending, since the bond pays

equal amounts in each state i.
16Kocherlakota [25], provides a �linear-linear�counter-example where he assumes that p00i (e) = v

00(e) = 0, and therefore

detH = �
 
�
X
i

p0i(e)u
0(ci + b)

!2
< 0:
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and MLR, both entries on the main diagonal of H are nonpositive. H is hence negative semide�nite

if and only if detH � 0. Now, observe the o¤-diagonal elements: �
P
i p
0
i(e)u

0(ci + b): They measure

the gains from joint deviations of postponing consumption and reducing e¤ort (saving and shirking).

Intuitively, the agent�s problem is concave if the gains from these joint deviations are su¢ ciently small

compared to the losses induced by moving away from the optimal levels of e0 and b0 (captured by the

main diagonal).

Note that the o¤-diagonal elements of the Hessian are determined only by the date-1 consequences

of deviations. Therefore, to validate the �rst-order approach, we can restrict attention to date 1 as

the next result shows.17

Remark 2 The agent�s decision problem is concave in (e; b) if his date-1 utility

(e; b) 7!
NX
i=1

pi(e)u(yi + � i + b) (13)

is concave in (e; b).

By focusing on the date-1 e¤ect, we ignore the curvature generated by the e¤ort disutility function

v and by the impact of saving on date-0 utility. In principle, one could obtain more general results by

including these two e¤ects. We will discuss this issue in a bit more detail below (see Section 3.2.1).

To establish concavity of (13), and hence the validity of the �rst-order approach, we introduce the

following property.

LCDF. The distribution function of output, Fi(e) =
Pi
k=1 pk(e), is log-convex in e¤ort e for all i.

A function f : R! R++ is called log-convex if the logarithm of f is convex. Given di¤erentiability,

f is obviously log-convex if and only if f 00f=f 02 � 1. Any log-convex functions is convex, but not vice
versa. Thus, a necessary but not su¢ cient condition for LCDF is that the distribution function, Fi(e),

is convex in e¤ort e for all i. In other words, LCDF tightens the CDF condition from Mirrlees [29] and

Rogerson [34]. Since Fi�1(e) equals 1� P (y > yij e), LCDF implies that the probability P (y > yij e)
that output is larger than some level yi is strongly concave in e¤ort e for all values of yi.

Now we are ready to formulate the following main result: MLR, NIARA and LCDF validate the

�rst-order approach.

Theorem 1 (FOA) Let (� ) be a transfer scheme that solves (R). Suppose MLR, NIARA and LCDF.

Then, given (� ), the agent�s decision problem is concave. Hence, (� ) solves the unrelaxed problem

(P).
17 It should be clear that we can extend our condition to allow e¤ort to enter in a non-separable way into date-0 utility.

It can be shown that Theorem 1 below remains valid as long as u is concave and supermodular in (c0; e0). Details are

available upon request.
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Proof. By Remark 2, it is su¢ cient to establish concavity of the agent�s consumption utility at

date-1. Using summation by parts, the latter can be rewritten as

NX
i=1

pi(e)u(ci + b) = FN (e)u(cN + b)�
N�1X
i=1

Fi(e) [u(ci+1 + b)� u(ci + b)] ;

where Fi(e) =
Pi
k=1 pk(e), i = 1; : : : ; N , denotes the distribution function of output. Since u(cN + b)

is concave in b and FN (e) = 1, it remains to show that the function

N�1X
i=1

Fi(e) [u(ci+1 + b)� u(ci + b)] (14)

is convex in (e; b). Note that MLR and NIARA imply ci+1 � ci for all i. If for some index i; we have
ci+1 = ci and hence u(ci+1 + b) = u(ci + b), then we ignore that index.18 This will be without loss of

generality as it will not change the concavity properties of our mapping. So, assume ci+1 > ci.

A key step in our proof is to observe that the terms

Fi(e) [u(ci+1 + b)� u(ci + b)] (15)

are multiplicatively separable in e and b; e¤ort e only enters into the distribution function Fi(e),

whereas saving b only a¤ects the di¤erences u(ci+1 + b)� u(ci + b).
Another important step is to see that the NIARA property generates a strong convexity condition

for the di¤erences u(ci+1 + b)� u(ci + b).

Lemma 2 The utility function u exhibits the NIARA property if and only if u(ci+1 + b) � u(ci + b)
is log-convex in b for all ci+1 > ci.

To prove that statement, it is crucial to note that the agent is more prudent than risk-averse under

NIARA (Gollier [16, p. 52]). See the appendix for details.

In addition to the log-convexity property of u(ci+1 + b) � u(ci + b), we have log-convexity of the
distribution function Fi(e) by assumption. Therefore, using the multiplicative separability of (15), and

the fact that log-convexity (unlike convexity) is preserved under multiplication, we conclude that (15)

is log-convex in (e; b). Hence, (15) is convex in (e; b). Since convexity is preserved under summation,

this implies that (14) is convex in (e; b). And this completes the proof of the theorem. Q.E.D.

To understand the link from the conditions in Theorem 1 to the second-order e¤ects of joint

deviations, it is a useful starting point to study the e¤ect of the agent�s two decision variables separately.

The agent�s e¤ort choice, �rst of all, determines the probability distribution over date-1 consumption.

18Note that, because of the full-support assumption, we have Fi(e) > 0 for all i; e:
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Since consumption is monotonic under MLR and NIARA (Proposition 2), we know that higher e¤ort

shifts the distribution towards higher levels of consumption. Equivalently, lower e¤ort shifts the

distribution towards �punishments�, i.e., lower consumption levels. The marginal changes in these

probabilities are captured by the �rst-derivative of the distribution function with respect to e¤ort.

Essentially, the LCDF assumption ensures that the �marginal probability of being punished�increases

quickly as the agent reduces e¤ort. In other words, there is a second-order e¤ect along this dimension

that hurts the agent.

As a second step, it is important to understand the role of the agent�s savings level. Note that

higher saving generates insurance against punishments: the utility di¤erence between any two transfer

levels will be reduced if saving is increased. However, under our assumptions, such di¤erences are

decreasing at a rate that reduces quickly: Lemma 2 states that, under NIARA, the utility di¤erences

are log-convex in savings. This again captures a second-order e¤ect that hurts the agent.

The two previous observations show that second-order e¤ects of one-dimensional deviations are

rather painful for the agent. To see that this is su¢ cient to rule out two-dimensional deviations, it

is crucial to observe that the �punishment functions�Fi(e) [u(ci+1 + b)� u(ci + b)] are multiplicatively
separable in the agent�s decision variables: The distribution function, Fi(e), depends only on the

agent�s e¤ort e, while the utility di¤erences, u(ci+1 + b) � u(ci + b), depend only on the savings
level b. The multiplicative separability implies that the Hessian of the �punishment functions�takes

a particularly simple form. Therefore, by having the right convexity properties of the two factors

(log-convexity of both Fi(e) and u(ci+1 + b) � u(ci + b)), we can be sure that the o¤-diagonal of the
Hessian is su¢ ciently small compared to the main diagonal, so that joint deviations are not attractive.

While NIARA is a common property, LCDF is less well-known. As argued above, LCDF states that

the marginal returns to e¤ort are strongly decreasing in a particular sense. To clarify this property,

we provide the following examples.

Example 1 (Two outputs) Consider the case with two possible outputs, yL < yH , and associated

probabilities pL(e) = 1 � p(e), pH(e) = p(e), for some increasing function p with 0 < p(e) < 1.
Since p is increasing, MLR is satis�ed. LCDF is equivalent to the log-convexity of 1�p(e). This
is equivalent to the condition

�p00(e)(1� p(e))
p02(e)

� 1 for all e:

A linear (or convex) function p would clearly violate this requirement. Therefore, LCDF requires

that there is enough concavity in the probability shifting function. One class of examples that

satisfy this property is given by p(e) = 1� exp(�f(e)), where f : [0;1) ! (0;1) is increasing
and concave.
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Example 2 Rogerson�s [34] paper contains the following distribution function that is convex in e¤ort

and satis�es MLR:

Fi(e) = (yi=yN )
e; e 2 [0;1):

This distribution function is not only convex in e, but in fact even log-convex. Note

log(Fi(e)) = e log

�
yi
yN

�
;

which shows that log(Fi) is linear in e for all i.

3.2.1 A �Labor Supply�Interpretation of LCDF

In this subsection, we relate the LCDF condition to a preference parameter of the agent. This para-

meter has the interpretation as the Frisch elasticity of leisure in related models.

It should be clear from our previous analysis that the log-convexity condition on the distribution

function can be relaxed by imposing some strong convexity conditions on the disutility of e¤ort v(e).

When v is strongly convex, we can make an appropriate change in variables so that the new disutility

function becomes linear. If the distribution function is log-convex in e¤ort with respect to the new

unit of measurement, then the FOA is valid (given MLR and NIARA).

More formally, the �rst-order approach is valid for any couple of functions F̂i and v̂ (de�ned over

values of h), such that the change in variable e := v̂ (h) and Fi (e) := F̂i
�
v̂�1 (e)

�
leads to log-convex

functions Fi(e) for all i. Now, notice that Fi(e) is log-convex if and only if for all e

F 00i (e)Fi(e)

(F 0i (e))
2
� 1: (16)

Using the de�nition of Fi and the identities

(v̂�1)0(e) =
1

v̂0(h)
; (v̂�1)00(e) = � v̂00(h)

(v̂0 (h))3
(17)

we can express condition (16) in terms of the variable h as follows:

F̂ 00i (h)F̂i(h)

(F̂ 0i (h))
2
� F̂i(h)

F̂ 0i (h)

v̂00(h)

v̂0(h)
� 1: (18)

To link this condition to a preference parameter, we would like to shut down all e¤ects that are related

to the curvature of the distribution function. Therefore, we impose some further structure on the

problem.

Let (�1h; : : : ; �nh), (�1l; : : : ; �nl) be two probability distributions on fy1; : : : ; yNg such that �ih=�il
is nondecreasing in i. (This implies that �h �rst-order stochastically dominates �l.) Let the output

probabilities be de�ned as

p̂i(h) := h�ih + (1� h)�il: (19)
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This requirement is called the spanning condition with dominance, and it has been used in the literature

in order to guarantee monotonicity of the consumption scheme in the standard moral hazard model

with observable asset accumulation (see Grossman and Hart, [18]; and Atkeson [5]). The intuition

is simple: we have two base distributions given by the vectors �l and �h; in such a way that the

distribution given by �h �rst-order stochastically dominates �l. Intuitively, by exerting higher e¤ort

the agent shifts the probability distribution of future outcomes towards the �better�distribution.

The structure imposed by (19) implies that the distribution function F̂i(h) is linear in h for all i:

F̂i(h) =

iX
k=1

p̂k(h) = h

iX
k=1

�kh + (1� h)
iX

k=1

�kl: (20)

Hence, the �rst term in condition (18) disappears. For the second term, we have �F̂i(h)=F̂ 0i (h) � 1�h.
Therefore, condition (18) holds and hence the FOA is valid if the function v̂ satis�es the following

property:

(1� h) v̂
00(h)

v̂0(h)
� 1: (21)

Given the linear relationship between h and (expected) earnings, we can interpret h as labor supply

and 1� h as leisure. Similarly, we can interpret the function g(1� h) := �v̂ (h) as the agent�s utility
of leisure. Notice that (21) is equivalent to the following property:

�(1� h)g
00(1� h)
g0(1� h) � 1: (22)

In standard models of labor supply, �l := � g0(1�h)
g00(1�h)(1�h) is shown to be equivalent to the Frisch

elasticity of leisure. One of the most widely used speci�cations for g is the unit elasticity one:

g (1� h) = B ln (� (1� h)) ; which obviously implies that (22) is satis�ed. The unit elasticity case is
particularly interesting since it can be obtained by inverting the expression 1�h = k exp(��e); where
� = 1

B and k =
1
� : These results might be quite useful for applied work. First, applied researchers typi-

cally choose utilities of consumption from the NIARA family and either use h = �(e) = 1�k exp(��e)
with some convex e¤ort cost function, or they use a linear function for � and a constant elasticity

function for leisure. Our results show that for these cases the �rst-order approach tends to be valid

under hidden savings as well, hence the optimal allocations can be characterized in greater detail.

Second, empirical evidence suggests that these conditions are likely to be satis�ed in the data.

To our best knowledge, all estimations for u reveal NIARA, for example Guiso and Paiella [19] �nd

decreasing and convex relative risk aversion. It is di¢ cult to test directly the LCDF condition as

e¤ort is not observable. However, note that our model after the appropriate change in variables has

similar structure as standard labor supply models where agents have concave utility functions over
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leisure and their labor supply decision a¤ects their (expected) earnings linearly.19 In this sense, we

can relate our condition �l � 1 to empirical Frisch elasticities of labor supply. First of all notice that
if g (1� h) = (1�h)1�1=�

1�1=� , then the Frisch elasticity of leisure is � while the Frisch elasticity of labor

supply is given by �h = � 1�hh . Note that, practically all estimates lead to h � 0:5 implying that

�h � �l. This implies that the �l � 1 requirement is stricter than requiring �h � 1. Nevertheless,

virtually all empirical estimates of labor supply elasticity �nd it between 0 and 0:5 for men Heckman

and MaCurdy [20] �nd higher estimates for women, but their estimates are still below one. One of the

most recent structural estimations is done by Domeij and Floden [15] who �nd values for the Frisch

elasticity of labor supply between :3 and :56.

4 Discussion and Extensions

We now explore a few important relaxations to the conditions stated in Theorem 1.

4.1 CRRA utility

A major step in the proof of Theorem 1 is provided by Lemma 2, which establishes a (log-)convexity

property for utility di¤erences u(ci+1+ b)� u(ci+ b) for all NIARA utility functions and for all assets
b. A suitable convexity assumption on the distribution function Fi(e) then guarantees concavity of

the agent�s problem in (e; b).

In many cases, the convexity property of u(ci+1+b)�u(ci+b) stated in Lemma 2 can be strength-
ened, so that the convexity assumption on the distribution function can be relaxed accordingly. As

an important example, consider CRRA utility: u(c) = c1�
=(1� 
), where 
 > 0. For a moment, let
us replace the di¤erence u(ci+1 + b)� u(ci + b) by the agent�s marginal utility u0(c) at some point c.
Given CRRA utility, the marginal utility of consumption satis�es

u000(c)u0(c)

u002
= 1 +

1



:

If the left-hand side is at least 1, we obtain log-convexity of the marginal utility of consumption. Since

the left-hand side is now strictly larger than 1, we have a somewhat stronger property. Similarly,

we also obtain a somewhat stronger property for the terms u(ci+1 + b) � u(ci + b) than the result
established by Lemma 2.

As a consequence, we can relax the LCDF condition and obtain the following result.

19The two models are not isomorphic, though. This implies that we cannot derive �l as the Frisch elasticity of leisure

in our environment.
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Proposition 3 Let � be a transfer scheme that solves (R). Suppose MLR and CRRA utility, u(c) =

c1�
=(1� 
). If for all e � 0, i = 1; : : : ; N , we have

F 00i (e)Fi(e)

F 02i (e)
� 


1 + 

; (23)

then, given � , the agent�s decision problem is concave. Hence, � solves the unrelaxed problem

(P).

Note that the right-hand side of (23) is a number between 0 and 1. Thus, the convexity property

imposed on the distribution function is somewhere between Rogerson�s CDF condition and the LCDF

condition employed in Theorem 1.

4.2 Quadratic Utility

A quite commonly used speci�cation for u is the quadratic one: u (c) = ��
2 (B � c)

2 with � > 0 and

B >> 0: This utility function does not belong to the NIARA class since �u
00

u0 =
1

B�c ; which increases

with c: Most of the previous results however extend to this case.

The optimality conditions for problem (R) when u is quadratic are

q � ���
��(B � ci)

= �+ �
p0i (e0)

pi (e0)
:

It might hence be interesting to notice that, since q � ��� > 0;20 the movements in the likelihood

ratio are re�ected in the optimal contract in the same way as in the standard moral hazard model.

In particular, under MLR, consumption is monotone increasing in i (as in the benchmark case with

NIARA utility). Assuming the spanning condition, for simplicity, a su¢ cient condition for the validity

of the �rst-order approach in this case is f�(e)(1 � �(e)) � 1+q
2 for e � 0, which is implied by

f�(e) � 1+q
2 since 1� �(e) � 1.21

20 If q � ��� < 0; ci would decrease with i when p0i(e0)
pi(e0)

increases and vice versa. Hence:

X
pi (e0)

p0i (e0)

pi (e0)
u (ci) =

X
p0i (e0)u (ci) < 0 � v0 (e0) ;

which violates the �rst-order incentive compatibility constraint for e0.
21Assume without loss of generality that v (e) = e; and for simplicity that � = q: After a few simpli�cations, on the

Hessian matrix

H :=

"
��
P
p00i (e)

�
2
(B � ci)2 �

P
p0i (e)� (B � ci)

�
P
p0i (e)� (B � ci) ��� [q + 1]

#
;

we obtain

detH = �2�2
�
�00 (e)

hX
��i (B � ci)2

i (q + 1)
2

�
�
�0 (e)

�2 �X
��i (B � ci)

�2�
;
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4.3 Exploiting the Curvature of the Contract

To validate the �rst-order approach, we have previously derived conditions on the probability shifting

functions and the agent�s preferences under which, given monotonicity of the contract that solves (R),

the agent�s decision problem is concave. Finding such conditions will be much simpler if the contract

that solves (R) is not only monotonic, but also exhibits some form of concavity. For the moral hazard

problem without hidden saving, Jewitt [23] provides a general analysis of this idea. He shows that,

under quite general conditions, the agent�s (ex-post) utility changes with output in a concave way,

and therefore the convexity conditions on the distribution function can be substantially relaxed.

In the present section, we try to exploit the curvature of the contract in the context of hidden

saving. First of all, to avoid some complications associated with the discrete notion of concavity, we

�nd it useful to formulate output as a continuous variable throughout this section. Hence, we replace

the discrete output space fy1; : : : ; yNg by the interval Y := [y; y]. Analogously, we replace the weights
pi(e) by a probability density f(y; e), with f(y; e) > 0 for all y; e. Consumption schemes obtain the

format c = (c0; c(�)), with c0 2 [c;1), c : Y ! [c;1). For continuous output, the agent�s preferences
are speci�ed as

u(c0 � qb)� v(e) + �
Z y

y
u(c(y) + b)f(y; e) dy; (24)

while the planner�s objective function is

(y0 � c0) + q
Z y

y
(y � c(y))f(y; e) dy: (25)

The associated reformulations of the optimization problem (P) and the relaxed problem (R) are

straightforward.

4.3.1 Integration of the Distribution Function

For the standard moral hazard problem, Jewitt [23, Theorem 1] validates the �rst-order approach

when the agent�s (ex-post) consumption utility u(c(y)) is concave in output y and the integral of the

distribution function satis�es a convexity property. He then relates the latter property to the concept

of Total Positivity (Karlin [24]) and shows that it is satis�ed for a rather general class of probability

distributions. In the setting with hidden assets, such a result is more di¢ cult to obtain. Since the

with ��i := �ih � �il, which implies that detH > 0 whenever�
�
P
��i (B � ci)2

�
(
P
��i (B � ci))2

(q + 1)

2
>
(�0 (e))

2

��00 (e) :

Finally, one can show that - since ci and ��i move together (and
P
��i = 0) - we have that

P
��i(B�ci)2

(
P
��i(B�ci))2

� 1.

Q.E.D.
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agent�s consumption level can be changed by saving, we need to specify not only the curvature between

utility and output, but also how this curvature changes with the savings level b.

Proposition 4 Let (� ) be a transfer scheme that solves (R). Suppose MLR and NIARA. Suppose

that for all output levels y

� d
2(u(c(y) + b))

dy2
is positive and log-convex in b; (26)

eF (y; e) = Z y

y
F (z; e) dz is log-convex in e: (27)

Then, given (� ), the agent�s decision problem is concave. Hence, (� ) solves the unrelaxed

problem (P).

Condition (26) is a concavity property of the contract: The agent�s consumption utility, u(c(y)+b),

depends on output y in a concave way. In addition, the curvature between utility and output changes

with assets b in a log-convex way. It is not di¢ cult to show that (26) is satis�ed, for instance, if the

consumption scheme c(y) is concave in output y and the agent has nonincreasing absolute prudence.

To capture the second condition in Proposition 4, it is important to note that log-convexity is

preserved under integration (Boyd and Vandenberghe [9, p. 106]). Therefore, log-convexity of the

integral eF (y; e) = R yy F (z; e) dz is a weaker assumption than log-convexity of the distribution function
itself (LCDF). Intuitively, the integral eF (y; e) will be log-convex in e if the distribution function F (y; e)
is log-convex in e for small values of y and �not too misbehaved�for large values of y.

One example that does not satisfy the LCDF property, but does satisfy (27), is the following.

Example 3 Consider the Beta Prime distribution with parameter b = 2:

f(y; e) =
ye�1(1 + y)�e�2

B(e; 2)
; y 2 [0;1); e 2 [0;1); (28)

where B(e; b) represents the Beta function. The likelihood ratio function fe(y; e)=f(y; e) is

nondecreasing concave in y, hence the class of preferences satisfying (26) is nonempty. The

distribution function is

F (y; e) = (1 + e+ y)ye(1 + y)�e�1: (29)

It is easy to see that F (y; e) is not log-convex (not even convex) in e for all y. However, the

integral of the distribution function,

eF (y; e) = y� y

1 + y

�e
; (30)

is log-linear in e. Therefore, (27) is satis�ed.
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However, the gain of Proposition 4 in terms of relaxing the LCDF condition is limited. It is di¢ cult

to �nd many other examples that satisfy (27) without satisfying LCDF. In addition, condition (26) is

a stronger requirement than concavity of the agent�s utility in output, since it also imposes structure

on the link between the second derivative and the savings level. Given the nature of the problem, it

seems impossible to avoid such a condition.22 Hence, compared to Jewitt�s result [23, Theorem 1], we

see that it is much more di¢ cult to relax the convexity properties of the distribution function in the

present framework.

4.3.2 Quasiconvex Distribution Functions

To exploit the curvature of contracts, another approach is to study distribution functions that are

(jointly) quasiconvex in output and e¤ort, because, roughly speaking, such distributions are equivalent

to production functions with nonincreasing returns to scale. Jewitt [23, Theorem 3] and Conlon [13]

use this property to validate the �rst-order approach for multi-signal moral hazard problems. In the

present section, we show that quasiconvex distribution functions also have appealing properties for

the model with hidden borrowing and lending.

Recall that, to establish concavity of the agent�s decision problem, it is su¢ cient to consider the

agent�s utility at date t = 1 (Remark 2). Moreover, note that the distribution function F (y; e) is

quasiconvex in (y; e) if and only if output can be represented by a �production function�y = '(e; z)

that is nondecreasing concave in e and nondecreasing in the stochastic state of nature z (Jewitt [23,

Lemma 2]). Using the production function, we can write the agent�s date-1 utility asZ y

y
u(c(y) + b)f(y; e) dy = E[u(c('(e; z)) + b)];

where E[�] denotes expectations with respect to the state of nature z. Now, notice that concavity
is preserved under summation and under nondecreasing concave transformations. Hence, since u is

nondecreasing concave, the agent�s decision problem will be concave in (e; b) if c('(e; z)) is concave in

e for all z.23 This insight is key for the following result.

Proposition 5 Let (� ) be a transfer scheme that solves (R). Suppose that the following conditions

22The idea of the proof used in Theorem 1 does not su¤er from this problem. Note that monotonicity of the contract

for one savings level is equivalent to monotonicity for all savings levels.
23At �rst glance, this insight seems to suggest that the validity of the �rst-order approach is not a¤ected by the

introduction of hidden saving. Notice, however, that the shape of the consumption scheme is crucially in�uenced by the

agent�s ability to save.

23



hold:

F (y; e) is quasiconvex in (y; e); (31)

fe(y; e)=f(y; e) is nondecreasing and concave in y for all e; (32)

g(c; �) := q=(�u0(c))� �a(c) is increasing and convex in c for all � � 0: (33)

Then, given (� ), the agent�s decision problem is concave. Hence, (� ) solves the unrelaxed

problem (P).

The function g de�ned in (33) links the likelihood ratio function fe(y; e)=f(y; e) to the shape of

the contract: As the continuous version of the optimality condition (10), we have

q

�u0(c(y))
= �+ �

fe(y; e0)

f(y; e0)
+ �a(c(y)); y 2 [y; y]; (34)

with � � 0: Hence, c(y) is characterized by

c(y) = g�1
�
�+ �

fe(y; e0)

f(y; e0)
; �

�
:

Thus, since g�1 is nondecreasing concave under assumption (33), concave likelihood ratio functions

will generate concave consumption schemes c(y) in this case.

As an important application of Proposition 5, consider CARA utility: u(c) = � exp(��c)=�. Then
we have g(c; �) = q exp(�c)=� � ��. Obviously, this function is increasing and convex in c for all �:
Therefore, Proposition 5 validates the �rst-order approach for CARA utility if the distribution func-

tion F (y; e) is quasiconvex in (y; e) and the likelihood ratio function fe(y; e)=f(y; e) is nondecreasing

concave in y.24

A second example to which (a minor modi�cation of) Proposition 5 can be applied is quadratic

utility: u(c) = ��
2 (B � c)

2, with � > 0 and B >> 0: Here, we obtain g(c; �) = q����
��(B�c) , with

q � ��� > 0 (see Section 4.2). Hence, g(c; �) is increasing and convex in c when � is set to its optimal
value.

There are other examples, such as CRRA utility, for which the function g is not convex, however.

In that case, the concavity property of the likelihood ratio function formulated in (32) has to be

strengthened to obtain a concave consumption scheme. Essentially, the di¢ culty in obtaining concave

consumption schemes is driven by the coe¢ cient of absolute risk aversion, which tends to make the

right-hand side of the optimality condition (34) less concave in y.

24 In the present paper, preferences over consumption and e¤ort are additively separable. For CARA utility and

multiplicatively separable preferences, by contrast, the validation of the �rst-order approach becomes much simpler,

since the agent�s e¤ort choice will be independent of his wealth level.
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5 Conclusions

This paper studies the two-period version of the dynamic moral hazard model when agents can borrow

and save on a risk-free bond market and their asset accumulation decisions are not observable. We

provide su¢ cient conditions under which the �rst-order approach (FOA) is applicable in this environ-

ment. In comparison to the conditions which are required in static case with observable savings (MLR,

CDF), we need to impose some further concavity on the problem. First of all, non-increasing absolute

risk aversion (NIARA) with respect to consumption is imposed. Second, the way e¤ort a¤ects the

probability distribution has to be concave enough or the disutility of e¤ort has to be convex enough.

The strengthening of the convexity condition on the distribution function is done using the concept

of log-convexity. We also show that, under somewhat more speci�c conditions, the log-convexity con-

dition on the distribution is analogous to the Frisch elasticity of leisure being less than one. One nice

property of this set of su¢ cient conditions is that these restrictions on preferences are validated by

empirical research. Another attractive aspect is that most popular functional forms used in applied

research will satisfy these conditions.

With the help of the �rst-order approach, we also characterize the optimal contract in this envi-

ronment. We focus particularly on how consumption depends on output. Similarly to the standard

case, under the assumptions needed for the validity of the FOA, optimal consumption is monotonic

in output. It seems that NIARA is important - but not essential - for the result. In a related pa-

per (Ábrahám, Koehne, and Pavoni [3]), we also show that, when the agent�s utility belongs to the

HARA class, the presence of hidden savings changes the curvature of the optimal contract making

consumption to change in a �more convex way�with output.

From a more general perspective, we believe that one of the important contributions of our paper

is the application of log-convexity techniques. This idea gives optimization problems with multiplica-

tively separable objectives a tractable convex structure and seems to be useful for a much more general

class of economic models.

The generalization of our present results to models with more than 2 periods is an important task for

future research. Recall that Remark 2 states that, given a transfer scheme � , the FOA is valid whenever

the function W (e; b; � ) :=
PN
i=1 pi(e)u(yi+ � i+ b) is concave in e; b (which we showed to be true if: (i)

yi + � i increases with i; (ii) the cumulative distribution generated by p satis�es LCDF, and (iii) u is

NIARA25). It is easy to extend this statement to a multiperiod setting. For notational simplicity, we

consider an in�nite horizon setting (assuming existence of an optimal contract). Let T =
�
� t
�
ht
�	1
t=0

be a contingent transfer plan of a long term contract, and Tt
�
ht
�
=
�
� t+n

�
ht+n

�
jht
	1
n=0

be the

25As discussed above, di¤erentiability of u is not required for the result.
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continuation of such contract at node ht := (y0; y1; ::::; yt). It is easy to see that an agent�s (life-time)

utility at node ht with current wealth b� solves:

V
�
b�; Tt

�
ht
��
= max

e;b
u
�
yt + � t

�
ht
�
+ b� � qb

�
� v (e) + �

NX
i=1

pi(e)V
�
b; Tt+1

�
ht; yi

��
:

Since u
�
yt + � t

�
ht
�
+ b� � qb

�
� v (e) is a concave function in e; b whenever u and �v are concave,

we can apply our line of proof and show that su¢ cient conditions for the FOA to be valid are that

the probability function p satis�es LCDF and that, given the optimal contract T ; at each node ht

the function V is NIARA in the �rst argument and increasing in yi for all b: Note that the function

V corresponds to the value of an agent in a bond economy with a (possibly complicated) stochastic

process of income yt+� t where - crucially - the income distribution can be a¤ected by e: It is probably

not very di¢ cult to show that - under MLRC or the like - the optimal contract implies that income is

increasing in output, hence V is increasing in yi for all b. The di¢ cult hurdle towards a general proof

is obviously the NIARA property. The complications do not come from the fact that the optimal

contract T might imply a complicated process for income. Danforth [14] indeed proved that the value
function representing the lifetime value of an agent in a bond economy with an arbitrary stochastic

process of income is NIARA whenever u is NIARA. It would hence be easy to derive conditions for

NIARA for each �xed plan of e¤ort levels
�
et
�
ht
�	1
t=0
: The extension to the case where e¤ort is

endogenously chosen at each node does not appear to be trivial task however.

In addition to the main results, we investigated a few further properties of the optimal contract

that we do not report in full detail for brevity. For example, we show that some of the previous

results about the value of information in the standard case also hold in our model. Assume that the

planner receives an observable and veri�able signal s 2 S, and suppose that the FOA is valid in both
the original environment and the new environment with the signal s. Then there is a new contract

fcisgs2Si=0;N that strictly dominates fcigi=0;N if and only if s is informative about e0 in the sense of

Holmström [21]. This result represents an interesting distinguishing feature of our model with respect

to the self-insurance framework where further insurance possibilities are not available for the agent.

In that case, consumption always moves with both i and s as long as yis changes with them, regardless

of the informational content.

Second, we investigated how e¤ort and consumption insurance compare to the observable asset

case. Assume again that the FOA is valid. Taking the �rst-order conditions with respect to e0, we

obtain

q
X
i

p0i (e0) (yi � ci) + �Ue (e0; 0; � )� �Uee (e0; 0; � ) + �Ueb (e0; 0; � ) = 0:

Clearly, Ue (e0; 0; � ) = 0. Moreover, it is not di¢ cult to see that whenever the agent�s problem is
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concave in e0 then we have ��Uee (e0; 0; � ) + �Ueb (e0; 0; � ) < 0:26 This implies q
P
i p
0
i (e0) (yi � ci) =

q
P
i p
0
i (e0) (yi � ci) + �Ue (e0; 0; � ) > 0: If we consider � as an exogenous parameter de�ning the

relative Pareto weight of the agent, this can be interpreted as an ine¢ ciency result. Because of the

informational problems, the planner implements an e¤ort level which is lower than that dictated by

production e¢ ciency. This result is similar to the standard moral hazard case (see Rogerson [34]).

A further natural question is whether the optimal scheme under hidden savings induces more or less

consumption dispersion on the agent, given an e¤ort level e0. We realized that this question does not

have an easy answer. Intuition might suggest that since reducing consumption dispersion relaxes the

savings incentives under NIARA, we might expect a reduction of consumption dispersion. In fact, in

Ábrahám and Pavoni [2], we document numerically that in the two output case (N = 2) of the in�nite

horizon version of the model, consumption is typically more dispersed in the hidden asset case. A

similar result can be shown analytically here: For each �xed pair (U0; e0) ; the consumption dispersion

is larger in our model than in the standard case.27 Given that the same e¤ort level requires higher

consumption dispersion, hence higher costs to the planner, we conjecture that - given U0 - hidden

savings will induce a lower optimal level of e¤ort compared to the standard case.

Finally, we would like to discuss the relevance of the assumption that neither the agent nor the

principal are liquidity constrained in our model. Suppose that the agent is liquidity constrained.

Although the set of implementable levels of asset holdings b0 might be restricted by the presence of

liquidity constraints, all our characterization results remain valid. First, it is obvious that given any

implementable b0; the planner is able to generate the same allocation to the agent by implementing

b00 > b0 and adjusting transfers accordingly at no cost. Interestingly, Lemma 1 implies that whenever

the FOA is valid the planner will never be able to gain by implementing a low b0 so that to make

the agent liquidity constrained. In contrast, when both the agent and the planner faces liquidity

constraints (or shallow pockets), it might be the case that Lemma 1 fails as Ub > 0.

26 In particular, by rearranging the necessary conditions of optimality one can show the multipliers � > 0 and � > 0

are related as follows (details are available upon request): �Ueb = �Ubb. Hence, the condition detH > 0 is equivalent to

(Ueb)
2 < UeeUbb , ��UbbUeb < �

2UeeUbb , �Ueb < �Uee:

27Since e0 is �xed across the two models, when N = 2 we need to keep �u := u(cH) � u(cL) constant across

the two models. If c0 were �xed as well, in order to satisfy the Euler equation in our model, we need to decrease

p (e0)u
0 (cH) + (1� p (e0))u0 (cL) compared to the standard moral hazard model. The implication is that we must

increase both cH and cL so that to keep �u constant. Since u is concave, �c must increase. Now, allow for the

possibility of changing c0: As long as both U0 and e0 are �xed, the principal perhaps decreases c0, but again in order to

keep �u constant, both cL and cH must increase compared to the original contract, otherwise the agent�s participation

constraint would be violated.
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Appendix: Proofs

Proof of Proposition 1 The proof is based on Propositions 4 and 5 in Grossman and Hart [18].

In order to make the analogy explicit between these results and ours, we now show in detail the part

of the proof related to Grossman and Hart�s Proposition 5 which regards our Corollary to Proposition

1: The sub-optimality of self-insurance. It should then be easy to see how the proof of Proposition 4

in that paper can be adapted to our environment. Further details are available upon request.

Consider a transfer scheme � that is optimal and it is such that � i � � is constant for all i >

0: We show that this transfer scheme cannot be optimal, by constructing an incentive compatible

transfer scheme, which satis�es the agent�s participation constraint and increases the planner�s surplus.

Without loss of generality, assume that u is unbounded below and recall that �N = �1. Consider

the following modi�cation of the scheme: leave unchanged both �̂0 (") = �0 and �̂ i(") = � for i =

30



2; :::; N � 1, while modify �1 and �N as follows: set �̂1(") = � + "; and �̂N (") = � � �""; with " > 0:
For any "; the value �" is chosen so that the agent is indi¤erent between the original plan � and the

new one �̂ (")28, that is

max
e2E; b��B(")

u(y0 + �0 � qb)� v(e) + �
NX
i=1

pi(e)u (yi + �̂ i(") + b)

= max
e2E;b��B(")

u(y0 + �0 � qb)� v(e) + �
N�1X
i=2

pi(e)u (yi + � + b)

+� [p1(e)u (y1 + � + "+ b) + pN (e)u (yN + � � �""+ b)]

= u(y0 + �0)� v(e0) + �
X
i

pi(e0)u (yi + �) :

where for each "; B(") := mini fyi + �̂ i(")� cg ; and we stick to the particular optimal contract where
b0 = 0: Such a �" > 0 exists by the Maximum Theorem. Notice indeed that both u and p are

continuous and by convexity and strict monotonicity, e will lie in a compact interval. Moreover, since

the transfers are constant in i, and utility is unbounded below we can always choose " in a way that

b0(") 2 B("; �) where B("; �) :=
h
c�min fy1 + � + "; yN + � � �"g ; y0+�0�cq

i
is a non-empty and

compact set (recall that c > �1). Finally, note that for each " > 0, for � = 0 the utility of the

agent must be strictly larger than the one in the original contract. Since u is strictly monotone and

unbounded below, and by the full support assumption, by reducing � we can drive the agent�s utility

arbitrarily low. Hence, by continuity, there must be a �" that satis�es our requirement.

We want to show that for " small enough the di¤erence between the planner�s surplus under the

new and original scheme �(") is positive. Denote by ê"0 and b̂
"
0 the e¤ort and asset choices of the agent

under the perturbed scheme, and ê00; b̂
0
0 and �

0 are the limit e¤ort, asset and �" choices as " ! 0+.

The Theorem of the Maximum implies that the optimal correspondence of choices ê"0 and b̂
"
0 is upper

hemi-continuous if considered as a function of ": The consequence is that ê00 and b̂
0
0 are also optimal

under the original scheme, hence for each " > 0 we have

u
�
y0 + �0 � qb̂00

�
� v

�
ê00
�
+ �

X
i

pi(ê
0
0)u

�
yi + �̂ i(") + b̂

0
0

�
� u

�
y0 + �0 � qb̂"0

�
� v (ê"0) + �

X
i

pi(ê
"
0)u

�
yi + �̂ i(") + b̂

"
0

�
= u

�
y0 + �0 � qb̂00

�
� v

�
ê00
�
+ �

X
i

pi(ê
0
0)u

�
yi + � + b̂

0
0

�
:

Comparing the �rst line with the last one, we have:X
i

pi(ê
0
0)
h
u
�
yi + �̂ i(") + b̂

0
0

�
� u

�
yi + � + b̂

0
0

�i
� 0: (35)

28When u is unbounded above, we shall modify the original scheme � as follows: �̂0 (") = �0; �̂ i(") = � for i =

2; :::; N � 1; and �̂1(") = � + �"" ; and �̂N (") = � � ":
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Since "; �" > 0; condition (35) can be rewritten as

"p1(ê
0
0)

h
u
�
y1 + � + "+ b̂

0
0

�
� u

�
y1 + � + b̂

0
0

�i
"

(36)

��""pN (ê00)

h
u
�
yN + � + b̂

0
0

�
� u

�
yN + � � �""+ b̂00

�i
�""

� 0:

Now taking limits as "! 0+ we get

0 � p1(ê00)u0
�
y1 + � + b̂

0
0

�
� pN (ê00)�0u0

�
yN + � + b̂

0
0

�
: (37)

It is now easy to realize that yN + � > y1 + � and strict concavity implies u0
�
y1 + � + b̂

0
0

�
>

u0
�
yN + � + b̂

0
0

�
hence it must be that pN (ê00)�

0 � p1(ê00) > 0: Let us now compute the gain for the
planner. For each " > 0 we have

�(") =
X
i

pi (e0) � �
X
i

pi (e
"
0) �̂ i (") = pN (ê

"
0)�

""� p1(ê"0)": (38)

Since �(0) = 0, by showing �0+(0) > 0; we show that �(") > 0 for " small enough: Note that if we

divide (38) by " and we take the limit as "! 0+ we get

�0+(0) = lim
"!0+

�(")

"
= pN (ê

0
0)�

0 � p1(ê00) > 0:

Q.E.D.

Proof of Lemma 1 (i) We �rst show that the solution of the problem (R) must be such that

(7) (the no-shirking condition) is satis�ed with equality. If � > 0 we are done. Consider the case

where � = 0: In this case, the �rst-order conditions are either ci = c for all i; or
q

�u0(ci)
� �a(ci) = �

for all i; hence the planner fully insures the agent in period t = 1 regardless of the value of � � 0.

Note that full-insurance will also be good for incentive compatibility since the convexity of u0 (implied

by NIARA) implies
P
i pi(e0)u

0(ci) � u0 (
P
i pi(e0)ci). That is, the planner will be able to relax

the Euler equation by providing insurance. Since
P
i p
0
i(e0) = 0; a constant u (ci) = �u implies thatP

i p
0
i(e0)�u = 0: Since v

0(e0) � 0; full insurance would imply v0(e0) � �
P
i p
0
i(e0)u (ci) = 0: Combining

this with (7) delivers v0(e0) = �
P
i p
0
i(e0)u (ci) = 0.

We now show that if the solution of the problem (R) is interior for ci, it must be such that the

second constraint in (6) (the Euler condition) is satis�ed with equality. Recall that the �rst-order

conditions for c0 and ci are given by (9) and (10). Again, if � > 0 we are done. If � = 0; from the �rst

order conditions we have:

1

u0(c0)
�
X
i

pi(e0)
q

�u0(ci)
� q

�
P
i pi(e0)u

0(ci)
; (39)
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where the second inequality is implied by Jensen inequality. In fact, since 1=x is a strictly convex

transformation, this second inequality can be an equality only if the agent is fully insured. Now, com-

paring the �rst and last term in the above expression, we have qu0(c0) � �
P
i pi(e0)u

0(ci): Combining

this with (8) yields qu0(c0) = �
P
i pi(e0)u

0(ci).

(ii) Whenever e0 > 0 by assumption we have v0(e0) > 0. Therefore, full insurance is not feasible

so ci cannot be constant in i. This implies that � > 0: In this case we also have � > 0: In order to

see this, recall that with � = 0 whenever ci is not constant in i the last inequality in (39) is satis�ed

with strict inequality. This however contradicts the Euler condition qu0(c0) � �
P
i pi(e0)u

0(ci) hence

� cannot be zero either.

(iii) If u is unbounded below, since U0 > �1; from the participation constraint we obviously have

interiority and the previous line of proof applies. So assume u is bounded. If the Inada condition is

satis�ed and ci = c for at least one i > 0; clearly the Euler condition (8) must be satis�ed. If fact, it

must be that c0 = c as well. Since u is bounded, (7) must be satis�ed with equality by the argument

in (i). Q.E.D.

Proof of Lemma 2 Recall that a twice di¤erentiable function f : I ! R++, where I is a real

interval, is log-convex if and only if f 00f=f 02 � 1. Therefore, setting ĉi := ci + b, we note that

u(ci+1 + b)� u(ci + b) is log-convex in b if and only if

(u(ĉi+1)� u(ĉi))(u00(ĉi+1)� u00(ĉi))
(u0(ĉi+1)� u0(ĉi))2

� 1: (40)

First, suppose that u exhibits the NIARA property. Then the agent is more prudent than risk

averse, thus �u0 is a concave transformation of u (Gollier [16, p. 52]). In other words, there is a
nondecreasing concave function f such that

�u0(c) = f(u(c)) for all c:

Now, note that

u00(c) =
du0(c)

dc
= �d(�u

0(c)

dc
= �f 0(u(c))u0(c) = f 0(u(c))f(u(c)):

Using this result, and setting u(ĉi) = ui, we obtain

(u(ĉi+1)� u(ĉi))(u00(ĉi+1)� u00(ĉi))
(u0(ĉi+1)� u0(ĉi))2

=
(ui+1 � ui)(f 0(ui+1)f(ui+1)� f 0(ui)f(ui))

(f(ui+1)� f(ui))(f(ui+1)� f(ui))
: (41)

By the mean value theorem, there exists a real number ~u 2 [ui; ui+1] such that

f(ui+1)� f(ui) = f 0(~u)(ui+1 � ui)
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Therefore, (41) can be rewritten as

f(ui+1)f
0(ui+1)=f 0(~u)� f(ui)f 0(ui)=f 0(~u)

f(ui+1)� f(ui)
:

Since f 0 is nonincreasing, we have f 0(ui) � f 0(~u) � f 0(ui+1), which implies f 0(ui+1)=f 0(~u) � 1 �
f 0(ui)=f 0(~u). This, together with the fact that f is negative, leads to

f(ui+1)f
0(ui+1)=f 0(~u)� f(ui)f 0(ui)=f 0(~u)

f(ui+1)� f(ui)
� 1;

or equivalently
(u(ĉi+1)� u(ĉi))(u00(ĉi+1)� u00(ĉi))

(u0(ĉi+1)� u0(ĉi))2
� 1:

Hence, u(ci+1 + b)� u(ci + b) is log-convex in b.
On the other hand, suppose that u(ci+1 + b)� u(ci + b) is log-convex in b for all ci+1 > ci. Then,

dividing (40) by ĉi+1� ĉi and taking limits, we obtain the characterizing condition for NIARA.Q.E.D.

Proof of Proposition 3 Let u(c) = c1�
=(1�
) for c > 0. First, we want to establish the inequality

(u(ci+1 + b)� u(ci + b))(u00(ci+1 + b)� u00(ci + b))
(u0(ci+1 + b)� u0(ci + b))2

� 1 + 1



(42)

for all ci+1 + b > ci + b > 0.

To simplify notation, set ĉi = ci + b. Note u0(c) = c�
 , u00(c) = �
c�
�1. Therefore, (42) is
equivalent to

�


�
ĉ1�
i+1 � ĉ

1�

i

��
ĉ�1�
i+1 � ĉ�1�
i

�
(1� 
)

�
ĉ�
i+1 � ĉ

�

i

�2 � 1 + 




;

which can be rewritten as

�
2
�
1� (ĉi=ĉi+1)1�


��
1� (ĉi=ĉi+1)�1�


�
(1� 
)(1 + 
)

�
1� (ĉi=ĉi+1)�


�2 � 1:

Hence, since 0 � ĉi=ĉi+1 � 1, it is su¢ cient to show

�


�
1� x1�


�
(1� 
)

�
1� x�


� � 

�
1� x�1�


�
(1 + 
)

�
1� x�


� � 1 for all x 2 [0; 1]: (43)

By l�Hospital�s rule, we obtain

lim
x!1

1� x1�

1� x�
 = �

1� 




;

lim
x!1

1� x�1�

1� x�
 =

1 + 




:
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Hence, the left-hand side of (43) converges to 1 as x goes to 1. Since the left-hand side of (43) is

decreasing in x for x � 1, this establishes (43) and hence (42).
Next, we claim that the convexity property of the distribution function expressed in (23), together

with inequality (42), implies that the product

Fi(e)[u(ci+1 + b)� u(ci + b)]

is convex in (e; b). The Hessian of this product is given by

H =

24 F 00i (e)[u(ci+1 + b)� u(ci + b)] F 0i (e)[u
0(ci+1 + b)� u0(ci + b)]

F 0i (e)[u
0(ci+1 + b)� u0(ci + b)] Fi(e)[u

00(ci+1 + b)� u00(ci + b)]

35 :
Note that Fi(e) and u(ci+1 + b) � u(ci + b) are both nonnegative. Hence, the �rst diagonal entry of
H is nonnegative by (23), the second one is nonnegative by (42). By combining (23) and (42) we see

that also the determinant of H is nonnegative. Hence, H is positive semide�nite, which implies the

convexity of Fi(e)[u(ci+1 + b)� u(ci + b)] in (e; b). Now, the concavity of the agent�s problem follows

from the same steps as in Theorem 1. Q.E.D.

Proof of Proposition 4 By Remark 2, it is su¢ cient to establish concavity of

(e; b) 7!
Z y

y
u(c(y) + b)f(y; e) dy:

This is equivalent to establishing convexity of

(e; b) 7! �
Z y

y
u(c(y) + b)f(y; e) dy:

Using two steps of partial integration, the latter function can be rewritten as

�u(c(y) + b) + c0(y)u0(c(y) + b)) eF (y; e) + Z y

y

�
�d

2(u(c(y) + b))

dy2

� eF (y; e) dy: (44)

First, note that the expression �u(c(y) + b) is convex in (e; b) due to the concavity of u. Moreover,
the expression

c0(y)u0(c(y) + b)) eF (y; e)
is log-convex (hence convex) in (e; b), since u0(c(y) + b)) is log-convex in b for NIARA utility, eF (y; e)
is log-convex in e by assumption, and since log-convexity is preserved under multiplication. For the

third term in (44), note that

�d
2(u(c(y) + b))

dy2
eF (y; e)

is, by assumption, again a product of function that is log-convex in b and a function that is log-convex

in e. By the same argument as above, this product is convex in (e; b). Since convexity is preserved

under integration, the third term in (44) is thus convex as well. This completes the proof. Q.E.D.
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Proof of Proposition 5 By Remark 2, it is su¢ cient to consider the agent�s utility at date t = 1.

Moreover, due to quasiconvexity of the distribution function, the output technology can be represented

by a production function y = '(e; z), with '(e; z) nondecreasing concave in e¤ort e (Jewitt [23, Lemma

2]). Using this representation, we can write the agent�s date-1 utility asZ y

y
u(c(y) + b)f(y; e) dy = E[u(c('(e; z)) + b)]; (45)

where E[�] denotes expectations with respect to the state of nature z.
We want to show that the consumption scheme c is nondecreasing concave. As continuous version

of the optimality condition (10), we have

q

�u0(c(y))
= �+ �

fe(y; e0)

f(y; e0)
+ �a(c(y)); y 2 [y; y]: (46)

Hence, c is characterized by

c(y) = g�1
�
�+ �

fe(y; e0)

f(y; e0)
; �

�
;

with g(c; �) = q=(�u0(c)) � �a(c). By assumption, g is increasing and convex. Equivalently, g�1 is
increasing and concave. Since fe(y; e0)=f(y; e0) is nondecreasing concave in y by assumption, this

implies that c(y) is nondecreasing concave in y.

Now, since '(e; z) is concave in e and c(y) is nondecreasing concave in y, the composition c('(e; z))

is concave in e. Hence, the function c('(e; z))+b is concave in (e; b). Since u is nondecreasing concave,

and since concavity is preserved under taking expectations, this completes the proof. Q.E.D.
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