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1 Economic Environment

1.1 Preferences

A representative consumer has preferences defined over consumption Ct and hours worked
Ht, as described by the expected utility function

E
∞X
t=0

βt[ln(Ct)− γHt], (1)

where 1 > β > 0 and γ > 0. The linearity in hours worked can be motived along the lines
of Hansen (1985) and Rogerson (1988).

1.2 Technologies

The representative consumer produces output Yt with capital Kt and labor Ht according to
the constant-returns-to-scale technology described by

Yt = AtK
θ
t (η

tHt)
1−θ, (2)

where η > 1 measures the gross rate of labor-augmenting technological progress and where
1 > θ > 0. The technology shock At follows the first-order autoregressive process

ln(At) = (1− ρ) ln(A) + ρ ln(At−1) + εt, (3)

where A > 0, 1 > ρ > −1, and
εt ∼ N(0, σ2).

During each period, the representative consumer divides output Yt between consumption Ct

and investment It, subject to the resource constraint

Yt = Ct + It. (4)
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Investment It increases the capital stock according to

Kt+1 = (1− δ)Kt + It, (5)

where 1 > δ > 0.

1.3 Variables and Parameters

The model has implications for six variables: Yt, Ct, It, Ht, Kt, and At. The model has
eight parameters:

1 > β > 0 1 > δ > 0
γ > 0 A > 0

1 > θ > 0 1 > ρ > −1
η > 1 σ > 0

.

2 Characterization of Equilibrium Allocations

2.1 Optimization

Equilibrium allocations can be characterized by solving the representative consumer’s prob-
lem: choose sequences {Yt, Ct, It, Ht,Kt+1}∞t=0 to maximize the utility function (1) subject
to the constraints (2)-(5) for all t = 0, 1, 2, .... By combining (2), (4), and (5), this problem
can be simplified to one of choosing {Ct,Ht,Kt+1}∞t=0 to maximize

E
∞X
t=0

βt[ln(Ct)− γHt]

subject to
AtK

θ
t (η

tHt)
1−θ ≥ Ct +Kt+1 − (1− δ)Kt

for all t = 0, 1, 2, .... The first-order conditions for this problem can be written as

γCtHt = (1− θ)Yt (6)

and
1/Ct = βEt{(1/Ct+1)[θ(Yt+1/Kt+1) + 1− δ]} (7)

for all t = 0, 1, 2, ....
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2.2 Equilibrium Conditions

The equilibrium behavior of the six variables Yt, Ct, It,Ht,Kt, andAt is therefore determined
by the six equations

Yt = AtK
θ
t (η

tHt)
1−θ, (2)

ln(At) = (1− ρ) ln(A) + ρ ln(At−1) + εt, (3)

Yt = Ct + It, (4)

Kt+1 = (1− δ)Kt + It, (5)

γCtHt = (1− θ)Yt, (6)

and
1/Ct = βEt{(1/Ct+1)[θ(Yt+1/Kt+1) + 1− δ]} (7)

for all t = 0, 1, 2, ....

2.3 Transformed (Stationary) System

Equations (2)-(7) can be rewritten in terms of the six stationary variables yt = Yt/η
t, ct =

Ct/η
t, it = It/η

t, ht = Ht, kt = Kt/η
t, and at = At as

yt = atk
θ
th
1−θ
t , (2)

ln(at) = (1− ρ) ln(A) + ρ ln(at−1) + εt, (3)

yt = ct + it, (4)

ηkt+1 = (1− δ)kt + it, (5)

γctht = (1− θ)yt, (6)

and
η/ct = βEt{(1/ct+1)[θ(yt+1/kt+1) + 1− δ]} (7)

for all t = 0, 1, 2, ....

2.4 Steady State

In the absence of shocks, the economy converges to a steady state, in which each of the six
stationary variables is constant, with yt = y, ct = c, it = i, ht = h, kt = k, and at = a for all
t = 0, 1, 2, ..... Equation (3) immediately provides the solution a = A.
Now suppose that the steady-state value y is in hand, and use (7) to solve for

k =

µ
θ

η/β − 1 + δ

¶
y.
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Use (5) to solve for

i =

·
θ(η − 1 + δ)

η/β − 1 + δ

¸
y,

use (4) to solve for

c =

½
1−

·
θ(η − 1 + δ)

η/β − 1 + δ

¸¾
y,

and use (6) to solve for

h =

µ
1− θ

γ

¶½
1−

·
θ(η − 1 + δ)

η/β − 1 + δ

¸¾−1
.

Finally, substitute these results back into (2) to solve for y:

y = a1/(1−θ)
µ

θ

η/β − 1 + δ

¶θ/(1−θ)µ
1− θ

γ

¶½
1−

·
θ(η − 1 + δ)

η/β − 1 + δ

¸¾−1
.

These equations show how the steady-state values y, c, i, h, k, and a depend on the
parameters β, γ, θ, η, δ, and A. By contrast, the parameters ρ and σ have no impact on
the model’s steady state.

2.5 Linearized System

Equations (2)-(7) can be log-linearized to describe the behavior of the stationary variables
as they fluctuate about their steady-state values in response to shocks. Let ŷt = ln(yt/y),
ĉt = ln(ct/c), ı̂t = ln(it/i), ĥt = ln(ht/h), k̂t = ln(kt/k), and ât = ln(at/a). Then first-order
Taylor approximations to (2)-(7) yield

ŷt = ât + θk̂t + (1− θ)ĥt, (2)

ât = ρât−1 + εt, (3)

(η/β − 1 + δ)ŷt = [(η/β − 1 + δ)− θ(η − 1 + δ)]ĉt + θ(η − 1 + δ)̂ıt, (4)

ηk̂t+1 = (1− δ)k̂t + (η − 1 + δ)̂ıt, (5)

ĉt + ĥt = ŷt, (6)

and
0 = (η/β)ĉt − (η/β)Etĉt+1 + (η/β + 1− δ)Etŷt+1 − (η/β + 1− δ)k̂t+1 (7)

for all t = 0, 1, 2, ....
These equations show that the model’s dynamics depend on the model’s parameters β,

θ, η, δ, and ρ. By contrast, the parameters γ and A have no impact on the dynamics; they
serve only to determine the steady state. In this linearized model, of course, the standard
deviation parameter σ determines the size of the technology shocks, but has no effect on the
shapes of the impulse responses.
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2.6 The Linear System in Matrix Form

Let
κ = η/β − 1 + δ

and
λ = η − 1 + δ.

In addition, let
f0t =

£
ŷt ı̂t ĥt

¤0
and

s0t =
£
k̂t ĉt

¤0
.

Then (2), (4), and (6) can be written as

Af0t = Bs0t + Cât, (8)

where

A =

 1 0 θ − 1
κ −θλ 0
1 0 −1

 ,
B =

 θ 0
0 κ− θλ
0 1

 ,
and

C =

 10
0

 .
Equations (5) and (7) can be written as

DEts
0
t+1 + FEtf

0
t+1 = Gs0t +Hf0t , (9)

where

D =

·
η 0
κ η/β

¸
,

F =

·
0 0 0
−κ 0 0

¸
,

G =

·
1− δ 0
0 η/β

¸
,

and

H =

·
0 λ 0
0 0 0

¸
.
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Finally, note that (3) implies that

Etât+j = ρjât

for all j = 0, 1, 2, ....

3 Solving the Model

3.1 The Blanchard-Kahn Procedure

Rewrite (8) as
f0t = A−1Bs0t +A−1Cât.

When substituted into (9), this last result yields

(D + FA−1B)Ets
0
t+1 = (G+HA−1B)s0t + (HA−1C − FA−1Cρ)ât

or, more simply,
Ets

0
t+1 = Ks0t + Lât, (10)

where
K = (D + FA−1B)−1(G+HA−1B)

and
L = (D + FA−1B)−1(HA−1C − FA−1Cρ).

Below, it is shown that the 2 × 2 matrix K has one eigenvalue outside the unit circle
and one eigenvalue inside the unit circle, implying that the system has a unique solution.
Exploiting this result, write K as

K =M−1NM,

where

N =

·
N1 0
0 N2

¸
and

M =

·
M11 M12

M21 M22

¸
.

The diagonal elements of N are the eigenvalues of K, with N1 inside the unit circle and N2

outside the unit circle. The columns of M−1 are the eigenvectors of K. In addition, let

L =

·
L1
L2

¸
.
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Now (10) can be rewritten as·
M11 M12

M21 M22

¸
Ets

0
t+1 =

·
N1 0
0 N2

¸ ·
M11 M12

M21 M22

¸
s0t +

·
M11 M12

M21 M22

¸ ·
L1
L2

¸
ât

or
Ets

1
1t+1 = N1s

1
1t +Q1ât (11)

and
Ets

1
2t+1 = N2s

1
2t +Q2ât, (12)

where
s11t =M11k̂t +M12ĉt, (13)

s12t =M21k̂t +M22ĉt, (14)

Q1 =M11L1 +M12L2,

and
Q2 =M21L1 +M22L2.

Since N2 lies outside the unit circle, (12) can be solved forward to obtain

s12t = (1/N2)Ets
1
2t+1 − (Q2/N2)ât

= −(Q2/N2)
∞X
j=0

(1/N2)
jEtât+j

= −(Q2/N2)
∞X
j=0

(ρ/N2)
jât

= −
µ

Q2/N2

1− ρ/N2

¶
ât

=

µ
Q2

ρ−N2

¶
ât.

Use this result, along with (14), to solve for ĉt:

ĉt = −(M21/M22)k̂t + (1/M22)

µ
Q2

ρ−N2

¶
ât

or, more simply,
ĉt = S1k̂t + S2ât, (15)

where
S1 = −M21/M22
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and

S2 = (1/M22)

µ
Q2

ρ−N2

¶
.

Equation (13) now provides a solution for s11t:

s11t = (M11 +M12S1)k̂t +M12S2ât.

Substitute this result into (11) to obtain

(M11 +M12S1)k̂t+1 = N1(M11 +M12S1)k̂t + (Q1 +M12S2 −M12S2ρ)ât

or, more simply,
k̂t+1 = S3k̂t + S4ât, (16)

where
S3 = N1

and
S4 = (Q1 +N1M12S2 −M12S2ρ)/(M11 +M12S1).

Finally, return to

f0t = A−1Bs0t +A−1Cât

= A−1B
·
k̂t
ĉt

¸
+A−1Cât

= A−1B
·
1
S1

¸
k̂t +

½
A−1C +A−1B

·
0
S2

¸¾
ât

or, more simply,
f0t = S5k̂t + S6ât, (17)

where

S5 = A−1B
·
1
S1

¸
and

S6 = A−1C +A−1B
·
0
S2

¸
.

Equations (3) and (15)-(17) can now be combined to write the model’s solution as

st+1 = Πst +Wεt+1 (18)

and
ft = Ust, (19)
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where
st =

£
k̂t ât

¤0
,

ft =
£
ŷt ı̂t ĥt ĉt

¤
,

Π =

·
S3 S4
0 ρ

¸
,

W =

·
0
1

¸
,

and

U =

·
S5 S6
S1 S2

¸
.

3.2 Preliminary Calculations

Using the specific matrices A, B, C, D, F , G, and H as defined above,

A−1 =

 1
θ

0 1
θ
(θ − 1)

κ
θ2λ

− 1
θλ

κ(θ−1)
θ2λ

1
θ

0 −1
θ

 ,

A−1B =

 1 1
θ
(θ − 1)

κ
θλ

θ2λ−κ
θ2λ

1 −1
θ

 ,
FA−1B =

·
0 0
−κ −κ

θ
(θ − 1)

¸
,

HA−1B =
·

κ
θ

θ2λ−κ
θ2

0 0

¸
,

D + FA−1B =
·
η 0
0 η

β
− κ

θ
(θ − 1)

¸
,

(D + FA−1B)−1 =

"
1
η

0

0 βθ
ηθ−βκ(θ−1)

#
,

G+HA−1B =

"
1− δ + κ

θ
θ2λ−κ
θ2

0 η
β

#
,

and

K = (D + FA−1B)−1(G+HA−1B) =

"
κ+θ(1−δ)

ηθ
θ2λ−κ
ηθ2

0 ηθ
ηθ−κβ(θ−1)

#
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or

K =

·
K11 K12

0 K22

¸
,

where

K11 =
η − β(1− θ)(1− δ)

βηθ
,

K12 =
βηθ2 − η + β(1− θ2)(1− δ)

βηθ2
,

and

K22 =
ηθ

η − β(1− θ)(1− δ)
.

In addition,

A−1C =

 1
θ
κ
θ2λ
1
θ

 ,
HA−1C =

·
κ
θ2

0

¸
,

FA−1Cρ =
·

0
−κρ

θ

¸
,

and

L = (D + FA−1B)−1(HA−1C − FA−1Cρ) =

"
κ
ηθ2

βκρ
ηθ−βκ(θ−1)

#
or

L =

·
L1
L2

¸
,

where

L1 =
η − β(1− δ)

βηθ2

and

L2 =
ρ[η − β(1− δ)]

η − β(1− θ)(1− δ)
.

The eigenvalues and eigenvectors of K are

K22 and
·

1
(K22 −K11)/K12

¸
and

K11 and
·
1
0

¸
.
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Hence

N1 = K22 =
ηθ

η − β(1− θ)(1− δ)
,

N2 = K11 =
η − β(1− θ)(1− δ)

βηθ
,

M11 = 0,

M12 = K12/(K22 −K11),

M21 = 1,

and
M22 = −K12/(K22 −K11).

In addition,
Q1 =M11L1 +M12L2 = K12L2/(K22 −K11)

and
Q2 =M21L1 +M22L2 = L1 −K12L2/(K22 −K11).

Hence,

S1 = −M21/M22 =
K22 −K11

K12
,

S2 = (1/M22)

µ
Q2

ρ−N2

¶
=
(K22 −K11)L1 −K12L2

K12(K11 − ρ)
,

S3 = N1 = K22,

S4 = (Q1 +N1M12S2 −M12S2ρ)/(M11 +M12S1)

=
K12L2

K22 −K11
+
(K22 − ρ)[(K22 −K11)L1 −K12L2]

(K22 −K11)(K11 − ρ)
,

S5 = A−1B
·
1
S1

¸
=

 1− ¡1−θ
θ

¢
S1

S1 +
h

η/β−1+δ
θ2(η−1+δ)

i
(θ − S1)

1− ¡1
θ

¢
S1

 ,
and

S6 = A−1C +A−1B
·
0
S2

¸
=


1
θ
− ¡1−θ

θ

¢
S2

S2 +
h

η/β−1+δ
θ2(η−1+δ)

i
(1− S2)

1
θ
− ¡1

θ

¢
S2

 .
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3.3 Final Calculations

These results can be summarized as follows. Let

K11 =
η − β(1− θ)(1− δ)

βηθ
,

K12 =
βηθ2 − η + β(1− θ2)(1− δ)

βηθ2
,

K22 =
ηθ

η − β(1− θ)(1− δ)
,

L1 =
η − β(1− δ)

βηθ2
,

and

L2 =
ρ[η − β(1− δ)]

η − β(1− θ)(1− δ)
.

Then
S1 =

K22 −K11

K12
,

S2 =
(K22 −K11)L1 −K12L2

K12(K11 − ρ)
,

S3 = K22,

S4 =
K12L2

K22 −K11
+
(K22 − ρ)[(K22 −K11)L1 −K12L2]

(K22 −K11)(K11 − ρ)
,

S5 =

 1− ¡1−θ
θ

¢
S1

S1 +
h

η/β−1+δ
θ2(η−1+δ)

i
(θ − S1)

1− ¡1
θ

¢
S1

 ,
and

S6 =


1
θ
− ¡1−θ

θ

¢
S2

S2 +
h

η/β−1+δ
θ2(η−1+δ)

i
(1− S2)

1
θ
− ¡1

θ

¢
S2

 .
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3.4 Existence and Uniqueness

As indicated above, the existence and uniqueness of the model’s solution requires that K22

lie inside the unit circle and K11 lie outside the unit circle. In fact, it can be verified that
these conditions always hold, given the restrictions that have been placed directly on the
model’s parameters.
Note first that

K22 =
ηθ

η − β(1− θ)(1− δ)
> 0.

In addition,

K22 − 1 =
η(θ − 1) + β(1− θ)(1− δ)

η − β(1− θ)(1− δ)

=
β(1− θ)(1− δ − η/β)

η − β(1− θ)(1− δ)
< 0.

These two inequalities imply that 1 > K22 > 0 so that, as required, K22 lies inside the unit
circle.
Next, consider that

K11 − 1 =
η(1− βθ)− β(1− θ)(1− δ)

βηθ

=
(1− βθ)(η − 1 + δ) + (1− βθ)(1− δ)− β(1− θ)(1− δ)

βηθ

=
(1− βθ)(η − 1 + δ) + [(1− βθ)− β(1− θ)](1− δ)

βηθ

=
(1− βθ)(η − 1 + δ) + (1− β)(1− δ)

βηθ
> 0.

Hence, K11 > 1 so that, again as required, K11 lies outside the unit circle.

4 Estimating the Model

Suppose that data {dt}Tt=1 are available for output, consumption, and hours worked, so that
dt =

£
ŷt ĉt ĥt

¤0
for all t = 0, 1, 2, .... Then (18) and (19) give rise to an empirical model of the form

st+1 = Ast +Bεt+1, (20)
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dt = Cst + vt, (21)

and
vt+1 = Dvt + ξt+1, (22)

where A = Π, B =W , C is formed using the first, fourth, and third rows of U , vt is a 3× 1
vector of serially correlated residuals, and the serially uncorrelated innovations εt+1 satisfy

Eε2t+1 = V1 = σ2,

Eξt+1ξ
0
t+1 = V2,

and
Eεt+1ξ

0
t+1 = 0(1×3).

Altug (1989), McGrattan (1994), Hall (1996), and McGrattan, Rogerson, and Wright (1997)
follow Sargent (1989) by assuming that the 3× 3 matrices D and V2 are diagonal, implying
that the residuals are uncorrelated across variables. Here, no such restrictions will be im-
posed: the residuals are allowed to follow an unconstrained, first-order vector autoregression.
Define the augmented state vector

xt =

·
st
vt

¸
.

Also, define

ηt+1 =

·
Bεt+1
ξt+1

¸
.

Then (20)-(22) can be rewritten as

xt+1 = Fxt + ηt+1 (23)

dt = Gxt (24)

where

F =

·
A 0(2×3)
0(3×2) D

¸
,

G =
£
C I(3×3)

¤
,

and ηt+1 is serially uncorrelated with

ηt+1 ∼ N(0, Q)

and

Q = Eηt+1η
0
t+1 =

·
BV1B

0 0(2×3)
0(3×2) V2

¸
. (25)
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The model defined by (23)-(25) is in state-space form; hence, the likelihood function
for the sample {dt}Tt=1 can be constructed as outlined by Hamilton (1994, Ch.13). For
t = 1, 2, ..., T and j = 0, 1, let

x̂t|t−j = E(xt|dt−j, dt−j−1, ..., d1),

Σt|t−j = E(xt − x̂t|t−j)(xt − x̂t|t−j)0,

and
d̂t|t−j = E(dt|dt−j, dt−j−1, ..., d1).

Then, in particular, (23) implies that

x̂1|0 = Ex1 = 0 (26)

and
vec(Σ1|0) = vec(Ex1x

0
1) = [I(25×25) − (F ⊗ F )]−1vec(Q). (27)

Now suppose x̂t|t−1 and Σt|t−1 are in hand and consider calculating x̂t+1|t and Σt+1|t. Note
first from (24) that

d̂t|t−1 = Gx̂t|t−1.

Hence
ut = dt − d̂t|t−1 = G(xt − x̂t|t−1)

is such that
Eutu

0
t = GΣt|t−1G0.

Next, using Hamilton’s (p.379, eq.13.2.13) formula for updating a linear projection,

x̂t|t = x̂t|t−1 + [E(xt − x̂t|t−1)(dt − d̂t|t−1)0][E(dt − d̂t|t−1)(dt − d̂t|t−1)0]−1ut
= x̂t|t−1 + Σt|t−1G0(GΣt|t−1G0)−1ut.

Hence, from (23),
x̂t+1|t = Fx̂t|t−1 + FΣt|t−1G0(GΣt|t−1G0)−1ut.

Using this last result, along with (23) again,

xt+1 − x̂t+1|t = F (xt − x̂t|t−1) + ηt+1 − FΣt|t−1G0(GΣt|t−1G0)−1ut.

Hence,
Σt+1|t = Q+ FΣt|t−1F 0 − FΣt|t−1G0(GΣt|t−1G0)−1GΣt|t−1F 0.

These results can be summarized as follows. Let

x̂t = x̂t|t−1
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and
Σt = Σt|t−1.

Then
x̂t+1 = Fx̂t +Ktut

and
dt = Gx̂t + ut,

where
x̂t = E(xt|dt−1, dt−2, ..., d1),

ut = dt −E(dt|dt−1, dt−2, ..., d1),
Eutu

0
t = GΣtG

0 = Ωt,

the sequences for Kt and Σt can be generated recursively using

Kt = FΣtG
0(GΣtG

0)−1

and
Σt+1 = Q+ FΣtF

0 − FΣtG
0(GΣtG

0)−1GΣtF
0,

and initial conditions x̂1 and Σ1 are provided by (26) and (27).
The innovations {ut}Tt=1 can then be used to form the likelihood function for {dt}Tt=1 as

lnL = −3T
2
ln(2π)− 1

2

TX
t=1

ln |Ωt|− 1
2

TX
t=1

u0tΩ
−1
t ut.

5 Evaluating the Model

5.1 Variance Decompositions

Consider (23), which can be rewritten as

xt = Fxt−1 + ηt

or
(I − FL)xt = ηt

xt =
∞X
j=0

F jηt−j .

This implies

xt+k =
∞X
j=0

F jηt+k−j,
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Etxt+k =
∞X
j=k

F jηt+k−j,

xt+k − Etxt+k =
k−1X
j=0

F jηt+k−k,

and hence

Σx
k = E(xt+k −Etxt+k)(xt+k −Etxt+k)

0

= Q+ FQF 0 + F 2QF 20 + ...+ F k−1QF k−10.

In addition, (23) implies

vec(Σx) = [I(25x25) − (F ⊗ F )]−1vec(Q).

Thus, (24) implies that

Σd
k = E(dt+k −Etdt+k)(dt+k −Etdt+k)

0 = GΣx
kG

0

and
Σd = GΣdG0.

Let Θ denote the vector of estimated parameters, and let H denote the covariance matrix
of these estimated parameters, so that asymptotically,

Θ ∼ N(Θ0, H).

Note that elements of Σd
k and Σd can be expressed as nonlinear functions of Θ,

Σd
k = g(Θ),

so that asymptotic standard errors for these elements can be found by calculating

∇gH∇g0.

In practice, the gradient ∇g can be evaluated numerically; Runkle (1987) finds that this
numerical technique performs about as well as a more elaborate, bootstrapping procedure.

5.2 Testing for Stability

The procedures described by Andrews and Fair (1988) can be used to test for the stability
of the model’s estimated parameters. Let Θ1 and Θ2 denote the estimated parameters from
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two disjoint subsamples, and let H1 and H2 denote the associated covariance matrices, so
that asymptotically,

Θ1 ∼ N(Θ10,H1)

and
Θ2 ∼ N(Θ20,H2).

One way of testing for the stability of all of the estimated parameters is with the likelihood
ratio statistic

LR = 2[lnL(Θ1) + lnL(Θ2)− lnL(Θ)],
where lnL(Θ1), lnL(Θ2), and lnL(Θ) are the maximized log likelihood functions for the
first subsample, the second subsample, and the entire sample. According to Andrews and
Fair, this statistic will be asymptotically distributed as a chi-square random variable with q
degrees of freedom under the null hypothesis of stability, where q is the number of estimated
parameters.
Alternatively, the stability of some or all of the parameters can be tested with the Wald

statistic
W = g(Θ1,Θ2)0(GĤG0)−1g(Θ1,Θ2),

when the stability restrictions are written as

g(Θ1,Θ2) = 0

and where

G =
∂g(Θ1,Θ2)

∂(Θ1,Θ2)

and

Ĥ =

·
H1 0
0 H2

¸
.

If Θ1
q and Θ2

q denote the subsets of Θ
1 and Θ2 of interest, and if H1

q and H2
q denote the

covariance matrices of Θ1
q and Θ2

q, then this Wald statistic can be written more simply as

W = (Θ1q −Θ2q)
0(H1

q +H2
q )
−1(Θ1

q −Θ2
q).

According to Andrews and Fair, this statistic will be asymptotically distributed as a chi-
square random variable with q degrees of freedom under the null hypothesis of stability,
where q is the number of parameters being tested for stability.
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5.3 Forecast Accuracy

Forecasts from the model can be generated as follows. Using (24),

Etdt+k = GEtxt+k.

For k = 1,
Etxt+1 = x̂t+1|t = x̂t+1,

and for k > 1,
Etxt+k = F k−1Etxt+1 = F k−1x̂t+1,

so for any k ≥ 1,
Etdt+k = GF k−1x̂t+1.

To evaluate the model’s forecast accuracy, let {εt}Tt=1 denote a sequence of k-step-ahead
forecast errors from the model, and let {ηt}Tt=1 denote a sequence of k-step-ahead forecast
errors from an alternative model (for example, an unconstrained VAR). Let g(ε) and g(η)
denote the corresponding mean squared errors, and let lt denote the ”loss differentials”
defined by Diebold and Mariano (1995):

g(ε) =
1

T

TX
t=1

ε2t ,

g(η) =
1

T

TX
t=1

η2t ,

and
lt = η2t − ε2t .

A comparison of g(η) and g(ε) can provide an informal assessment of the model’s forecast
accuracy. A formal test, suggested by Diebold and Mariano, is to form the sample mean loss
differential,

l =
1

T

TX
t=1

lt,

and to rely on the asymptotic normality of l under the null hypothesis of equal forecast
accuracy: √

Tl ∼ N(0, f),

where f can be estimated by

f = γ(0) + 2
k−1X
τ=1

γ(τ)
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with

γ(τ) =
1

T

TX
t=τ+1

ltlt−τ ,

using the fact that k-step-ahead forecast errors are at most (k−1)-dependent. In particular,
the test statistic

S =
lp
f/T

has a standard normal asymptotic distribution.
In principle, this test might be criticized for failing to account for the uncertainty asso-

ciated with the model’s parameters, which are estimated rather than known for sure. But
West (1996) shows that in cases like these, where the forecast errors are uncorrelated with
the predictors, this parameter uncertainty is asymptotically irrelevant.

5.4 Producing Smoothed Estimates of the Shocks

It may also be useful to use the estimated model to produce estimates of the real business
cycle’s technology shock and the hybrid model’s three residuals. As before, for t = 1, 2, ..., T
and j = 0, 1, let

x̂t|t−j = E(xt|dt−j, dt−j−1, ..., d1),
Σt|t−j = E(xt − x̂t|t−j)(xt − x̂t|t−j)0,

and
d̂t|t−j = E(dt|dt−j, dt−j−1, ..., d1).

Also, let
ut = dt − d̂t|t−1 = G(xt − x̂t|t−1)

so that again as before,
Eutu

0
t = GΣt|t−1G0.

Then
ẑ1|0 = Ez1 = 0(5×1)

and
vec(Σ1|0) = vec(Ex1x

0
1) = [I(25×25) − (F ⊗ F )]−1vec(Q0).

From these starting values, the sequences {x̂t|t}Tt=1, {x̂t|t−1}Tt=1, {Σt|t}Tt=1, and {Σt|t−1}Tt=1 can
be generated recursively using

ut = dt −Gx̂t|t−1,

x̂t|t = x̂t|t−1 + Σt|t−1G0(GΣt|t−1G0)−1ut,

x̂t+1|t = Fx̂t|t,
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Σt|t = Σt|t−1 − Σt|t−1G0(GΣt|t−1G0)−1GΣt|t−1,

and
Σt+1|t = Q+ FΣt|tF 0

for t = 1, 2, ..., T .
Hamilton (Ch.13, Sec.6, pp.394-397) shows how to use these sequences to generate a

sequence of smoothed estimates {x̂t|T}Tt=1, where

x̂t|T = E(xt|dT , dT−1, ..., d1).

To begin, construct a sequence {Jt}Tt=1 using Hamilton’s equation (13.6.11):

Jt = Σt|tF 0Σ−1t+1|t.

Then note that x̂T |T is just the last element of {x̂t|t}Tt=1. From this terminal condition, the
rest of the sequence can be generated recursively using Hamilton’s equation (13.6.16):

x̂T−j|T = x̂T−j|T−j + JT−j(x̂T−j+1|T − x̂T−j+1|T−j)

for j = 1, 2, ..., T − 1.
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