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Consider a simple RBC model where output is produced with capital,
labor of the form
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The FOC of the households are given by:
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The steady state of the model is:
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Fix R, p,d,n,(. The steady state values are
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The log linearized first order conditions can be written as
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This is a system of 7 equations in 7 variables. The exogenous shock is
(; the state is k¢, the control variables are c, i, yt, N¢,7¢. There are five
static equation, one expectational equation and the law of motion of the
technological disturbance.

The model in Uhlig’s toolkit format is in rbcl.m



