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1. Descriptions and generalizations
1.1 Descriptive statistical statements

Definition:

Descriptive statistical statements are statements about the
frequency distribution of properties (or quantities derived
thereof) in a specified set of units.

Formal framework: statistical variables. Symbolic notation:

X : Ω −→ X

X is the name of the variable, Ω is the reference set, a finite set of actually
observed or assumed cases, and X is the property space (domain).

If the reference set consists of not actually observed cases, it is
nevertheless required, for descriptive statements, that one can reasonably
assume that the cases do exist, or have existed in the past.

Simply stated: one cannot make descriptive statements about the future.
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1.2 Defining descriptive generalization

Starting point: X : Ω −→ X , representing the observations.

Ω, the set of observed cases, is then considered as subset of another set,
Ω∗, for which one can assume an analogously defined statistical variable:

X ∗ : Ω∗ −→ X

having the same property space as X .

This framework allows one to define: A descriptive generalization consists
in using the observed values of X for making descriptive statements about
the distribution of X ∗ in Ω∗.

It is noteworthy that the desired generalization has the same linguistic
form as the statistical statements derived from the observations; there only
is a change in the reference set.
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1.3 Data-generating and fact-generating processes

I will not discuss here problems of statistical inference.

It is obvious, however, that the justification of a descriptive generalization
must be based on the data generating process that has generated the
observations.

Note that I use the following distinction:

– The term ‘data generating process’ is used to refer to a process that
generates data, that is, information about already existing facts.

– In contrast, when referring to processes that generate new facts
(outcomes), I use the term ‘fact-generating process’.
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1.3 Data-generating and fact-generating processes (cont’d)

As an example think of a learning frame in which students can acquire
capabilities of a specified kind, and assume that individual learning results
can be captured by values of a variable, say Y .

One can firstly think of a fact-generating process in which each student
eventually acquires a particular capability.

Afterwards, a data-generating process can take place, that is, a process in
which a researcher represents students’ capabilities by particular values
of Y .
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1.4 Limitations of descriptive generalization

Descriptive generalization intends to enlarge the knowledge about
statistical facts, meaning here statistical distributions as they are actually
realized in specified populations.

This very interest requires a narrow understanding of ‘population’.

Limitations become obvious when the justification of descriptive
generalization is based on probability sampling.

This requires that Ω can be viewed as a probability sample from Ω∗.

Consequently, Ω∗ can only consist of units having a positive selection
probability when and where the sample is drawn.
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1.4 Limitations of descriptive generalization (cont’d)

Particular difficulties arise when the interest concerns historical processes.

The basic question then is, How to define a population of processes?

From a methodological point of view, such populations are best defined as
cohorts.

Being interested in descriptive generalizations, this requires to adopt a
historical perspective that is confined to mostly completed processes.
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1.5 Modal generalization with rules

I now consider a different kind of generalization where the goal is, not a
descriptive statement about a set of units, but a predictive rule. (For more
about this distinction, see Rohwer 2014.)

I use the term ‘rule’ in a general sense for statements having the form

If . . ., then . . .

Different kinds of rules can be distinguished w.r.t. the modalities used in
formulating the then-part; for example: If . . ., then . . . is possible, or
probable, or necessary, or normatively required.

Empirical research is primarily interested in predictive rules.

Example: Let ω denote an individual who has finished school in Germany:
If at least one of ω’s parents has finished school with an Abitur, then it is
highly probable that also ω has an Abitur.

Note that this is a generic rule, meaning that its object is specified only by
values of variables.
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1.5 Modal generalization with rules (cont’d)

Important distinction:

– A static predictive rule formulates a relationship between properties of a
unit.

The general form is: If ω has property x , then ω (probably) has
property y .

This kind of predictive rule is exemplified by the above example.

– A dynamic predictive rule relates to a fact-generating process that
generates an outcome that is to be predicted.

Example: If ω (a generically specified individual) regularly participates
in the instructions, she will (probably) be successful in the final exam.
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1.6 Formulating predictive rules with variables

In the following, I only consider predictive rules which include a
probabilistic qualification of the prediction.

When formulating such rules with variables, a first question concerns how
to understand the probabilistic qualification.

There are two forms:

a) Qualitative: If X=x , then Y=y is probable (in some qualified sense).

b) Quantitative: If X=x , then Pr(Y=y) = . . . [a specific, actually given
or assumed, numerical value].

Empirical research with statistical methods regularly uses quantitative
formulations.
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1.6 Formulating predictive rules with variables (cont’d)

The presupposition of quantifiable probabilities allows one to use
mathematical functions for formulating the relationship between the if -
and the then-part of the rule.

As a general form one can use

x −→ Pr[Y |X=x ]

to be read as a function that assigns to each value x in the domain of X a
conditional probability distribution of Y .

Note: I use square brackets when referring to the distribution of a variable
(to the left of the conditioning bar).
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1.6 Formulating predictive rules with variables (cont’d)

If Y is a discrete variable, one can also use specific functions having the
form

x −→ Pr(Y=y |X=x)

for each value y in the domain of Y .

Another often used special form is

x −→ E(Y |X=x)

which formulates the relationship with conditional expectations of Y .

Starting from such general formulations, one can think of more specific
parametric forms.

Whatever the finally chosen functional form, these forms must be
distinguished from numerically specified functions which actually allow one
to calculate values of the function.
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1.7 Predictive rules vs. descriptive statements

Predictive rules must be distinguished from descriptive statistical
statements.

– While descriptive statistical statements concern a reference set of
particular units, a predictive rule concerns a generic unit which is only
specified by values of variables.

– Correspondingly, there is a conceptual difference between frequencies,

P(Y=y |X=x)

which presuppose a finite reference set, and probabilities,

Pr(Y=y |X=x)

which concern a generic unit.

I therefore use different symbols: P for frequencies, and Pr for
probabilities.

13 / 158

1.7 Predictive rules vs. descriptive statements (cont’d)

A random generator can serve to illustrate the distinction. I use ‘throwing
a die’ as an example.

The random generator can be defined by a rule, e.g.,

If the die is thrown, there are six possible outcomes, each can
occur with the same probability (1/6).

This rule is to be distinguished from a descriptive statement about
frequencies of outcomes in an actually realized set of throws.

Assume the die is thrown 100 times. Results can be represented by a
statistical variable Z : Ω −→ Z := {1, . . . , 6}. P[Z ], the distribution of Z ,
must be distinguished (numerically and conceptually) from the probability
distribution which is used in the formulation of the rule describing the
random generator.
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1.7 Predictive rules vs. descriptive statements (cont’d)

Since predictive rules are different from descriptive statements (and
different from analytical truths), they cannot be true or false.

They can only be pragmatically justified, that is, with arguments showing
that, and how, a rule can help people in their activities.

Since there is a formal equivalence of frequency and probability functions,
researchers often ignore the conceptual distinction and present their
observed frequencies in terms of probabilities.

This should be avoided in order to remind of the distinction between
descriptive statements and predictive rules.
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1.8 Statistical and modal variables

The conceptual distinction between descriptive statements and predictive
rules suggests to make a corresponding distinction between the kinds of
variables involved.

As already explained, descriptive statistical statements are derived from
statistical variables which are known, or assumed, to represent realized
properties of existing units.

This is also true for conditional frequencies:

P(Y=y |X=x) is derived from a statistical variable, (X ,Y ), which is
defined for a particular reference set.
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1.8 Statistical and modal variables (cont’d)

When considering instead conditional probabilities,

Pr(Y=y |X=x)

one must recognize that there are two different conceptual frameworks:

1) One can assume that the conditional probabilities are derived from a
random variable (X ,Y ).

This understanding presupposes the existence of joint and marginal
probability distributions of the two variables.

2) The situation is different when conditional probabilities serve to
formulate probabilistic predictive rules.
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1.8 Statistical and modal variables (cont’d)

In the second framework, X is used to formulate a hypothetical
assumption, and so it is neither a random variable (having a probability
distribution) nor a statistical variable (having a statistical distribution).

Consequently, also Y has no unconditional distribution, but can only be
viewed as a random variable for specified values of X .

In order to remind of the second context, I speak of modal variables and
use a special notation: Ẍ instead of X , and Ẏ instead of Y .

The symbolic notation for a probabilistic predictive rule then becomes

x −→ Pr[Ẏ | Ẍ=x ]

to be read as:

IF Ẍ has the value x , THEN one can consider Ẏ as a random variable
with distribution Pr[Ẏ | Ẍ=x ].
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2. Descriptive models
2.1 Descriptive models based on statistical variables

Descriptive models are tools for describing distributions of statistical
variables.

Starting point is a statistical variable, X : Ω −→ X , often consisting of
several components.

A descriptive model aims to describe the distribution of X , denoted by
P[X ], or aspects of this distribution, by using a simpler mathematical form.

Example: describing the distribution of students’ ‘ability scores’ (observed
in a sample or posited in a population) by a normal distribution.
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2.2 Regression models with statistical variables

If X consists of two or more components, one is often interested in
descriptions of conditional distributions.

This is done with regression functions and regression models.

The starting point is given by a two-dimensional statistical variable, say

(X ,Y ) : Ω −→ X × Y

A general regression function is a function

x −→ P[Y |X=x ]

which assigns to each value x ∈ X the conditional frequency distribution
of Y , as given by the statistical variable (data).
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2.2 Regression models with statistical variables (cont’d)

In order to create a descriptive regression model, one uses a simpler
mathematical representation of the conditional distribution, say

g(x ; θ) ≈ P[Y |X=x ]

where θ is a parameter vector.

A general regression model is then given by the function x −→ g(x ; θ).

Special regression models are used to represent aspects of P[Y |X=x ].

Of widespread use is regression with mean values: m(x ; θ) ≈ M(Y |X=x).

Example: M(Y |X=x) ≈ α+ xβ

This model approximates the conditional mean value of Y by a linear
function of the values of X that are used as conditions.
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2.3 Descriptive models as tools

Descriptive models are primarily tools for comprehending aspects of
complex data sets.

As suggested by R. A. Fisher (1922: 311), this is a primary task of
statistical methods:

Briefly, and in its most concrete form, the object of statistical
methods is the reduction of data. A quantity of data, which
usually by its mere bulk is incapable of entering the mind, is to
be replaced by relatively few quantities which shall adequately
represent the whole, or which, in other words, shall contain as
much as possible, ideally the whole, of the relevant information
contained in the original data.
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2.3 Descriptive models as tools (cont’d)

Descriptive models are also useful tools for descriptive generalizations.

Since these models relate to statistical variables, there is no conceptual
difference whether the reference set is a sample or a population.

Starting from a model intended to describe a population allows one to
think in terms of estimating its parameters with the information from a
sample.

Notice that the term ‘estimation’ has a clear meaning in this context: It
means that one aims to find values of model parameters which are defined
by their hypothetical calculation for the complete population.

This entails that already their definition depends not only on the specified
model, but also on a particular method for calculating its parameters.

Example: Estimation by minimizing (a) squared or (b) absolute deviations.
These methods are part of different model definitions.
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3. Functional models
3.1 Functional models: introduction

Functional models (as I use this term) are tools for thinking about
relationships between variables. (For a more comprehensive introduction to
this kind of models, see Rohwer 2010.)

The basic formal tool are functions (mathematically understood) which
connect variables.

So one can speak of ‘functional relationships’ between variables, and the
models are also called ‘functional models’.

Two kinds of functional relationships must be distinguished.

24 / 158



3.1 Functional models: introduction (cont’d)

Consider two variables, X with domain X and Y with domain Y.

– A deterministic functional relationship consists of a function

x −→ y = f (x)

which assigns to each value x ∈ X exactly one value f (x) ∈ Y.

– A probabilistic functional relationship consists of a function

x −→ Pr[Y |X=x ]

which assigns to each value x ∈ X a conditional probability distribution.
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3.1 Functional models: introduction (cont’d)

Notice that Pr[Y |X=x ] is itself a function.

If Y is a discrete variable, this function can be written as

y −→ Pr(Y=y |X=x) (1)

to be interpreted as the probability of Y=y given that X=x .

Since (1) is formally identical with a probabilistic predictive rule, functional
models can also be understood as tools for formulating probabilistic
predictive rules.
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3.2 A general notion of functional models

a) The structure of the model is given by a directed acyclic graph.

b) To each node of the graph corresponds a variable. Variables with
indegree zero are called exogenous variables and marked by two dots.
All other variables are called endogenous variables and marked by a
single dot.

c) For each endogenous variable, there is a deterministic or probabilistic
function showing how the variable (its values or probability
distribution) depends on values of the immediately preceding
variables.

d) Without further assumptions, exogenous variables do not have an
associated distribution.

This is a formal framework. The arrows between variables have no
specified meaning. In many applications they can be understood as
indicating some kind of dependence relation.
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3.3 Illustration with a simple example

The example concerns the educational outcome of a generic child.

Model 3.1

Ẏ

Ż

Ẍ ✲✲

❄❄✟✟✟✟✟✯

✟✟✟✟✯

For simplicity, the variables are assumed to be binary and defined as
follows:

Ẏ child’s educational outcome (1 successful, 0 otherwise)

Ẍ parents’ educational level (1 high, 0 low)

Ż school type (1 or 2)
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3.3 Illustration with a simple example (cont’d)

The model contains two probabilistic functions:

x −→ Pr[Ż | Ẍ=x ]

(x , z) −→ Pr[Ẏ | Ẍ=x , Ż =z ]

Since Ż and Ẏ are binary variables, it suffices to consider the functions

x −→ Pr(Ż =1 | Ẍ=x)

(x , z) −→ Pr(Ẏ=1 | Ẍ=x , Ż =z)

The first function is intended to show how the probability of attending a
specified school type depends on the parents’ educational level.

The second function is intended to show how the probability of
educational success depends both on the parents’ educational level and on
the school type.
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3.4 Assuming distributions for exogenous variables?

Exogenous variables of a functional model do not have an associated
distribution.

There sometimes are reasons for assuming distributions for exogenous
variables. I briefly mention three situations.

1. Using the model for a statistical explanation w.r.t. a particular
reference set.

Distributions of the model’s exogenous variables are then identified
with the distributions of the corresponding statistical variables.
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3.4 Assuming distributions for exogenous variables? (cont’d)

2. Using the model for predicting the outcome for an individual that is
(only) known to belong to a particular reference set.

One then employs a reduced model that is derived from the original
model by integrating over the distributions of the unobserved
exogenous variables.

Assume, for example, that one wants to use the model of the previous
subsection for predicting a child’s educational success. Not knowing
the educational level of the parents, one cannot use the model.
However, substituting Ẍ by a variable Ẋ with a probability distribution
Pr[Ẋ |Z̈=z ], one can derive a reduced model

Pr(Ẏ=1 | Z̈ =z) =
∑

x
Pr(Ẏ=1 | Z̈ =z , Ẋ=x) Pr(Ẋ=x |Z̈ =z)

which only requires knowledge of the child’s school type.
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3.4 Assuming distributions for exogenous variables? (cont’d)

3. Using the model for predicting the value of an exogenous variable
based on knowing values of endogenous variables.

In order to apply Bayesian inference, one must begin with a prior
distribution for the exogenous variables.

For example, knowing that a child had successfully completed the
school, make a guess about her school type.
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3.5 Defining effects of explanatory variables

Assume that Ẏ depends on an exogenous variable Ẍ .

To think of an effect of Ẍ means to compare

Pr[Ẏ |Ẍ=x ′] and Pr[Ẏ |Ẍ=x ′′]

for (at least) two values, x ′ and x ′′, of Ẍ .

This comparison concerns conditional distributions and cannot, in general,
be summarized by a single number.

One therefore often uses a simplified definition which only compares
expected values:

E(Ẏ |Ẍ=x ′′)− E(Ẏ |Ẍ=x ′) (2)

This suffices if Ẏ is a binary variable.
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3.5 Defining effects of explanatory variables (cont’)

One has to take into account that Ẏ most often depends on further
variables.

Then effects cannot simply be attributed to a change in Ẍ , but are
context-dependent.

Formally, assume that Ẏ also depends on Z̈ . The effect of a change in Ẍ
must then be written as

E(Ẏ |Ẍ=x ′′, Z̈ =z)− E(Ẏ |Ẍ=x ′, Z̈ =z) (3)

and, in general, depends on the covariate context specified by Z̈=z .

In this situation, already the question ‘What is THE effect of Ẍ?’ would
be misleading.
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3.6 Interaction of explanatory variables

If the effect defined in (3) depends on the value of Z̈ one can say that
both variables interact.

A more general definition: Ẍ and Z̈ are interactive conditions for the
distribution of Ẏ if the effect of a change in Ẍ [Z̈ ] depends on values of Z̈
[Ẍ ].

The formulation shows that the presence of interaction also depends on
the definition of ‘effect’.
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3.6 Interaction of explanatory variables (cont’d)

Consider a logit model without an explicitly defined multiplicative
interaction term:

Pr(Ẏ = 1 |X = x ,Z = z) =
exp(α+ xβx + zβz)

exp(α+ xβx + zβz)

There is an interaction when using definition (3), but not when using odds
ratios for a definition of effects:

Pr(Ẏ=1 |X=x ′′,Z=z)

Pr(Ẏ=0 |X=x ′′,Z=z)

Pr(Ẏ=1 |X=x ′,Z=z)

Pr(Ẏ=0 |X=x ′,Z=z)

=
exp(α+ x ′′βx + zβz)

exp(α + x ′βx + zβz)
= exp((x ′′ − x ′)βx )

36 / 158

3.6 Interaction of explanatory variables (cont’d)

Interaction must be distinguished from stochastic relationships between
explanatory variables. For example, think of Model 3.1 with an additional
arrow from Ẍ to Ż (which is then an endogenous variable).

Interaction is independent of how values of the interacting variables come
into being.

Numerical example:

with interaction without interaction

x z E(Ẏ |Ẍ =x , Z̈ =z) x z E(Ẏ |Ẍ =x , Z̈ =z)

0 0 0.5 0 0 0.5

0 1 0.7 0 1 0.7

1 0 0.8 1 0 0.7

1 1 0.9 1 1 0.9

(4)
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4. Causal interpretations
4.1 Causally relevant variables

Consider a functional relationship

x −→ Pr[Ẏ |Ẍ =x ] (often: x −→ E(Ẏ |Ẍ =x))

What is entailed by the idea that this can be viewed as a causal
relationship? I propose that there are basically two claims:

(1) that one can refer to a fact-generating process generating
values of Ẏ , and

(2) that this process depends on values of Ẍ .

I then call Ẍ a variable which is causally relevant for Ẏ .

These two claims are at the core of viewing causation as a generative
process (Goldthorpe 2001, Blossfeld 2009).

In order to think about how processes generating values of Ẏ depend on Ẍ
one must be more specific about the meaning of the values of Ẍ .
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4.2 Thinking of causes as events

I begin with assuming that values of Ẍ represent possible events. In the
most simple case, Ẍ is a binary variable, and Ẍ =1 means that an event of
a specified kind has occurred, and Ẍ =0 means that such an event has not
(yet) occurred.

One can then distinguish two kinds of relationships between Ẍ and a
process generating values of Ẏ :

(a) The event initiates a process that generates a value of Ẏ . This
presupposes that the occurrence of the event (= an event of this kind) is a
necessary condition for the generation of a value of Ẏ .

As an example, think of Ẏ as the outcome of a student’s participating in a
learning frame. The student’s beginning to participate in the learning
frame can be considered as an event that initiates a process that
eventually generates a value of Ẏ .
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4.2 Thinking of causes as events (cont’d)

(b) The event occurs while a process that eventually generates a value of
Ẏ already takes place. So one can think of two such processes: one during
which the event did occur, and another one in which the event did not
occur. The impact of the event, if it occurs, must then be understood as
modifying an ongoing process.

As an example, one can think that the student becomes severely ill while
participating in the learning frame.

Most often, already the definition of a process requires to refer to an event
that initiates the process.

The causal relevance of that event is then easily stated: Its occurrence is a
necessary condition for the process to take place.
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4.2 Thinking of causes as events (cont’d)

Variables representing the occurrence of events will be called event
variables.

These need not be binary variables which refer to just one event type. In
general, if Ẋ is an event variable, its domain will be denoted by

X = {0, 1, . . . ,m}

with values having the following meaning:

If x > 0, Ẋ =x means that an event of the type x has occurred; Ẋ =0
means that no event of the specified kinds has yet occurred.

The definition shows that using event variables at least implicitly requires
a temporal view.
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4.3 Causally relevant conditions

Causally relevant variables need not be event variables.

As another kind one can think of variables representing conditions on
which a process depends. I then speak of context variables.

To illustrate, I use our standard example in which a student’s educational
success, Ẏ , depends on the school type, Ẋ , and on the parents’
educational level, Z̈ .

The functional model looks as follows:

Model 4.1

Ẏ

Z̈

Ẋ ✲✲

✻✻
✟✟✟✟✟✯

✟✟✟✟✯
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4.3 Causally relevant conditions (cont’d)

In this model, one can think of Ẋ as a variable representing the occurrence
of an event:

Ẋ =

{

1 if the student starts participating in learning frame σ1

2 if the student starts participating in learning frame σ2

In contrast, Z̈ , recording the parents’ educational level, is a context
variable. Its values can sensibly be understood as characterizing the
context in which the process that generates a value of Ẋ takes place.

Similarly, one can understand the causal relevance of Z̈ for processes
generating values of Ẏ .

The leading idea is that parents’ activities through which they support a
child’s education depend on their own educational level.
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4.3 Causally relevant conditions (cont’d)

How to think of the causal relevance of Ẋ? There are two considerations.

First, thinking of the event Ẋ = j , it can be understood as initiating a
process that eventually generates a value of Ẏ . In this view, Ẋ is causally
relevant because without Ẋ ’s taking a positive value a process generating
a value of Ẏ cannot take place.

Second, as soon as one of the possible events did occur, it can be viewed
as having generated a specific context. If Ẋ = j , it is the context σj , a
particular learning frame, in which the process generating a value of Ẏ
takes place.

This can be generally stated: As soon as an event variable has a positive
value, the variable can be considered as a context variable for a process
that begins at the point in time when the event occurred.

Note: When an event variable has taken a particular value, it cannot
change anymore. This is different with context variables.
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4.4 Comparative and dynamic effects

To speak of a causally relevant variable, say Ẋ , presupposes a functional
model in which the variable has a particular place and can be functionally
related to other variables representing possible effects.

However, it is not the model, understood as a system of mathematical
functions, that provides the causal meaning.

To give a variable a causal meaning requires considerations which cannot
be expressed in terms of mathematical functions.

The functional model is silent about the meaning of its functional
relationships (think of our example). But given a causal interpretation, it
can be used to formally define causal effects.

There are two possibilities.
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4.4 Comparative and dynamic effects (cont’d)

A) Comparative effects.

One specifies a variable, say Ẏ , representing the outcomes of interest, and
considers all variables on which Ẏ functionally depends.

Assume that these are the variables Ẋ and Ż . Both can then be used to
define effects.

For example, an effect of Ẋ can be defined by

∆s(Ẏ ; Ẋ [x ′, x ′′], Ż =z) = (5)

E(Ẏ |Ẋ =x ′′, Ż =z)− E(Ẏ |Ẋ =x ′, Ż =z)

This definition compares the expectation of Ẏ in two situations: one in
which Ẋ =x ′ and another one in which Ẋ =x ′′, and further presupposes
that Ż=z in both situations.

In this sense, the definition formulates a comparative effect, and can be
used for all kinds of causally relevant variables.
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4.4 Comparative and dynamic effects (cont’d)

B) Dynamic effects.

If Ẋ is an event variable, also another effect definition becomes possible:

∆d (Ẏ ; Ẋ [j], Ż =z) = E(Ẏ |Ẋ = j , Ż =z)− E(Ẏ |Ẋ =0, Ż =z) (6)

This definition formulates a dynamic effect; it compares a situation where
the event Ẋ = j occurred with a situation where no event (of the kinds
specified by Ẋ ) occurred.

If the occurrence of an event specified by Ẋ is a necessary condition for
Ẏ ’s getting a value, I use the convention that E(Ẏ |Ẋ =0, Ż =z) = 0.

To illustrate, consider the example introduced in Section 4.3. A
comparative effect compares the educational outcomes in the two learning
frames, σ1 and σ2.

In contrast, a dynamic effect compares the outcome of Ẋ = j with Ẋ =0,
and since a positive value of Ẋ is a necessary condition for a value of Ẏ ,
the dynamic effect is given by E(Ẏ |Ẋ = j , Ż =z).
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4.5 Functional and causal mechanisms

Without presupposing possible effects one cannot think of ‘causes’.

In a statistical approach to causality, possible effects are conceptualized by
an outcome variable, Ẏ .

In social research, being interested in processes generating values of Ẏ , it
is seldom reasonable to consider only a single causal condition, say Ẍ .

In most applications one has to take into account further causally relevant
conditions.

The question ‘What is the causal effect of Ẍ on Ẏ ?’, without further
qualification, is then not appropriate.
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4.5 Functional and causal mechanisms (cont’d)

An alternative is to think of ‘mechanisms’.

Here I use the term in this sense: A mechanism is an explicitly defined
framework for thinking of processes generating values of an outcome
variable.

More specifically, I use the term functional mechanism to denote a
functional model that shows how an outcome variable depends on other
variables.

It will be called a causal mechanism if at least some of the functional
relationships can be given a causal interpretation.
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4.5 Functional and causal mechanisms (cont’d)

Given these definitions, a mechanism is a (formal) framework and must be
distinguished from the processes which, possibly, take place according to
the rules of the mechanism.

This entails that a mechanism is not by itself a dynamic entity.

While one can sensibly think that a process can generate an outcome, this
cannot be said of a mechanism.

But note that only the mechanism has an explicit representation (in terms
of variables). To think of processes that actually generate outcomes
requires a causal interpretation of the mechanism.
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5. Models and references to actors
5.1 Primary and secondary actors

Models in social research most often concern processes which depend on
the behavior of human actors.

I call these the primary actors.

In contrast, I speak of secondary actors when referring to those who
construct and use models.

For example, think of the models dealing with students’ educational
outcomes in different learning frames. Primary actors are the students,
their parents, the teachers; in general, all actors to which one refers when
interpreting the models and reflecting about causal relationships. In
contrast, the secondary actors are those who construct, discuss, and
possibly use these models for one reason or another.

Note that the distinction presupposes the reference to a model. Only
w.r.t. a model can one distinguish primary and secondary actors in the
proposed sense.
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5.2 Explanatory and treatment models

There are many reasons why one could be interested in models. Here I
want to mention just one distinction that also suggests to distinguish two
kinds of models.

1) One interest concerns the primary actors, the conditions and
outcomes of their behavior.

Models are then constructed as tools for understanding and explaining
conditions and outcomes of the behavior of the primary actors. I then
speak of explanatory models.

2) In contrast, secondary actors could be interested in the possibility of
interventions supporting their economic and/or political goals.

Models are then constructed as tools for assessing the possible effects
of treatments. I then speak of treatment models.
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5.3 Functional models of experiments

Discussions of causally interpretable models often presuppose an interest in
effects of treatments. Grounded in a long tradition, treatment models are
preferably related to an experimental context. I briefly mention some ways
in which functional models can be used as a formal framework.

A first possibility is illustrated by the following model.

Model 5.1

Ẏ

Z̈

Ẍ ✲✲

✟✟✟✟✟✯

✟✟✟✟✯

Values of Ẍ represent the treatments whose causal effects are of primary
interest. Z̈ records further conditions which, presumably, are causally
relevant for Ẏ . Both are exogenous variables because their values are
deliberately fixed by the experimenter.
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5.3 Functional models of experiments (cont’d)

In another kind of experiment, the experimenter randomly selects some of
the conditions for the experiment but still deliberately generates values of
the treatment variable.

This can be represented by the following model.

Model 5.2

Ë ✲✲

Ẏ

Ż

Ẍ ✲✲

✟✟✟✟✟✯

✟✟✟✟✯

Ẍ is still an exogenous variable, but Ż is now an endogenous variable
which depends in a specified way on Ë , an event variable initiating the
experiment.
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5.3 Functional models of experiments (cont’d)

In both situations, assuming that the experiment concerns processes
depending on the behavior of primary actors, the experimenter is a
secondary actor.

There also is then a potential conflict.

Being interested in predictable effects of treatments, the experimenter has
reason to control and regulate the behavior of the primary actors as far as
possible.
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5.4 Randomly assigned causal conditions

There is a further kind of experiment in which also values of the treatment
variable, Ẍ , are randomly generated. The functional model then looks as
follows:

Model 5.3

Ë ✲✲✟✟✟✟✟✯

✟✟✟✟✟✯
Ẏ

Ż

Ẋ ✲✲

✟✟✟✟✟✯

✟✟✟✟✯

The set-up entails that, conditional on Ë =1 (initiation of the experiment),
Ẋ and Ż are independent.

In a standard notation, this can be written as

Ẋ⊥⊥Ż | Ë = 1
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5.4 Randomly assigned causal conditions (cont’d)

The independence relation allows one to express effects of Ẋ as follows:

∆s(Ẏ ; Ẋ [x ′, x ′′], Ë =1) = (7)
∑

z
∆s(Ẏ ; Ẋ [x ′, x ′′], Ż =z , Ë=1)Pr(Ż =z |Ë=1)

This shows that a randomized experiment allows one to compare effects of
different treatments (= values of Ẋ ) in a balanced way.

This means: the distribution of further possibly relevant variables, Ż , does
not depend on the values of Ẋ , the treatments, that one intends to
compare.

But note that this does not entail that effects of Ẋ are independent of Ż .
If Ẋ and Ż interact in the generation of values of Ẏ , the effect defined in
(7) still depends on the distribution of Ż .

In any case, it is a mean effect w.r.t. the distribution of any further
causally relevant conditions.
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5.4 Randomly assigned causal conditions (cont’d)

Notice that a reference to the variable Ë is required in order to think of an
experimental context which includes an experimenter who at least initiates
the experiment.

Without the variable Ë , Model 5.3 only contains random variables getting
their values from processes not represented in the model.

Also note that this is an intervention model in a very specific sense:
randomization is used as a fact-generating process, that is, a process
generating events (values of Ẋ ).
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5.5 Two contexts for randomization

Is randomization useful in social research? In thinking about this question
one should distinguish between two different contexts for randomization.

1) One can think of data-generating processes. The most relevant
application concerns the selection of units (for further observation).

There are good arguments that samples should be generated
randomly, that is, according to in some way fixed and known selection
probabilities.

2) An essentially different context is experimentation. Performing an
experiment requires, first of all, a fact-generating process.

In this context, randomization not only, if at all, concerns the
selection of a sample of units for the experiment; but also is a method
of creating facts (‘treatments’) whose possible effects one intends to
study.
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5.5 Two contexts for randomization (cont’d)

While randomization in data generation is certainly useful in social
research, the value of randomized experiments seems questionable.

The argument is not that such experiments are seldom possible.

The relevant point is that randomization would change, in an essential
way, the processes to be studied.

The example depicted in Model 4.1 can show this. In this example, one
can be interested in effects of the learning frames (Ẋ ).

The model realistically assumes that the selection of learning frames
depends on the student’s family background (represented by Z̈).

This is a fact-generating process. Randomization would substitute this by
another fact-generating process that randomly assigns students to learning
frames.

Consequently: quite different kinds of models.
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5.6 Randomization and interaction effects

Even if randomization is possible and does not destroy the object of
modeling, the method can easily be misleading if causally relevant
variables interact.

Example where X is randomized w.r.t. Z .

x z y = 0 y = 1 cases

0 0 70 30 100
1 0 100 100 200
0 1 30 70 100
1 1 100 100 200

Conditional effects:

E(Ẏ |Ẍ =1, Ż =0)− E(Ẏ |Ẍ =0, Ż =0) = 0.5− 0.3 = 0.2

E(Ẏ |Ẍ =1, Ż =1)− E(Ẏ |Ẍ =0, Ż =1) = 0.5− 0.7 = −0.2

Marginal effect resulting from randomization:

E(Ẏ |Ẍ =1)− E(Ẏ |Ẍ =0) = 0.5 − 0.5 = 0
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5.6 Randomization and interaction effects (cont’d)

The marginal effect heavily depends on the distribution of Z .
Same example with a different distribution of Z :

x z y = 0 y = 1 cases

0 0 35 15 50
1 0 30 30 60
0 1 60 140 200
1 1 120 120 240

Same conditional effects, but marginal effect resulting from randomization:

E(Ẏ |Ẍ =1)− E(Ẏ |Ẍ =0) =
150

300
−

155

250
= −0.12

62 / 158

6. Two understandings of ‘potential outcomes’
6.1 Rule-based understanding of potential outcomes

The approach to understanding causal relationships that was sketched in
Chapter 4 uses functional models as a formal framework.

This is appropriate when one is interested in causally interpretable rules.
Such rules – I briefly speak of causal rules – concern potential outcomes
which can be linked to different values of causally relevant variables.

Such a rule often has the form

(x , z) −→ E(Ẏ |Ẋ =x , Ż =z) (8)

It is a causal rule if Ẋ and Ż can be interpreted as variables which are
causally relevant for the generation of values of Ẏ .

The dependent variable, Ẏ , represents potential outcomes which can be
expected in a generic situation where Ẋ and Ż have specified values.
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6.2 Descriptive notion of potential outcomes

In the statistical literature, one also finds a descriptive notion of potential
outcomes which is not based on rules.

This notion relates to a specified set of particular units, say Ω, and
presupposes three (or more) statistical variables.

A variable

X : Ω −→ X

represents causally relevant factors (conditions or events).

As is often done in the literature, in order to simplify notations, I assume
that X is a binary variable:

X =

{

1 if a specified causal factor is present
0 otherwise
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6.2 Descriptive notion of potential outcomes (cont’d)

The interest concerns outcomes in situations where X = 1 or X = 0.

It is assumed that these outcomes can be represented by statistical
variables

Yj : Ω −→ Y (9)

(j = 0 or 1) having the following meaning: If X (ω) = j , the outcome of
interest has the value Yj(ω).

One can then formally define, for each unit ω ∈ Ω, a causal effect
Y1(ω)− Y0(ω). Of course, these individual causal effects cannot be
observed.

One therefore aims to estimate an average causal effect which can be
defined for Ω by

M(Y1)−M(Y0) (10)
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6.2 Descriptive notion of potential outcomes (cont’d)

Observations only allow estimation of conditional mean values,
M(Yj |X = j).

So the question arises under which conditions one can think of these
conditional mean values as unbiased estimates of M(Yj).

A sufficient condition would be that X and Yj are approximately
independent; formally: Yj ⊥⊥X (for j = 0, 1).

This independence condition suggests that a critical question concerns the
generation of values of X .

If possible, such values should be randomly assigned to the members of Ω.

This would justify to consider Ωj := {ω∈Ω|X (ω)= j} as a simple random
sample from Ω, and therefore to assume that Yj has approximately the
same distribution in Ωj and Ω.
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6.3 Including further causally relevant variables

As described in the previous section, the descriptive approach aims to
define a causal effect that can be attributed to a single variable, X . A
somewhat extended formulation is required if effects also depend on
further variables. Assume that outcomes depend not only on X , but also
on values of a variable Z (possibly consisting of several components).
Instead of (10), one has to consider the effect definition

M(Y1|Z=z)−M(Y0|Z =z) (11)

As before, values of Yj can only be observed if X = j ; the observable
conditional mean values are M(Yj |X = j ,Z =z). They provide unbiased
estimates of M(Yj |Z =z) if

Yj ⊥⊥X |Z = z (for j = 0, 1) (12)

This shows that it would suffice to perform the randomization (the
random assignment of values of X to the members of Ω) separately for
each value of Z .
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6.4 Balanced effects and kinds of models

Neither the rule-based nor the descriptive approach requires that the
explicitly represented variables, X and Z , are independent.

Relationships between these variables become important, however, if one
aims to define causal effects of just one variable, say X .

Whether this is possible depends first of all on whether X and Z interact
in the generation of outcomes.

If they interact, effects cannot be attributed solely to X .
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6.4 Balanced effects and kinds of models (cont’d)

It is nevertheless possible to define average effects.

Following the rule-based approach, one can use the definition

∑

z

(

E(Ẏ |Ẋ =x ′′, Ż =z)− E(Ẏ |Ẋ =x ′, Ż =z)
)

Pr(Ż=z) (13)

where Pr(Ż =z) refers to an (arbitrarily) specified distribution of Ż .

This is a balanced effect, meaning that the distribution of Ż is identical
for x ′ and x ′′.

Of course, if Ẋ and Ż interact, the effect still depends on the assumed
distribution of Ż .
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6.4 Balanced effects and kinds of models (cont’d)

How to proceed when following the descriptive approach depends on the
given data to which the causal statements relate.

If the data result from a process which entails a randomization of X w.r.t.
Z , the distribution of Z already is approximately independent of X , and
one can interpret (10) as a balanced average effect of X . Again, if X and
Z interact, this effect also depends on the distribution of Z in the
reference set of units.

If X and Z are not independent, one can construct a balanced effect. This
is analogous to the procedure in the rule-based approach. In the descriptive
approach, one starts from (11) and (arbitrarily) specifies a distribution of
Z . Formally analogous to (13), an average effect can then be defined by

∑

z

(

M(Y1|Z =z)−M(Y0|Z =z)
)

P(Z =z) (14)
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6.4 Balanced effects and kinds of models (cont’d)

One might ask whether balanced effects are particularly useful. This
depends on the kind of model.

With treatment models, one is normally interested in finding an effect that
can be attributed solely to the treatment, given that all other possibly
relevant conditions are in some sense fixed. This interest suggests to
construct balanced effects.

The situation is different with explanatory models. In social research,
explanatory models most often relate to situations where at least some of
the causally relevant conditions are generated by actions of primary agents.

Effects of single variables are then never balanced w.r.t. all causally
relevant conditions. It would be possible, of course, to construct balanced
effects w.r.t. observed variables; but I think that a primary interest
concerns how the real effects, which are unbalanced, come into being.
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6.5 Contrasting the two approaches

1) A first difference concerns the notion of potential outcomes.

a) The rule-based approach conforms to the understanding that
potential outcomes are outcomes which, under specified conditions,
possibly will come into existence.

Correspondingly, potential outcomes are defined by a rule (a linguistic
if-then construction).

b) The descriptive approach, in contrast, presupposes that potential
outcomes (= values of Y0 and Y1) already exist before values of X ,
and other causally relevant variables, are fixed.

To speak of ‘potential outcomes’ is therefore somewhat misleading.
Actually, what is potentially realized is an observation of an already
existing fact (value of Yj). So it would be less confusing to speak of
‘potential observations’.
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6.5 Contrasting the two approaches (cont’d)

2) It might be helpful to remember the distinction between fact-generating
and data-generating processes.

The rule-based approach aims to formulate causal rules for fact-generating
processes.

The descriptive approach, as it is theoretically formulated, is concerned
with data-generating processes which provide partial information about
hypothetically presupposed facts (values of Y0 and Y1).

This approach therefore seems to allow one to think of ‘causal inference’
in parallel to a missing data problem.
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6.5 Contrasting the two approaches (cont’d)

3) It is important to understand that the variables Y0 and Y1 can only be
defined by referring to a set of existing units.

For each particular unit, say ω ∈ Ω, one can posit values, Y0(ω) and
Y1(ω), representing the outcomes corresponding to X (ω)=0 and
X (ω)=1, respectively.

This is possible because, and insofar, one can assume that all further
conditions on which outcomes depend are implicitly fixed by the reference
to ω, a particular unit existing in particular circumstances.

The descriptive approach is therefore essentially static and not well suited
for causal interpretations of temporally extended processes.
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6.5 Contrasting the two approaches (cont’d)

The rule-based approach, in contrast, is not based on a reference to a set
of already existing units, but relates to generic units which are only defined
by values of variables.

It is therefore not possible to define variables corresponding to Y0 and Y1.

Instead, there is a single outcome variable, Ẏ , having possible values
which only become realized when, and after, Ẋ , and any further variables
which define the generic unit, have taken specific values.

There are no restrictions for thinking of a temporally extended process
connecting Ẋ and the final outcome, Ẏ .
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6.5 Contrasting the two approaches (cont’d)

4) As a consequence, the independence requirement (12) cannot be
formulated in the conceptual framework of the rule-based approach.

Based on the mentioned understanding of Ẏ , one can define variables Ẏj

having distributions defined by Pr[Ẏj |Ż=z ] = Pr[Ẏ |Ẋ = j , Ż =z ].

An independence condition paralleling (12) is then trivially true:

Ẏj ⊥⊥ Ẋ | Ẋ = j , Ż =z (for j = 0, 1) (15)

But this condition has not the same interpretation.

(12) can be interpreted as the requirement that X , conditional on values
of Z , is approximately independent of all further circumstances which are
fixed by the implicit reference to particular units.

(15), in contrast, only says that the outcome variable, given X = j and
Ż=z , is independent of any other outcome variable for which Ẋ 6= j and
Ż=z .
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6.5 Contrasting the two approaches (cont’d)

5) As mentioned, in order to satisfy the independence condition (12),
there ideally should be a randomized assignment of values of X to the
members of Ω (conditional on values of Z ).

(15) does not require any randomization procedure.

The important point is, however, that formulating a causal rule like (8)
does not entail the claim that there are no further variables on which the
outcome variable depends.

Consequently, also definitions of causal effects which are derived from (8)
do not entail anything about further variables on which the outcome
variable depends.

Consider the causal effect defined in (5). This definition compares two
generic units, one with Ẋ =x ′′ and the other one with Ẋ =x ′. Both units
have identical values of Ż ; but they can differ in all other respects.
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6.6 Omitted causally relevant conditions

If a causal rule does not relate to an artificial random generator, one can
almost always think that the rule misses one or more causally relevant
conditions.

Note that this is true even if the data used to estimate the rule result from
a randomized experiment.

The point simply is that there probably are causally relevant conditions not
explicitly referred to in the rule’s formulation.

It is therefore not reasonable to require that a causal rule entails the claim
that one has taken into account all causally relevant conditions.

78 / 158

6.6 Omitted causally relevant conditions (cont’d)

Moreover, except when dealing with artificial random generators, already
the assumption that one can ‘theoretically’ refer to a complete set of
variables which are causally relevant for an outcome variable seems
obscure.

The descriptive approach to potential outcomes avoids this assumption
and instead requires the conditional independence (12).

This independence is viewed as a precondition for thinking of a causal
effect of X .

(12) cannot be formulated in a rule-based approach. In a rule-based
approach one would need to refer to explicitly defined variables which, in
addition to Z , are causally relevant for Y .

If one could refer to a list of such variables, say (U1,U2, . . .), one could
use the formulation X ⊥⊥ (U1,U2, . . .) |Z = z . However, the formulation is
not useful because one cannot define, not even clearly think of, such a list
of variables.
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6.6 Omitted causally relevant conditions (cont’d)

Of course, it is often quite possible to think of a particular variable, say U,
which is left out in the formulation of a causal rule, but should be taken
into account in order to get a better understanding of the causal
mechanism.

The original model, that was used to derive the causal rule, must then be
enlarged by incorporating U; and this also demands to specify U’s
relationship with the other variables in the model.

How to do this depends on the intended use of the model.

If the model is intended to represent a randomized experiment, one can
assume in the formulation of the enlarged model that Ẋ ⊥⊥ U̇ | Ż = z .

Conditional on Ż = z , effects of Ẋ are then balanced w.r.t. U̇.
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6.6 Omitted causally relevant conditions (cont’d)

In social research an explanatory model can almost never be formulated as
a model representing a randomized experiment.

It then depends on the details of the model how to think of U̇’s role in the
mechanism generating values of the outcome variable.

Remember the distinction between mediating and confounding variables.

In any case, one would need observations of U̇ in order to quantify its
causal role.
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7. Selection and choice
7.1 Distinguishing selection problems

I distinguish three situations where Y is a variable of interest, and there is
a further variable S which in some sense involves a selection.

a) S is a binary variable, and values of Y can be observed if S = 1, and
cannot be observed if S = 0. This can properly be called a ‘sample
selection problem’ because S only concerns the observability of Y but
is not a causally relevant condition for Y . Here it is presupposed that
Y has a distribution that exists independently of S .

b) S is a binary variable, and S = 1 is a necessary precondition for Y to
have a distribution. For example, being employed (S = 1) is a
necessary precondition for receiving a wage (Y ).

c) S can take two or more different values, and it is assumed that the
distribution of Y causally depends on the value of S . For example,
values of S represent school types, and Y is a measure of educational
attainment.
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7.2 Selection in data-generating processes

Sample selection problems can be conceptualized in two ways.

First, Y and S are statistical variables, say

(Y ,S) : Ω −→ Y × {0, 1}

One knows the conditional distribution P[Y |S=1], but is interested in the
unconditional distribution P[Y ].

As an example, one can think that S is a response indicator in a survey:
S=1 if a sampled unit provides a value of Y , and S=0 otherwise.
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7.2 Selection in data-generating processes (cont’d)

Another framework uses random variables, say Ẏ and Ṡ . Ṡ is again a
binary variable and records whether a value of Ẏ can be observed. So it is
assumed that one knows the conditional distribution Pr[Ẏ |Ṡ=1], but is
interested in the unconditional distribution Pr[Ẏ ].

If Ṡ is independent of Ẏ , one can use Pr[Ẏ |Ṡ=1] to estimate Pr[Ẏ ].
Problems occur if, and because, Ṡ and Ẏ are correlated. This suggests to
find another variable, say V̈ (often consisting of several components), such
that

Ṡ⊥⊥Ẏ | V̈ =v

is approximately true. This would allow one to use Pr[Ẏ |V̈ =v , Ṡ=1] to
estimate Pr[Ẏ |V̈ =v ].
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7.3 Selection as a necessary precondition

I now consider the case where the selection variable represents a necessary
precondition for values of the variable of interest.

As an example, I take Ẏ to represent the outcome of a university
education, and Ṡ=1 if a person is admitted to begin with university
studies, and Ṡ=0 otherwise. It is further assumed that Ẏ depends on a
variable Ẍ representing the level of academic performance the person has
reached just before the selection variable gets a particular value.

A functional model could then be graphically depicted as follows:

Model 7.1

Ẏ

Ṡ

Ẍ ✲✲

❄❄✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯
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7.3 Selection as a necessary precondition (cont’d)

The picture is possibly misleading, however, because it suggests that Ẏ
has a distribution even if Ṡ=0.

But, obviously, a process generating a value of Ẏ can only take place if
Ṡ=1.

This entails that there are two rules:

x −→ Pr(Ẏ =y |Ẍ =x , Ṡ=0) = 0 (16)

and

x −→ Pr(Ẏ =y |Ẍ =x , Ṡ=1) (17)
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7.3 Selection as a necessary precondition (cont’d)

Nevertheless, both Ẍ and Ṡ are causally relevant for Ẏ .

Referring to expectations of Ẏ , Ṡ can be viewed as an event variable
having the effect E(Ẏ |Ẍ =x , Ṡ=1).

Effects of Ẍ can be defined, of course, only conditional on Ṡ=1:

E(Ẏ |Ẍ =x ′′, Ṡ=1)− E(Ẏ |Ẍ =x ′, Ṡ=1) (18)

Note that in this model there can be no interaction of Ẍ and Ṡ w.r.t. Ẏ .
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7.4 Counterfactual and modal questions

Although Ṡ=1 is a necessary precondition for values of Ẏ , one can ask
hypothetical questions. Two forms of such questions must be
distinguished:

a) Counterfactual questions presuppose that Ṡ already has taken a
particular value. For example: Given Ẍ =x and Ṡ=0, what value of Ẏ
might be expected if Ṡ had taken the value 1 instead of 0 ? (The
complementary question obviously has a trivial answer.)

b) Modal questions presuppose a situation where Ṡ has not already taken
a particular value, and a process that might generate a value of Ẏ has
not yet started.

I will not discuss the counterfactual questions. To answer the modal
questions, one can use the rules (16) and (17), respectively. The selection
variable Ṡ then only serves to distinguish the two modal questions and
does not provide any further information.
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7.5 Is there a sample selection problem?

The rule (16) can be established by referring to the institutional framework
without reference to sampled data.

Numerically specified versions of the rule (17) must be estimated from
sampled data.

However, as suggested by the rule’s formulation, one can simply use the
data for those students who actually began a university education (Ṡ=1).

Note that selection on Ṡ=1 has nothing to do with a sample selection
problem. The condition Ṡ=1 simply determines the scope of the rule to
be estimated.

It is possible, of course, that the available data are selective; for example,
response rates can depend on Ẏ . There is then a sample selection problem
that leads to biased estimates of Pr(Ẏ =y |Ẍ =x , Ṡ=1).

But this bias is not due to conditioning on Ṡ=1.
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7.6 Consideration of omitted confounders

There is, however, another problem that must be considered: the omission
of possibly relevant confounding variables. This requires to refer to an
enlarged model that explicitly contains a further confounding variable. I
use the following

Model 7.2

Z̈

Ẏ

Ṡ

Ẍ ✲✲

✛✛
❄❄

✻✻

✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

where Z̈ is a further variable on which Ṡ depends, e.g., an indicator of a
person’s educational aspiration. Moreover, it is assumed that also Ẏ
depends on Z̈ entailing that Z̈ is a confounding variable.
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7.6 Consideration of omitted confounders (cont’d)

There is no problem if data are available for both Ẍ and Z̈ .

But now assume that data on Z̈ are not available so that one can only
estimate a reduced version of the model; in terms of expectations:

E(Ẏ |Ẍ =x , Ṡ=1) = (19)
∑

z
E(Ẏ |Ẍ =x , Ż =z , Ṡ=1)Pr(Ż =z |Ẍ =x , Ṡ=1)

where Ż is used instead of Z̈ in order to allow thinking of conditional
distributions.

This shows that effects of Ẍ , as defined in (18), do not have a balanced
formulation in the reduced model. Of course, this is the general problem
resulting from the omission of confounding variables.
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7.6 Consideration of omitted confounders (cont’d)

Here it is important, however, that the problem does not result from
conditioning on Ṡ.

It is true that Ṡ is a collider, entailing that conditioning on Ṡ changes the
correlation between values of Ẍ and Z̈ in a reference set (sample).

But this is not relevant here because effect definitions are conditional on
Ṡ=1; in the example, they only concern students who actually begin with
university studies.

Problems resulting from the omission of confounding variables should
therefore be clearly distinguished from ‘selection problems’.
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7.7 Illustration with a numerical example

To illustrate the argument, I use these fictitious data.

x z s y = 0 y = 1 cases

0 0 0 − − 800
0 0 1 100 100 200
0 1 0 − − 600
0 1 1 120 280 400
1 0 0 − − 400
1 0 1 120 480 600
1 1 0 − − 200
1 1 1 80 720 800
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7.7 Illustration with a numerical example (cont’d)

Based on these data, one can estimate the rule

(x , z) −→ E(Ẏ |Ẍ =x , Ż =z , Ṡ=1) (20)

and finds the values

x z E(Ẏ |Ẍ =x , Ż =z , Ṡ=1)

0 0 0.5
0 1 0.7
1 0 0.8
1 1 0.9

(21)

Conditioning on Ṡ=1 changes the relationship between Ẍ and Ż :

x Pr(Ż =1|Ẍ =x , Ṡ=0) Pr(Ż =1|Ẍ =x , Ṡ=1)

0 0.429 0.667
1 0.333 0.571

(22)

This is not relevant, however, because the rule (20) only applies to
situations where Ṡ=1.
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7.7 Illustration with a numerical example (cont’d)

Now assume that values of Ż are not available.

The data then lead to the following estimate of an effect of Ẍ :

E(Ẏ |Ẍ =1, Ṡ=1)− E(Ẏ |Ẍ =0, Ṡ=1) = 0.857 − 0.633 = 0.224 (23)

This effect is not balanced. As can be seen from (22), the distribution of
the omitted variable Ż is different for Ẍ =0 and Ẍ =1.

This means that the effect cannot be attributed solely to a difference in Ẍ .

Without observations on Ż one cannot assess the contribution of this
variable.
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8. Choice variables and models
8.1 A notion of choice variables

As I will use the term, a choice variable, say C , has the following features:

a) The domain of C is a set of m ≥ 2 alternatives, numerically
represented by C = {1, . . . ,m}.

b) Referring to a choice variable entails that there is an individual or
collective agent who can choose, or already has chosen, a particular
value of the variable. The agent associated with a choice variable C
will be denoted by A[C ].

c) It is presupposed that the agent has the power to select one of the
alternatives. In other words, C must only contain states which can be
realized by the agent.

d) The agent is assumed to have considered the alternatives before one
of them is actually chosen. I do not assume that the agent is
‘rational’ in any particular sense.

Following this definition, choice is a specific kind of selection, namely a
selection which is reflexively generated by an actor. This is meant by the
expression ‘choice-based selection’ (6= ‘choice-based sampling’).
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8.2 Two contexts for using choice variables

Choice variables can be used in two different contexts.

In one context, one conceives of a choice variable as a kind of event
variable.

C=c then means that the agent, A[C ], has chosen the alternative c ∈ C.
In addition, C=0 means that such an event has not yet occurred.

In this understanding, choice variables can be used in explanatory models,
both as explanatory variables and as dependent variables.
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8.2 Two contexts for using choice variables (cont’d)

A model that attempts to explain choices, considered as events, will be
called an explanatory choice model .

Such a model can be depicted as

Ẍ −→→ Ċ

where Ċ is the choice variable, and Ẍ denotes the explanatory variable
(possibly consisting of several components).

For example, one can think that the model is intended to represent the
choice of a child’s school type; A[Ċ ] refers to the child’s parents, and Ẍ
denotes the parents’ educational level.

Note that this understanding entails that the parents have the power to
choose a school type for their child.
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8.2 Two contexts for using choice variables (cont’d)

In a quite different context, choice variables serve to consider possible
consequences of hypothetically chosen alternatives.

To hypothetically give a choice variable a value is obviously different from
an actual choice, it simply means to consider that alternative.

Thus, in this understanding, a choice variable is not an event variable; and
in a functional model it can only be used as an exogenous variable.
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8.2 Two contexts for using choice variables (cont’d)

As an example, think again of the parents’ choice of a school type for their
child. One can consider the following model:

Model 8.1

Ẏ ∗

C̈

Ẍ ✲✲

✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

The model relates to a generic A[C̈ ], the parents who are assumed to
consider possible values of C̈ (school types). As before, Ẍ denotes the
parents’ educational level. Ẏ ∗ is used to assess possible outcomes: the
child’s educational success that can be expected if, given Ẍ , the parents
would choose C̈=c . The corresponding function is

(x , c) −→ E(Ẏ ∗|Ẍ =x , C̈=c) (24)
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8.2 Two contexts for using choice variables (cont’d)

A model of this kind will be called an evaluative choice model .

Its aim is not to predict realized choices. Instead, it is intended to serve
thinking about modal questions.

Consequently, also Ẏ ∗ cannot be understood as representing realized
outcomes, and must be distinguished from an outcome variable in an
explanatory model.
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8.2 Two contexts for using choice variables (cont’d)

There are obviously similarities between an evaluative choice model and a
treatment model.

But also note the different tasks.

A treatment model serves to formulate a generic rule about causal effects
of treatments (= events which can be deliberately generated).

An evaluative choice model serves an agent to consider the consequences
of available alternatives.

While randomization might be used for a treatment model, randomization
w.r.t. the choice variable would contradict the idea of a choice.
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8.3 Primary and secondary actors of choice models

Remember the distinction between primary and secondary actors.

The distinction can easily be applied to explanatory choice models. These
models are concerned with choices made by primary actors. The secondary
actors, in contrast, are those who construct and use these models for one
reason or another.

Now consider an evaluative choice model. Since the model serves an agent
to think about available alternatives and possible consequences of
choosing one of them, the agent is a secondary actor w.r.t. to the model.

On the other hand, the model is concerned with the agent’s choice, and so
the agent can also be considered as a primary actor.

However, an evaluative model has not the task to predict the agent’s
choice.

‘To choose’ and ‘to predict the outcome of a choice’ are obviously
different activities.
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8.4 Consideration of modal questions

Let me stress the connection between modal questions and evaluative
choice models. An explanatory choice model cannot be used to consider
modal questions (or must be reinterpreted in some way).

As an illustration, I refer to Model 8.1. This model is intended to show
how expectations of an outcome variable, Ẏ ∗, depend on exogenously
given values of Ẍ and hypothetically chosen values of C̈ .

In order to become useful, one needs a quantification of the function (24).
Data might come from a sample that relates to the following model where
it is assumed that Ẏ has the same meaning as Ẏ ∗.

Model 8.2

Ẏ

Ċ

Ẍ ✲✲

❄❄
✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯
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8.4 Consideration of modal questions (cont’d)

In this model, Ċ is an event variable, representing alternatives chosen by
the primary agents to which the model relates. Since Ċ depends on Ẍ ,
part of the model consists in an explanatory choice model.

Only the evaluative model 8.1, not the explanatory model 8.2, can be used
for modal questions.

In the explanatory model, values of Ċ come into being according to a
function, Ẍ −→→ Ċ , that predicts the choices actually made.

This model can therefore not be used for a situation where a choice
variable can hypothetically be given different values because a choice event
has not yet occurred.

Nevertheless, data corresponding to the explanatory model 8.2 can also be
used to estimate the function (24).
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8.4 Consideration of modal questions (cont’d)

Such data would allow one to estimate E(Ẏ |Ẍ =x , Ċ =c), and then use
the rule

Estimate E(Ẏ ∗|Ẍ =x , C̈=c) by E(Ẏ |Ẍ =x , Ċ=c) (25)

As assumed by Model 8.2, the data result from ‘self selection’ in the sense
of choices, made by primary actors, which depend on a variable Ẍ ; Ċ
stochastically depends on Ẍ .

But this does not entail a sample selection problem that might create a
bias when using the rule (25).

It is quite possible that Model 8.2 misses a relevant confounder and could
be replaced by a better model (if the necessary data would be available).
But this has nothing to do with the fact that the model contains an event
variable that gets its values by choices of primary actors.
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8.5 Modal questions w.r.t. necessary preconditions

I now consider a situation where the choice concerns a necessary
precondition for a possible outcome.

To illustrate, I continue with the example that was introduced above:
beginning with university studies and consideration of possible outcomes.
Details depend on the set-up of the choice situation.

I consider two situations.
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8.5 Modal questions w.r.t. necessary preconditions (cont’d)

(a) I begin with a situation where an agent has the power to decide
whether a person (the agent herself or someone else) will begin with
university studies.

There is then a choice variable, C̈ , having the domain C = {1, 2}; and
C̈=1 means ‘beginning’ and C̈=2 means ‘not beginning’ with university
studies.

The outcome assumed to be relevant for the choice is the success of the
university education; it will be denoted by Ẏ ∗.

I further assume that expectations about Ẏ ∗ depend on an exogenous
variable, Ẍ , representing properties of the person who possibly begins
university studies that are known in the choice situation.

108 / 158

8.5 Modal questions w.r.t. necessary preconditions (cont’d)

With this notation, one can again use Model 8.1 as an evaluative model
and Model 8.2 as a corresponding explanatory model.

The evaluative model is to be used for the two modal questions. First,
what would be the outcome if C̈=2?

Obviously, without beginning university studies there could be no
successful outcome (Ẏ ∗ is then either undefined or has the value zero).

Now consider the other question, What is the expected value of Ẏ ∗ if
C̈=1, given Ẍ =x ?

To answer this question, one needs an estimate of E(Ẏ ∗|Ẍ =x , C̈ =1).

This can be derived from the explanatory model 8.2 by using the rule (25).
One only needs E(Ẏ |Ẍ =x , Ċ=1).

Whether also E(Ẏ |Ẍ =x , Ċ=2) can be given a sensible interpretation is
irrelevant.
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8.5 Modal questions w.r.t. necessary preconditions (cont’d)

(b) The argument in (a) presupposes that the choice variables in the two
models, C̈ and Ċ , have the same meaning.

I now consider a situation where an agent cannot immediately decide
whether to begin, or not begin, with university studies, but only whether
to apply for admission.

The choice variable, C̈ , has again the domain C = {1, 2}, but now C̈=1
means ‘to apply’ and C̈=2 means ‘not to apply’.
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8.5 Modal questions w.r.t. necessary preconditions (cont’d)

An evaluative choice model can now be depicted as follows.

Model 8.3

Ẏ ∗

C̈ Ṡ∗

Ẍ

✲✲

✲✲

❄❄✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

Ẍ and Ẏ ∗ (and correspondingly Ẏ ) have the same meaning as before. In
addition, there is now the variable Ṡ∗ representing the decision of the
admission committee: Ṡ∗=1 if the applicant is admitted, and Ṡ∗=0
otherwise.

Both Ẏ ∗ and Ṡ∗ are starred in order to distinguish these variables from
corresponding variables in an explanatory model.

111 / 158

8.5 Modal questions w.r.t. necessary preconditions (cont’d)

The model can be used for thinking about modal questions in two steps.

In a first step, the agent, A[C̈ ], can consider E(Ṡ∗|Ẍ =x , C̈ =1). Given
information from a corresponding explanatory model, one can use
E(Ṡ |Ẍ =x , Ċ=1) and a suitably modified version of rule (25).

In a second step, one can think about the final outcome, Ẏ ∗, conditional
on Ṡ∗=1. In this step, E(Ẏ |Ẍ =x , Ṡ=1) can be used as an estimate of
E(Ẏ ∗|Ẍ =x , Ṡ∗=1). Finally, both steps can be combined:

Estimate E(Ẏ ∗|Ẍ =x , C̈=1) by E(Ẏ |Ẍ =x , Ṡ=1)E(Ṡ |Ẍ =x) (26)

Notice that the evaluative model 8.3 relates to a choice situation where
the committee has not yet decided about A[C̈ ]’s application (simply
because A[C̈ ] has not yet decided whether to apply).

Possibly useful information can therefore only result from estimates of
E(Ṡ |Ẍ =x).
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8.6 Choosing a model’s perspective

The example discussed in the previous section shows that a model can
simultaneously refer to two or more agents of a different kind.

Nevertheless, one has to choose a perspective. In the example, it is the
perspective of a student who (possibly or actually) applies for a university
study.

Now consider our standard example where a pupil’s educational success
(Y ) depends on parents’ education (X ) and school type (Z ). Graphically
(Model 3.1):

Ẏ

Ż

Ẍ ✲✲

❄❄✟✟✟✟✟✯

✟✟✟✟✯

So far, my interpretations implicitly assumed the parents’ (or pupil’s)
perspective. However, one can also think of a situation where schools can
select pupils, and do so by taking into accout the educational level of the
parents. How to model this idea?
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8.6 Choosing a model’s perspective (cont’d)

One would need to change the model’s perspective.

But note that this cannot be done by simply changing the direction of the
arrow which (so far) leads from X to Z . (In fact, an arrow leading from Z
to Z cannot be given a causal interpretation. Variables are not agents.)

Instead, one would need to change the object whose behavior is to be
described by the model.

A) As depicted above, the model concerns the behavior of a generic pupil
associated by his or her parents. This is made clear by the variables which
represent properties of a generic pupil.

B) Alternatively, one can set up a model that is concerned with the
behavior of schools. The model’s objective then is a generic school, and
the model’s variables relate to this school.

In both cases, there can be further agents. In case (A) one can
additionally refer to schools, and in case (B) one can aditionally refer to
pupils and parents.
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8.6 Choosing a model’s perspective (cont’d)

Here I briefly sketch a model taking the perspective (A), but assumes that
parents do not have the power to choose a school type for the pupil.

The model is then similar to the example discussed in Section 8.5:

Model 8.4

ẎĊ

Ṡ Ż

Ẍ

✲✲

✛✛ ✲✲

✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

�
�
��✒

�
�
��✒❅

❅
❅❅❘

❅
❅
❅❘

Ċ represents the school type intended by the parents, Ṡ represents the
decision of the school, and Ż is the realized school type.

The reduced model is the same as Model 3.1 with a single arrow leading
from Ẍ to Ż . But then it is no longer possible to consider dynamic effects.
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9. Causal effects of choices
9.1 Three different choice situations

How to think of causal effects of choice variables depends on the kind of
choice situation. I propose to distinguish three situations where C̈ always
is a binary choice variable with domain C = {0, 1}.

(a) The choice concerns a necessary precondition for a process generating
values of an outcome variable, say Ẏ , to take place. So the causal effect
of C̈ can simply be stated: C̈=1 is a necessary precondition for Ẏ .

In order to quantify the effect, one can consider C̈ as an event variable
and use

E(Ẏ |Ẍ =x , C̈=1) (27)

where Ẍ represents conditions on which the process generating values of
Ẏ depends.
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9.1 Three different choice situations (cont’d)

(b) Associated with the two alternatives are two qualitatively different
outcome variables, say Ẏ0 and Ẏ1.

This implies that one has to consider two qualitatively different effects,
one effect of C̈=0 and another one of C̈=1.

Both should be considered separately as indicated in (a).

(c) The choice concerns two different ways to generate values of a single
outcome variable, Ẏ . So one can compare the alternatives w.r.t.
expectations of Ẏ , and use the effect definition

∆s(Ẏ ; C̈ [0, 1], Ẍ=x) := E(Ẏ |Ẍ=x , C̈ =1)− E(Ẏ |Ẍ=x , C̈ =0) (28)
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9.1 Three different choice situations (cont’d)

In the following, I only discuss the situation (c), in particular, how to think
about unobserved confounders.

Note that this problem is of no particular relevance in the situations (a)
and (b).

The conditional expectation referred to in (27) might well depend on
further variables. But the effect of C̈ can always be interpreted as an
average effect w.r.t. to distributions of these variables.

So this is different from the situation discussed in Chapter 7 where one is
interested in effects of Ẍ (e.g. education of married women).
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9.2 The problem: omitted confounders

To focus the discussion, I consider

Model 9.1

Z̈

Ẏ

Ċ

Ẍ ✲✲

✛✛
❄❄

✻✻

✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

The structure is the same as in Model 7.2, but it is now assumed that Ẏ
has a distribution for both alternatives.

As an example, one can think that the choice is between two learning
frames, σ0 and σ1, where a person can acquire competencies represented
by Ẏ , and it is assumed that the processes generating values of Ẏ also
depend on two further variables, Ẍ and Z̈ , having values already fixed in
the choice situation.
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9.2 The problem: omitted confounders (cont’d)

If data for both variables are available, one can use Z̈=z as an additional
condition in the effect definition (28). But if data on Z̈ are not available,
this variable is an omitted confounder, and the effect definition (28)
relates to a reduced model.

Substituting Z̈ by a variable Ż having a distribution, the observable effect
is then given by

E(Ẏ |Ċ [0, 1], Ẍ =x) = (29)
∑

z

[

E(Ẏ |Ċ=1, Ẍ =x , Ż =z) Pr(Ż =z |Ċ=1, Ẍ =x)−

E(Ẏ |Ċ=0, Ẍ =x , Ż =z) Pr(Ż =z |Ċ=0, Ẍ =x)
]

This effect is no longer balanced because

Pr[Ż |Ċ=1, Ẍ =x ] 6= Pr[Ż |Ċ=0, Ẍ =x ]

and it is therefore unclear how to think of a causal effect of Ċ .
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9.2 The problem: omitted confounders (cont’d)

-2 -1 0 1 2
0

0.5

1

E(Ẏ |z , c = 0)

E(Ẏ |z , c = 1)

f (z |c = 0) f (z |c = 1)
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9.3 The perspective of evaluative choice models

A further motive for an interest in balanced effect formulations comes
from evaluative choice models where an agent is interested in potential
effects of the available alternatives.

Consider the evaluative choice model that corresponds to Model 9.1:

Model 9.2

Z̈

Ẏ ∗

C̈

Ẍ ✲✲

✻✻

✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

The agent, A[C̈ ], knows the value of Ẍ , say x∗.
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9.3 The perspective of evaluative choice models (cont’d)

Assuming that only the rule (29) is available, expectations are evaluated
by comparing

Pr(Ẏ ∗|C̈=0, Ẍ =x∗) and Pr(Ẏ ∗|C̈ =1, Ẍ =x∗)

As shown by (29), both are averages w.r.t. different distributions of Ż .

However, the agent can assume that there is a particular value of this
variable, say z∗, that is identical for both alternatives in the given choice
situation.

Even if this value is not known, it would probably preferable to use a
balanced effect formulation.
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9.4 Constructions of balanced effects

So one should ask, Can balanced effect formulations be constructed?
There are three approaches.

a) Randomization w.r.t. all possible confounders. As I have argued in
Chapter 5, this approach is problematic in social research because it
would change the processes that one aims to investigate.

b) One uses a fixed distribution of the confounding variables. For
example, instead of (29) one can consider

∑

z

[

E(Ẏ |Ċ=1, Ẍ =x , Ż =z) Pr(Ż =z)− (30)

E(Ẏ |Ċ =0, Ẍ =x , Ż =z) Pr(Ż =z
]

where Pr[Ż ] is an arbitrarily defined distribution (e.g., the distribution
of a corresponding statistical variable in a sample).

c) One uses specific kinds of parametric models which allow one to
construct balanced effects.
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9.5 Parametric assumptions about confounders

I use Heckman’s probit selection model (Heckman 1979) to illustrate the
parametric approach to the construction of balanced effects.

Note: I discuss this model as a proposal for coping with unobserved
confounders (‘endogeneity bias’).

As proposed by Heckman, the model is also used for ‘sample selection
problems’ in the sense defined in Section 7.1, that is, in situations where
observations are only available if Ċ=1.

The basic idea is to assume that omitted confounders can be implicitly
taken into account by a joint parametric distribution for the variables Ẏ
and Ċ .
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9.5 Parametric assumptions about confounders (cont’)

To explain the argument, I start from Model 9.1. If Z̈ is observed, one can
begin with a linear model

Ẏ = gx(x) + gz(z) + Ċγ + ǫ′ (31)

where gx and gz are deterministic functions of values of Ẍ and Z̈ ,
respectively, and ǫ′ is a residual random variable.

Assuming that the distribution of ǫ′ is independent of Ċ , one can interpret
γ as a balanced effect.
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9.5 Parametric assumptions about confounders (cont’)

If Z̈ is not observed, one can consider the reduced model that is based on
assuming, instead of Z̈ , a variable Ż with some unknown but exogenously
given distribution.

Instead of (31), one gets the reduced model

Ẏ = gx(x) + Ċγ + ǫ (32)

where ǫ := gz(Ż) + ǫ′.

Since Ċ depends on Ż , the distribution of ǫ depends on Ċ , and the effect
of Ċ is not balanced w.r.t. ǫ. But from (32) one can derive

E(Ẏ |x , c) = gx(x) + cγ + E(ǫ|x , c)

This shows that, in order to estimate γ, one would like to know values of
E(ǫ|x , c).

These values cannot be observed; but given enough parametric
assumptions, they can be constructed.
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9.5 Parametric assumptions about confounders (cont’)

There are two steps.

In the first step one assumes a model for Ċ .

This is done by employing a latent variable, η′, as follows:

Ċ = I [η′ > hx(x) + hz(z)] (33)

where hx and hz are deterministic functions of values of Ẍ and Z̈ ,
respectively.

Again, one can define η := −hz(z) + η′, and rewrite (33) as

Ċ = I [η > hx(x)].

128 / 158



9.5 Parametric assumptions about confounders (cont’)

In the second step, the distributional assumptions come into play. These
concern ǫ′, η′, and Ż :

a) ǫ′ ∼ N (0, σ2
ǫ′
)

b) η′ ∼ N (0, 1)

c) gz(Ż ) ∼ N (µgz , σ
2
gz
)

d) hz(Ż ) ∼ N (µhz , σ
2
hz
)

e) ǫ′ and gz(Ż ) are independent.

f) η′ and hz(Ż ) are independent.

These assumptions entail: ǫ ∼ N (µgz , σ
2
ǫ
) with σ2

ǫ
= σ2

gz
+ σ2

ǫ′
, and

η ∼ N (µhz , σ
2
η
) with σ2

η
= σ2

hz
+ 1.

Moreover, if gz and hz are linear functions, the joint distribution of ǫ and
η is bivariate normal with a correlation ρ.
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9.5 Parametric assumptions about confounders (cont’)

From these assumptions and their implications, one can finally derive a
method to construct values of E(ǫ|x , c):

E(ǫ|x , c=1) = E(ǫ|x , η > hx(x)) = ρ σǫ
φ(hx (x))

1− Φ(hx(x))

and correspondingly

E(ǫ|x , c=0) = E(ǫ|x , η ≤ hx(x)) = ρ σǫ
φ(hx(x))

1− Φ(−hx(x))

where φ and Φ denote, respectively, the density and distribution function
of the standard normal distribution. Both can be combined as

λ(x , c) := c
φ(hx(x))

1− Φ(hx(x))
+ (1− c)

φ(hx(x))

1− Φ(−hx(x))
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9.5 Parametric assumptions about confounders (cont’)

It can now be seen how this is an approach to the construction of balanced
effects. By defining a new residual variable,

ǫ∗ := ǫ− ρ σǫ λ(x , c)

one can rewrite (32) as

Ẏ = g(x) + Ċγ + ρ σǫ λ(x , c) + ǫ∗ (34)

containing a further regressor, λ(x , c), and the new residual, ǫ∗. Now one
can derive

E(ǫ∗|x , c) = 0 and Cov(ǫ∗, Ċ |x) = 0

showing that the effect of Ċ is balanced w.r.t. ǫ∗.
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9.6 Confounding and mediating variables

It is obvious that Heckman’s approach relies on very particular
assumptions about the distributions of unobserved variables which are
difficult to justify in applications.

The most important assumption concerns the distribution of the
unobserved confounder, Ż .

If it is not normally distributed, e.g. if it is a binary variable, the argument
depicted in the previous section will not work.
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9.6 Confounding and mediating variables (cont’)

A further point is noteworthy. Heckman’s probit selection model deals
with ‘endogeneity bias’ resulting from omitted variables which show up in
correlations between explanatory variables and the residual variable posited
in a regression model.

The model cannot, therefore, distinguish between omitted confounders and
omitted mediating variables. However, also omitted mediating variables
can result in correlations between explanatory and residual variables.

Consider Model 9.1. If the arrow from Z̈ to Ċ is reversed, Z̈ changes into
an endogenous mediating variable, Ż .

Now, if Ż is omitted from a regression model for Ẏ , Ċ is again correlated
with its residual.

The argument of the previous section will go through without any formal
changes. But it would be difficult to think that the model removes an
‘endogeneity bias’.
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10. Further examples
10.1 Sequential transitions

Here I refer to an example discussed by Buis (2009). The model can be
depicted as follows:

Model 10.1

Z̈

Ẏ2

Ẏ1

Ẍ ✲✲

✛✛
❄❄

✻✻

✟✟✟✟✟✟✟✯

There are two situations. In the first situation (S = 1), a process takes
place which leads to a value of the binary variable Ẏ1. If Ẏ1 = 1, there is a
transition into a second situation (S = 2) in which another process takes
place which leads to a value of the binary variable Ẏ2 (Ẏ2 = 1 can indicate
a further transition or any other event). If Ẏ1 = 0 then Ẏ2 = 0.

Ẍ and Z̈ are exogenous explanatory variables, presumably relevant for
both transitions.
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10.1 Sequential transitions (cont’d)

Buis uses the following numerical example:

z x Y1 = 0 Y1 = 1 cases P(Y1 = 1|x , z)

S = 1 0 0 300 100 400 0.25
0 1 200 200 400 0.50
1 0 200 200 400 0.50
1 1 100 300 400 0.75

z x Y2 = 0 Y2 = 1 cases P(Y2 = 1|Y1 = 1, x , z)

S = 2 0 0 75 25 100 0.25
0 1 100 100 200 0.50
1 0 100 100 200 0.50
1 1 75 225 300 0.75

The example is very special: X and Z (the statistical variables
corresponding to Ẍ and Z̈) are not correlated, and they do not interact in
both situations. One should therefore also consider other examples.
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10.1 Sequential transitions (cont’d)

If values of Z are not available, the data look as follows:

x Y1 = 0 Y1 = 1 cases P(Y1 = 1|x , z)

S = 1 0 500 300 800 0.375
1 300 500 800 0.625

x Y2 = 0 Y2 = 1 cases P(Y2 = 1|Y1 = 1, x , z)

S = 2 0 175 125 300 0.417
1 175 325 500 0.650
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10.1 Sequential transitions (cont’d)

With the definition used throughout this presentation, one can distinguish
the following effects:

E(Ẏ1|Ẍ = 1, Z̈ = 0)− E(Ẏ1|Ẍ = 0, Z̈ = 0) = 0.50 − 0.25 = 0.25

E(Ẏ1|Ẍ = 1, Z̈ = 1)− E(Ẏ1|Ẍ = 0, Z̈ = 1) = 0.75 − 0.50 = 0.25

E(Ẏ2|Ẏ1=1, Ẍ =1, Z̈ =0)− E(Ẏ2|Ẏ1=1, Ẍ =0, Z̈ =0)=0.50−0.25=0.25
E(Ẏ2|Ẏ1=1, Ẍ =1, Z̈ =1)− E(Ẏ2|Ẏ1=1, Ẍ =0, Z̈ =1)=0.75−0.50=0.25

Instead, Buis uses odds ratios:
Pr(Ẏ1=1 | X=1,Z=0)

Pr(Ẏ1=0 | X=1,Z=0)

Pr(Ẏ1=1 | X=0,Z=0)

Pr(Ẏ1=0 | X=0,Z=0)

=
0.5
0.5
0.25
0.75

= 3,

Pr(Ẏ1=1 | X=1,Z=1)

Pr(Ẏ1=0 | X=1,Z=1)

Pr(Ẏ1=1 | X=0,Z=1)

Pr(Ẏ1=0 | X=0,Z=1)

=
0.75
0.25
0.5
0.5

= 3

Pr(Ẏ2=1 | Ẏ1=1,X=1,Z=0)

Pr(Ẏ2=0 | Ẏ1=1,X=1,Z=0)

Pr(Ẏ2=1 | Ẏ1=1,X=0,Z=0)

Pr(Ẏ2=0 | Ẏ1=1,X=0,Z=0)

=
0.5
0.5
0.25
0.75

= 3,

Pr(Ẏ2=1 | Ẏ1=1,X=1,Z=1)

Pr(Ẏ2=0 | Ẏ1=1,X=1,Z=1)

Pr(Ẏ2=1 | Ẏ1=1,X=0,Z=1)

Pr(Ẏ2=0 | Ẏ1=1X=0,Z=1)

=
0.75
0.25
0.5
0.5

= 3
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10.1 Sequential transitions (cont’d)

Now, what happens if Z̈ is not observed? I first consider the situation
S = 1.

Buis says that one ‘underestimates’ the effect of Ẍ . This is true if one
uses odds ratios:

Pr(Ẏ1=1 | X=1)

Pr(Ẏ1=0 | X=1)

Pr(Ẏ1=1 | X=0)

Pr(Ẏ1=0 | X=0)

=
0.625
0.375
0.375
0.625

= 2.778

It is not true, however, when using our effect definition:

E(Ẏ1|Ẍ = 1)− E(Ẏ1|Ẍ = 1) = 0.625 − 0.375 = 0.25

This shows the importance of the effect definition used.
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10.1 Sequential transitions (cont’d)

In any case, without data on Z̈ one cannot estimate the conditional effects
defined above, but only the ‘marginal’ effect

E(Ẏ1|Ẍ = 1)− E(Ẏ1|Ẍ = 0) (35)

In Buis’ example, this effect is equal to the two conditional effects (0.25).
But this is simply a consequence of his very special data set. In general,
this effect can be quite different.

In order to get an understanding of the effect (35) one has to consider a
reduced model in which the not observed variable is eliminated. This
requires to substitute Z̈ by a random variable Ż and to assume a
distribution for this variable.

In general, this distribution can well depend on values of Ẍ , and I therefore
use a conditional distribution denoted by Pr(Ż = z |Ẍ = x).
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10.1 Sequential transitions (cont’d)

Assuming as given the conditional distribution Pr(Ż = z |Ẍ = x), one can
derive

E(Ẏ1|Ẍ = x) =
∑

z

E(Ẏ1|Ẍ = x , Ż = z) Pr(Ż = z |Ẍ = x) (36)

This shows that, in general, (35) is not a balanced effect, meaning that
the distribution of Ż is different for the values of Ẍ to be compared.

The effect (35) can nevertheless be interpreted by assuming

The distribution of Ż depends on Ẍ (37)

On can then use Model 10.2:

Ẏ1

Ż

Ẍ ✲✲

❄❄✟✟✟✟✟✯

✟✟✟✟✯

This allows one to interpret (35) as the total effect of Ẍ on Ẏ1.
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10.1 Sequential transitions (cont’d)

This interpretation is always possible in a purely formal sense.

Another question is whether the total effect can be given a causal
interpretation. This is only possible if one can justify that Ż depends on Ẍ
in a causal sense (or is independent of Ẍ ).

If, on the contrary, values of Ẍ causally depend on Ż , then any
interpretation of the total effect is highly questionable. In fact, Ż is then a
confounder w.r.t. the relationship between Ẍ and Ẏ1, and the effect (35)
has no clear meaning.

Obviously, in order to justify an interpretation of the total effect, one must
refer to the meaning of Ż . If one simply assumes some unspecified
‘unobserved heterogeneity’ it seems not possible to give the effect (35) any
clear meaning.
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10.1 Sequential transitions (cont’d)

Given that the total effect has a sensible interpretation, one can further
ask whether one can conceptually separate a direct and an indirect effect
of Ẍ on Ẏ1.

This is possible if Ẍ and Ż do not interact w.r.t. Ẏ1 as it is the case in
Buis’ example. In this example, both conditional effects are identical and
can therefore be identified with the direct effect.

In general, one has to assume that Ẍ and Ż interact, and then a unique
effect of Ẍ on Ẏ1 cannot be defined and could not be estimated even if
data on Ż were available.

In any case, it seems obscure to think of the total effect as being in some
sense ‘biased’.
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10.1 Sequential transitions (cont’d)

I now consider the second situation S = 2. Without data on Z̈ , one gets
the odds ratio

Pr(Ẏ2=1 | Ẏ1=1,X=1)

Pr(Ẏ2=0 | Ẏ1=1,X=1)

Pr(Ẏ2=1 | Ẏ1=1,X=0)

Pr(Ẏ2=0 | Ẏ1=1,X=0)

=
0.650
0.350
0.417
0.583

= 2.596

With our effect definition one gets:

E(Ẏ2|Ẏ1 = 1, Ẍ = 1)− E(Ẏ2|Ẏ1 = 1, Ẍ = 0) = 0.650 − 0.417 = 0.233

In the following, I consider this ‘marginal’ effect:

E(Ẏ2|Ẏ1 = 1, Ẍ = 1)− E(Ẏ2|Ẏ1 = 1, Ẍ = 0) (38)

My interpretation will parallel the one given above for the first situation.

One has to take into account, however, that the conditioning on Ẏ1 = 1
(which is a ‘collider’ in Model 10.1) changes the relationship between the
statistical variables corresponding to Ẍ and Z̈ .
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10.1 Sequential transitions (cont’d)

Note that, in general, conditioning on Ẏ1 = 1 does not create a
correlation. This is only true in Buis’ example in which X and Z (the
statistical variables corresponding to Ẍ and Ÿ ) are uncorrelated in the first
situation.

In general, in social research, explanatory variables are always more or less
correlated. And one should say, then, that conditioning on Ẏ1 will change
an already existent correlation.

In fact, it is also possible that, due to the conditioning, correlated variables
become uncorrelated. This is shown by the following example.
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10.1 Sequential transitions (cont’d)

z x Y1 = 0 Y1 = 1 cases P(Y1 = 1|x , z)

S = 1 0 0 300 100 400 0.25
0 1 150 150 300 0.50
1 0 200 200 400 0.50
1 1 100 300 400 0.75

z x Y2 = 0 Y2 = 1 cases P(Y1 = 2|Y1 = 1, x , z)

S = 2 0 0 75 25 100 0.25
0 1 75 75 150 0.50
1 0 100 100 200 0.50
1 1 75 225 300 0.75

In the first situation:
P(Z = 1|X = 0) = 400/800, P(Z = 1|X = 1) = 400/700
In the second situation: P(Z = 1|Y1 = 1,X = 0) = 200/300
P(Z = 1|Y1 = 1,X = 1) = 300/450
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10.1 Sequential transitions (cont’d)

A second preliminary remark: That conditioning on Ẏ1 = 1 leads to a
change in the correlation of X and Z is irrelevant for the conditional effects

E(Ẏ2|Ẏ1=1, Ẍ =1, Z̈ =z)− E(Ẏ2|Ẏ1=1, Ẍ =0, Z̈ =z) (39)

It becomes relevant, however, if Z is not observed and one can only
estimate the ‘marginal’ effect (38).

In order to interpret this effect, one has to consider the reduced model (as
was done above for the first situation). In the reduced model:

E(Ẏ2|Ẏ1 = 1, Ẍ = x) = (40)
∑

z

E(Ẏ2|Ẏ1 = 1, Ẍ = x , Ż = z) Pr(Ż = z |Ẏ1 = 1, Ẍ = x)

showing that, in general, also the ‘marginal’ effect (38) is not balanced.
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10.1 Sequential transitions (cont’d)

Moreover, in the second situation, the distribution of Ż not only depends
on Ẍ in the first situation (if this is assumed), but in any case also on Ẍ
via the outcome of the first situation.

This can be made explicit by formally deriving

Pr(Ż = z |Ẏ1 = 1, Ẍ = x) = (41)

E(Ẏ1|Ẍ = x , Ż = z) Pr(Ż = z |Ẍ = x)
∑

z ′ E(Ẏ1|Ẍ = x , Ż = z ′) Pr(Ż = z ′|Ẍ = x)

Again, the important question is whether the ‘marginal’ effect (38) can be
interpreted as a total effect, now: a total effect of Ẍ and Ẏ1 = 1.

I propose that this is possible if, in the first situation, Ż either is
independent of Ẍ or can sensibly be interpreted as being dependent on Ẍ .
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10.1 Sequential transitions (cont’d)

Given the stated assumption, one can interpret the right-hand side of (41)
as follows:

a) The Pr(Ż = z |Ẍ = x) terms directly represent a dependence of the
distribution of Ż on Ẍ .

b) The E(Ẏ1|Ẍ = x , Ż = z) terms represent the institutional framework
which is presupposed by the Model 10.1.

One therefore can use for S = 2 the following Model 10.3:

Ẏ2

Ż

Ẍ ✲✲

❄❄✟✟✟✟✟✯

✟✟✟✟✯

And this allows one to interpret (38) as the total effect of Ẍ on Ẏ2.
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10.1 Sequential transitions (cont’d)

Given that the total effect has a sensible interpretation, one can again ask,
now for the situation S = 2, whether one can conceptually separate a
direct and an indirect effect of Ẍ on Ẏ2.

This is possible if Ẍ and Ż do not interact w.r.t. Ẏ2 as it is the case in
Buis’ example.

Of course, without data on Z , one cannot actually distinguish the direct
and the indirect effect.

But knowing Buis’s data, these effects are already known. The total effect
is 0.233, the direct effect is 0.25, and the indirect effect is −0.017.

In general, one has to assume that Ẍ and Ż interact, and then a unique
effect of Ẍ on Ẏ1 cannot be defined and could not be estimated even if
data on Ż were available.

In any case, it seems obscure to think of the total effect as being in some
sense ‘biased’.
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10.1 Sequential transitions (cont’d)

Conclusion: If one can cope with an unobserved variable in the first
situation, by interpreting the estimable ‘marginal’ effect as a total effect
covering the unobserved variable, then this is also possible in the second
situation.

Of course, the total effect in S = 2 cannot be attributed solely to Ẍ . It
also depends on the distribution of Ż in S = 1, possibly depending on Ẍ ;
and furthermore on the institutional framework given by the conditional
distributions of Ẏ1 and Ẏ2 as presupposed by a model that explicitly
represents the unobserved variable.

It seems not possible to consider the total effect as a ‘biased’ estimate of a
well-defined effect. In general, one also has no reason for believing that X
and Z are not correlated in S = 1 and do not interact in S = 1 as well as
in S = 2.
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10.2 Education and divorce

I now consider another example: How does the risk of divorce depends on
the women’s level of education?

Researchers often found that education has a positive impact on the risk
of divorce, but there also are other findings.

In a recent study, Bernardi and Martinez-Pastor (2011) discuss the
hypothesis that the observed relationships between education and risk of
divorce might result from ‘selection effects’.

However, so formulated, the hypothesis can create confusion.
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10.2 Selection and omitted confounders (cont’d)

To see this, one can use again Model 7.2, reproduced here:

Model 10.4

Z̈

Ẏ

Ṡ

Ẍ ✲✲

✛✛
❄❄

✻✻

✟✟✟✟✟✟✟✯

✟✟✟✟✟✟✟✯

with the following interpretation. Ṡ=1 if a woman is married, and Ṡ=0
otherwise. Ẏ is an indicator variable for becoming divorced; Ẍ records the
level of education, and Z̈ is an unobserved confounder.

Obviously, without being married there can be no risk of divorce.

Consequently, Ṡ=1 is also a necessary precondition for the variables’, Ẍ
and Z̈ , having an impact on the risk of divorce.
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10.2 Selection and omitted confounders (cont’d)

Is there a ‘selection effect’?

One can assume that distributions of values of Ẍ and Z̈ exist for married
and unmarried women in some specified population.

So one can think that marriage changes these distributions and their
correlation, and consider this as a ‘selection effect’.

But this selection effect cannot change relationships between these
variables and the risk of divorce; simply because these relationships are
only defined conditional on Ṡ=1.
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10.2 Selection and omitted confounders (cont’d)

However, an important part of the research question concerns the
observation of historically changing relationships between women’s
education and the risk of divorce.

One has then to consider at least two periods, say

(Ẍ1, Ż1, Ṡ1, Ẏ1) −→ (Ẍ2, Ż2, Ṡ2, Ẏ2) (42)

Żt represents the distribution of the unobserved confounder in period t.
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10.2 Selection and omitted confounders (cont’d)

This allows one to think of the observed relationships in the following way:

E(Ẏt |Ẍt=x , Ṡt=1) = (43)
∑

z
E(Ẏt |Ẍt=x , Żt=z , Ṡt=1)Pr(Żt=z |Ẍt=x , Ṡt=1)

So it is quite possible that differences between the observed relationships
can be due to both

a) changes in the conditional expectation E(Ẏt |Ẍt=x , Żt=z , Ṡt=1)
which, presumably, has a causal interpretation, and

b) changes in the conditional distributions of the unobserved confounder,
Pr[Żt |Ẍt=x , Ṡt=1].

Most probably, they are due to both kinds of changes so that one would
like to learn about the quantitative relevance of unobserved confounders.

But this would require to observe the confounder.
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10.2 Selection and omitted confounders (cont’d)

The question remains whether one can think of (b) as a ‘selection effect’.
Obviously not in the static sense referred to above. One would need to
consider the function

(x , z) −→ Pr(Ṡt=1|Ẍt=x , Żt=z) (44)

Differences in these functions would describe a historically changing
selection into marriage. However, the changes referred to in (b) do not
only result from a change in the function (44). As seen from

Pr(Żt=z |Ẍt=x , Ṡt=1) = (45)

Pr(Ṡt=1|Ẍt=x , Żt=z) Pr(Żt=z |Ẍt=x)

Pr(Ṡt=1|Ẍt=x)

they can also result from a change in the conditional distributions of the
unobserved confounder.
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10.2 Selection and omitted confounders (cont’d)

Consequently, without observing the confounder (whose supposed
existence motivates the discussion) one cannot draw any clear conclusions.

On the other hand, if one could observe Żt , one could immediately
consider the relationship

(x , z) −→ E(Ẏt |Ẍt=x , Żt=z , Ṡt=1) (46)

and recognize that the risk of divorce not only depends on the women’s
level of education, but also on another identifiable variable, Ż .
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