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1 Introduction

Thinking about effects of some specified factor often proceeds in terms of

comparing a treatment and a control group. The treatment group consists

of units exposed to the factor, the control group consists of units not

exposed to the factor. The comparison concerns the distributions of an

outcome variable in the two groups. A quantity derived from the two

distributions, often the difference between their mean values, is then taken

as a measure of the effect.

While the basic idea is straightforward, difficulties can arise in a dy-

namic setting. These difficulties concern the definition of a control group.

Assume that the treatment is defined by experiencing a specific kind of

event. So one can define a treatment group as a set of units who experi-

enced the treatment in a specified temporal location, say tc. But how to

define a control group? Some authors have proposed that a control group

should consist of all units who did not experience the treatment until, and

including, tc + δ. But how to choose δ? Sianesi (2004) has proposed to

choose δ = 0 if one is interested in the contrast between experiencing the

treatment ‘now’ and ‘waiting’ (see also Fitzenberger et al. 2013, Fredriks-

son and Johansson 2008). In contrast, Kohler et al. (2012) have used a

relatively large value of δ, and Brand and Xie (2007) proposed a ‘composite

of counterfactuals’ based on a reference to several values of δ.

In this paper, I start from hazard functions which allow defining effects

in a temporally local way and therefore avoid fixing δ at some particular

value. This approach conforms to thinking of ‘causation’ as a relationship

between an event, or a temporally locatable state, and probabilities of
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subsequent ‘outcomes’ whose specification depends on the interest of a

researcher.

In Section 2 I define effect shapes which compare hazard functions for

treated and not treated units in a temporally local way, and I contrast

this approach with Sianesi’s proposal. In Section 3 I discuss how effects

defined by a comparison of treated and not treated units can be given

a causal interpretation. I propose a notion of ‘comprehensive treatment

effects’ which does not require an actual or fictitious random assignment

of treatments and can therefore be used, in particular, to understand self-

selected treatments. In Section 4 I consider ‘temporally extended effects’

which concern event probabilities in an extended time interval after the

treatment. Section 5 provides a discussion.

2 Temporally local effects

I consider a situation which basically has the following structure:

E0
✲ E1

Ec

��✒

There is a specified event, E0, whose occurrence creates the situation σ0

in which E1 events, which may be of different type, can occur. While this

situation endures (= until the occurrence of an E1 event), an event Ec,

subsequently called ‘the treatment’, might occur, and we are interested in

the effects of this event on the probabilities of E1 events.

In order to refer to events I presuppose a discrete time axis, T :=

{0, 1, 2, . . .}, elements of this set will be called ‘temporal locations’ (e.g.

days or months). E1 events will be represented by a duration variable

(T1, E1) where E1 ∈ {1, . . . ,m} specifies the type of the event and T1 ∈ T

records the temporal location in which the event occurs. For Ec it suffices

to use a duration variable, Tc, recording the temporal location in which

the treatment occurs (Tc = ∞ if a treatment never occurs).

I assume that the interest concerns effects of the treatment on the
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occurrence of an event E1 = j. One can begin with a hazard function

r1j (tc, d) := Pr(T1= tc + d,E1=j |T1 ≥ tc + d, Tc= tc) (1)

This is the probability of E1=j occurring at tc + d, conditional on having

experienced the treatment at tc and still being in the situation σ0 at tc+d.

There is then the question of how to define a sensible comparison. I propose

to begin with a comparison that depends both on tc and d, and require

that the treatment did not occur until tc + d.1 The hazard function to be

used for the comparison can be written as

r0j (tc, d) := Pr(T1= tc + d,E1=j |T1 ≥ tc + d, Tc > tc + d) (2)

The condition entails that the treatment did not occur until, and including,

tc + d, but does not exclude that this event might occur later. (In order

to ease a comparison with r1j (tc, d), I use the notation r0j (tc, d) although

this hazard function depends only on tc + d.)

An effect of the treatment which depends both on the treatment time,

tc, and on the time since the occurrence of the treatment, d, can be defined

by

∆j(tc, d) := r1j (tc, d)− r0j (tc, d) (3)

These are temporally local effects relating to temporal locations tc+d (for

d = 0, 1, 2, . . .). A sequence of such effects, that is, ∆j(tc, d) considered as

a function of d, will be called an effect shape (of the treatment w.r.t. the

development of the hazard of E1=j).

Treatment and control groups

The proposal requires that also treatment and control groups must be

defined in a time-dependent way. With respect to (3), one can define a

1This is similar to what has been called a ‘timing of events approach’ in labor market

research, see, e.g., Abbring and van den Berg (2003), Fredriksson and Johansson (2008),

Lalive et al. (2008), Crépon et al. (2008). My discussion departs from this approach by

not starting from a presupposition of counterfactual entities.
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Table 1 Fictitious data for numerical illustration.

unit Tc T1 unit Tc T1

1 ∞ 2 11 2 2
2 ∞ 3 12 2 3
3 ∞ 4 13 2 4
4 ∞ 5 14 2 5
5 ∞ 5 15 3 5
6 ∞ 6 16 3 7
7 ∞ 6 17 3 8
8 ∞ 7 18 4 7
9 ∞ 8 19 4 8
10 ∞ 9 20 5 9

treatment group R1(tc, d) := a set of units who experienced the treatment

at tc and are still in the situation σ0 at tc+d, and a control group R0(tc, d)

:= a set of units who are still in σ0 at tc + d and did not experience the

treatment until, and including, tc + d. With corresponding event sets

Es
j (tc, d) := all members of Rs(tc, d) who experienced the event E1= j at

tc + d (s = 0, 1), one can use #Es
j (tc, d)

/

#Rs(tc, d) to estimate (1) and

(2), respectively. (# is used for the number of elements in a set.)

To illustrate, I use the fictitious data in Table 1. There are 20 units.

Units 1 – 10 do not experience the treatment, units 11 – 20 experience this

event in temporal locations given in column Tc. There are no competing

risks and no censored observations, all units eventually experience the

outcome event E1 = 1 as indicated in column T1. For Tc = 2, one can

immediately derive:

d R1(2, d) E1
1 (2, d) r11(2, d) R0(2, d) E0

1 (2, d) r01(2, d)

0 11− 14 11 1/4 1− 10, 15− 20 1 1/16
1 12− 14 12 1/3 2− 10, 18− 20 2 1/12
2 13, 14 13 1/2 3− 10, 20 3 1/9
3 14 14 1 4− 10 4, 5 2/7
4 ∅ ∅ ? 6− 10 6, 7 2/5

If d ≥ 4, the risk set R1(2, d) is empty and the effect ∆1(2, d) cannot be

estimated.
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The hazard function for comparison

The hazard function r0j (tc, d), which is used for the comparison, relates to a

control group,R0(tc, d), consisting of all units which did not experience the

treatment until, and including, tc+d. In other words, units in R0(tc, 0) are

excluded as soon as they experience the treatment. Using such a dynamic

control group can be justified with two postulates:

Postulate 1: The control group for the temporal location tc+d should not

contain units who received a treatment before tc + d.

Postulate 2: There should be no conditioning on the future. This requires

that the control group for the temporal location tc + d must not

exclude units receiving a treatment later than tc + d.

The postulates entail that, for each temporal location tc+d, the definition

of r0j (tc, d) is completely based on information about the units which do

not have experienced the treatment until, and including, tc + d. No as-

sumptions are required about the behavior of units in R0(tc, 0) and their

possible treatments in temporal locations later than tc + d.

Postulate 2 simply means that a researcher (observer), in order to de-

fine and estimate treatment effects at tc+d, does not use any knowledge (if

available) about treatments which occurred later than tc+d. One therefore

does not need any assumptions about the joint distribution of T1 and Tc for

T1 > tc + d (not even assume its existence). The postulate does not entail

that units of the process under consideration cannot anticipate treatments

or, if they can, this will not influence their current behavior. Some authors

have suggested that this assumption is required in order to identify coun-

terfactual outcomes (e.g., Abbring and van den Berg, 2003). However, in

many applications, in particular when treatments are completely or par-

tially self-selected by human individuals, a theoretical framework entailing

this assumption would contradict the process under investigation. I there-

fore propose that this assumption should not be considered as an essential

part of the theoretical framework.
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A contrast between ‘now’ and ‘waiting’?

Sianesi motivated her approach with being interested in a contrast between

receiving a treatment ‘now’ versus ‘waiting’ (Sianesi 2004, 2008; see also

Fitzenberger et al. 2013). A hazard function representing ‘waiting’ might

be defined by

r∗j (tc, d) := Pr(T1= tc + d,E1=j |T1 ≥ tc + d, Tc > tc) (4)

Here it is only required that there is no treatment until, and including,

tc (not until tc + d as required in the definition of r0j (tc, d)). The con-

trast of interest is then defined as ∆∗

j (tc, d) := r1j (tc, d) − r∗j (tc, d). This

quantity depends on the distribution of treatments between tc and tc + d.

Therefore, while possibly interesting, it seems not possible to interpret

∆∗

j (tc, d) as representing a causal effect of the treatment. This is under-

standable because ‘waiting’ simply leaves it open what will happen sub-

sequently. It only has a definite meaning for ‘now’ (d = 0), and then

∆∗

j (tc, 0) = ∆j(tc, 0).

In order to avoid the indeterminacy of ‘waiting’ one could compare

treatments experienced in different temporal locations. In terms of hazard

functions, one would compare r1j (tc, d) and r1j (t
′

c, d). However, thinking

of causation as a relationship between an event, or a temporally locatable

state, and probabilities of subsequent outcomes, the difference of the two

hazard functions cannot be interpreted as a causal effect.

3 Causal interpretations

My discussion concerns treatments, conceptualized as events, which influ-

ence a process that might lead to an event, E1 = j, at some future date. To

think of a causal effect of a treatment therefore requires a conceptualiza-

tion of the process leading to outcomes. I consider outcome events whose

occurrence, at least to some extent, depends on the behavior of the units

under consideration. I therefore presuppose that these are behavioral units

(most often human individuals), subsequently be called ‘primary agents’.
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As examples of outcome events one can think of ‘finding a job’, ‘becom-

ing married’, ‘getting a cold’, ‘visiting a dentist’, ‘becoming involved in a

traffic accident’. Obviously, there are different scopes of influencing the

occurrence of an outcome event. In any case, the fact that a primary agent

can influence the outcome must be taken into account when interpreting

the causal effect of a treatment. In many applications, in particular in

social research, at least a part of the causal effect of a treatment must be

viewed as being mediated through an agent’s behavior.

I start from the definition of treatment effects proposed in Section 2

which is based on a comparison of a treatment and a control group. A

causal understanding of these effects must take into account how treat-

ments, and thereby a treatment and a control group, come into being.

A basic distinction can be made between self-selected and heteronomous

treatments. A self-selected treatment comes into being by the primary

agent to which the treatment applies. In contrast, I distinguish between

three kinds of heteronomous treatments: (a) The treatment is generated

by an experimenter who is able to treat a primary agent as an experi-

mental object; (b) the process leading to a treatment originates from an

institution (defined in a broad way, including, e.g., medical offices and la-

bor market agencies); (c) the treatment is not generated by a human agent

or institution. In most cases, depending on the kind of treatment and in-

stitutional regulations, the primary agent can build expectations about a

future treatment and often has some scope for influencing the occurrence

of the treatment.

I refer to treatments which might occur in the temporal location tc (as

in the previous section, all considerations are conditional on starting from

a fixed tc). The process generating such treatments concerns the members

of a set, R(tc, 0), consisting of all units who, at tc, are still in the situation

σ0 and did not experience a treatment before tc. I also assume a vector

of covariates, say X(tc), describing the units in R(tc, 0). Components

of X(tc) can be time-constant characteristics of the units, or variables

recording events which occurred before tc.

Effects concern the occurrence of E1 events in temporal locations tc+d.
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So one can distinguish between instantaneous effects (d = 0) and tempo-

rally remote effects (d > 0) which also depend on processes occurring after

the treatment. I begin with considering instantaneous effects.

Intentionally generated heteronomous treatments

I first consider treatments generated by an experimenter or institution

(treatments not generated by a human agent or institution will not be

discussed in the present paper). The situation can be depicted by the

following diagram.

Model M1

E0
✲ E1

Ec

��✒
X(tc)

✘✘✘✘✘✘✿

S(tc)
�
�✒

❅
❅■

The process generating treatments starts from the variable S(tc), with

domain {0, 1}, representing the action of the experimenter or institution

in the temporal location tc. As part of the diagram, S(tc) is a ‘decision

node’ as described by Dawid (2002). The action is in two steps. In a

first step, the experimenter or institution selects a unit for treatment (if

S(tc) = 1) or control (if S(tc) = 0). In the model, this is represented by

the selection of a value of the variable X(tc). Then, in a second step,

the treatment is applied to units selected for treatment. To simplify the

discussion, I assume a deterministic relationship between S(tc) = 1 and

the treatment without a temporal delay. This entails that a unit cannot

avoid treatment if selected for treatment, but does not exclude that the

treatment could be anticipated.2

Note that there is no arrow from X(tc) to Ec. It is a human agent (ex-

perimenter or institution) who generates the treatment, not the variable

2A discussion of models for situations in which primary agents can influence the oc-

currence of heteronomous treatments (to be distinguished from ‘avoiding’, or ‘not self-

selecting’, a treatment) is outside the scope of the present paper.
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X(tc). By selecting units for the treatment, this agent generates a treat-

ment group, R1(tc, 0), and a control group, R0(tc, 0) = R(tc, 0)\R1(tc, 0).

Furthermore, the agent generates the distributions

Pr(X(tc)=x |S(tc) = s, T1 ≥ tc) (5)

which relate, respectively, to the treatment group (if s = 1) and to the

control group (if s = 0). As a special case one can consider randomized

treatment assignments which are defined by the independence of X(tc)

and S(tc).

Separating treatment and selection effects

Given model M1, one should start from the effect of the selection variable

S(tc), defined by ∆̃j(tc, d) := r̃1j (tc, d)−r̃0j (tc, d) where the hazard functions

on the right-hand side are defined by

r̃sj (tc, d) := Pr(T1= tc + d,E1=j |S(tc)=s, T1 ≥ tc + d)

(for s = 0, 1). This will be called a ‘comprehensive treatment effect’ (CTE).

Given a deterministic relationship between the selection variable S(tc)

and the treatment, as was assumed above, one can likewise use the earlier

notation ∆j(tc, d) = r1j (tc, d)−r0j (tc, d) and interpret this as a comprehen-

sive treatment effect. In any case, it is only the comprehensive treatment

effect which can be observed by comparing outcomes in the treatment and

the control group, and only this CTE has an immediate causal interpreta-

tion in model M1.

It is possible, however, to decompose the instantaneous CTE, ∆j(tc, 0),

into a selection effect and (a version of) a ‘hypothetically pure’ treatment

effect. I use the notations r1j (tc, d;x) and r0j (tc, d;x), defined by adding

the condition X(tc) = x on the right-hand side of (1) and (2), respectively.

The hazard functions from which the instantaneous CTE is derived can

be written as

rsj (tc, 0) =
∑

x
rsj (tc, 0;x) Pr(X(tc)=x |S(tc)=s, T1 ≥ tc)
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(for s = 0, 1). Using then ∆j(tc, d;x) := r1j (tc, d;x) − r0j (tc, d;x), one can

write:

∆j(tc, 0) = (6)
∑

x

[

Pr(X(tc)=x |S(tc)=1, T1 ≥ tc)−

Pr(X(tc)=x |S(tc)=0, T1 ≥ tc)
]

r0j (tc, 0;x) +
∑

x
∆j(tc, 0;x) Pr(X(tc)=x |S(tc)=1, T1 ≥ tc)

The first term on the right-hand side can be interpreted as a selection

effect, resulting from the selection of units for treatment. So it must be

viewed as part of the causal effect of the action of the experimenter or

institution. The second term on the right-hand side can be interpreted

as an average treatment effect, where the average is with respect to the

distribution of covariates in the treatment group. Note that this effect is

a theoretical construction and, in general, not equal to ∆(tc, 0) which, as

an observable effect, is to be interpreted as a CTE. Equality only holds if

there is no selection effect.

The selection effect becomes particularly clearly visible if, actually or

hypothetically, there is no treatment effect, meaning that r1j (tc, 0;x) =

r0(tc, 0;x) for all x. The initial selection effect can then be written as

Pr(T1= tc, E1=j |S(tc)=1, T1 ≥ tc)−

Pr(T1= tc, E1=j |S(tc)=0, T1 ≥ tc)

The two terms simply refer to the probability of E1 = j in the treatment

and the control group, respectively.

The second term in (6) is one version of a balanced effect which, hypo-

thetically, compares two groups having approximately the same distribu-

tion of covariates. A balanced formulation is often supposed to be required

for a causal interpretation. However, the CTE circumvents this require-

ment. This is possible by viewing the CTE as resulting from a process

consisting, not only of treatments, but also of events which assign treat-

ments to units. The argument is, of course, that also the latter events play

a causally relevant role.
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Self-selected treatments

Self-selected treatments come into being through the behavior of the units

in R(tc, 0). One cannot refer to an agent (experimenter or institution)

who, based on consideration of X(tc) and/or by using a random generator,

creates a partition of R(tc, 0) into a treatment and a control group, and

the model M1 can therefore not be used. For each primary agent, values

of X(tc) are given, and the selection can only concern the treatment. Of

course, one should assume that these selections depend in some way on

X(tc), and this leads one to the following model.

Model M2

E0
✲ E1

Ec

��✒
X(tc)

✘✘✘✘✘✘✿

S(tc)
�
�✒❅❅❘

In contrast to M1, an arrow now leads from X(tc) to S(tc), but also the

meaning of the ‘decision node’, S(tc), has changed. In model M1, S(tc)

represents the behavior of an experimenter or institution. In model M2,

S(tc) represents the behavior of a primary agent defined by being a member

of R(tc, 0) and characterized by a particular value of X(tc).

Note that, in model M2, one cannot ‘hypothetically dismiss’ the arrow

from X(tc) to S(tc).
3 Dropping this arrow would lead to an essentially

different model which entails the assumption that X(tc) does not play

a role in the primary agents’ selection of treatments. When concerned

with model M2 for self-selected treatments, S(tc) must be considered as

an endogenous variables.

In the following I assume again a deterministic relationship between

S(tc)= 1 and the treatment without a temporal delay. So one could also

consider a simplified version of M2 in which S(tc) is omitted and there is

3This has been suggested as a requirement for definitions of a ‘causal effect’, see, e.g.,

Pearl (2000). Then, however, only model M1, not M2, could be used as a framework

for causal considerations.
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a single arrow from X(tc) to Ec. However, an explicit reference to S(tc)

can ease the understanding.

Although M1 and M2 are essentially different models, they are in an

important respect comparable. Both models can be considered as describ-

ing the generation of a treatment and a control group. In model M1, this

is done by the experimenter or institution, in model M2, this is a result of

individual behavior. Therefore, also M2 can be used to derive conditional

distributions of X(tc) having an interpretation comparable with (5):

Pr(X(tc)=x |S(tc)=s, T1 ≥ tc) = (7)

Pr(S(tc)=s |X(tc)=x, T1 ≥ tc) Pr(X(tc)=x |T1 ≥ tc)
∑

x′ Pr(S(tc)=s |X(tc)=x′, T1 ≥ tc) Pr(X(tc)=x′ |T1 ≥ tc)

In both models, the initial distribution of X(tc) (conditional on T1 ≥ tc)

is fixed at the beginning of tc. In addition, (7) only requires the reference

to a function x −→ Pr(S(tc)=s |X(tc)=x) describing the self-selection of

primary agents.

Given this comparability, the partition (6) can also be used for model

M2. One can distinguish a selection effect resulting from the primary

agents’ self-selection into a treatment and a control group and, in addition,

a hypothetically pure treatment effect. Moreover, also the CTE has a

comparable meaning in both models: in M1, it is the effect of the behavior

of the experimenter or institution, in M2 it is the result of the behavior

(decisions) of the primary agents.

Temporally remote effects

I now consider treatment effects in temporal locations tc + d for d > 0.

I assume that these effects result from what is actually the case at the

beginning of the temporal location tc + d (no ‘action at a distance’). The

main question then concerns how the treatment at tc has contributed to the

development of the situation at the beginning of tc+d. One obvious idea is

that a unit who experienced a treatment at tc is thereby changed in some

way, and this new feature of the unit and/or her environment endures for

temporal locations beyond tc. A complementary idea is that the treatment
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influences the occurrence of further events after the treatment which then

in turn influence the occurrence of outcome events.

Since the effect definition is based on comparing outcomes in a treat-

ment and a control group one also has to take into account selection effects

occurring after the treatment. These effects can be considered by using a

partition analogous to (6) for temporal locations beyond tc:

∆j(tc, d) = (8)
∑

x

[

Pr(X(tc)=x |S(tc)=1, T1 ≥ tc + d)−

Pr(X(tc)=x |S(tc)=0, T1 ≥ tc + d)
]

r0j (tc, d;x) +
∑

x
∆j(tc, d;x) Pr(X(tc)=x |S(tc)=1, T1 ≥ tc + d)

The second term on the right-hand side can again be interpreted as an

average treatment effect, where the average now is with respect to the

distribution of covariates in the set of treated units who are still in σ0 at tc+

d. The first term on the right-hand side represents an effect resulting from a

difference in the distributions of covariates in the treatment and the control

group at tc + d. This difference has two sources. First, a difference at tc

when the treatment occurred. A second source are E1 events which depend

on the covariates and therefore change their distributions differently in the

treatment and the control group. This also shows that an important part

of the selection effect cannot be eliminated by a random assignment of

treatments at tc.

Both sources of the selection effect can be causally interpreted. As I ar-

gued above, the first source results from treatment assignment done by an

experimenter or institution (in model M1) or from the behavior of primary

agents (in model M1). The second source results from the occurrence of E1

events. Of course, these events change both the treatment and the control

group and consequently the respective conditional distributions of X(tc).

However, the development of the difference between these two distribu-

tions can be traced back to the selection and application of treatments at

tc.

I now consider events which might occur after the treatment and in-
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fluence the occurrence of outcome events. To fix ideas, I refer to a single

event, represented by the binary event variable Em. Since the treatment

can only occur once, this is not a time-dependent confounder but can be

viewed as a variable mediating the treatment effect:

Model M3

E0
✲ E1

Ec

✏✏✏✏✏✶

PPPq
Em X(tc)✛ ❅

❅❅■
✄
✄✗

The relationship between X(tc) and Ec can be specified as in model M1

or M2.

There are three possible approaches. (a) One can consider Em as a

variable mediating the comprehensive treatment effect. (b) One can be

interested in the effect of Em on the occurrence of E1 events, conditional

on whether there was a treatment before. (c) One can consider (Ec, Em)

as representing sequences of possible events and investigate how the oc-

currence of E1 events depends on such sequences.4

If the interest mainly concerns effects of the treatment, one can follow

the first approach. Of course, given that Em also depends on X(tc), Em

must be considered as mediating a joint effect of the treatment and the

covariates. However, the dependence of Em onX(tc) and Ec can be viewed

like the dependence of Ec onX(tc); Ec is simply a further component in the

vector of covariates relevant for the occurrence of Em. Moreover, because

one is interested in effects of the treatment, it seems not necessary to apply

the distinction between self-selected and heteronomous treatments also to

Em. Independent of how Em events come into being, one can think of Em

as mediating the CTE of the treatment.

4A version of this approach was proposed by Lechner and Miquel (2010).
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4 Temporally extended effects

Effect shapes make effects dependent on both the time when the treatment

occurred and the duration since the treatment occurred. One also might

be interested in effects which concern the probability of an outcome event

(E1=j) in a time interval after the occurrence of the treatment.

Event probabilities for treated units

Given a treatment at tc, one has to consider p1j(tc, δ) := the probability of

the occurrence of E1=j in the time interval [tc, tc+ δ]. Since the situation

σ0 could end by events different from E1=j, this probability cannot simply

be derived from knowing the hazard function r1j (tc, d) defined in (1). One

also needs the survivor function for still being in σ0 until tc+d, given that

a treatment occurred at tc:

G1(tc, d) :=
d−1
∏

k=0

(1− r1(tc, k)) (9)

where r1(tc, k) :=
∑

j>0
r1j (tc, k) and G1(tc, 0) := 1. So one can write

p1j(tc, δ) =
δ

∑

d=0

r1j (tc, d)G
1(tc, d) (10)

Correspondingly, one can consider a treatment group R1(tc, 0) := a set of

units who experienced the treatment at tc. With an event set E1

j (tc, 0:δ) :=

all members of R1(tc, 0) who experienced the event E1=j in [tc, tc+δ], one

can use #E1

j (tc, 0 :δ)
/

#R1(tc, 0) to estimate (10). This can be illustrated

with the data in Table 1. Assuming tc=2 and δ = 2, one finds

d r11(2, d) G1(2, d)

0 1/4 4/4
1 1/3 3/4
2 1/2 2/4

Summing up, the probability defined in (10) is 3/4. The same value results

from the treatment group R1(2, 0) = {11, 12, 13, 14} and the event set

E1(2, 0 : 2)={11, 12, 13}.
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Event probabilities for the comparison

There is no obvious way to define the probability of the occurrence ofE1=j

in the time interval [tc, tc + δ] for not treated units. I use a definition that

is consistent with the definition of effects in terms of hazard functions (see

also Lalive et al. 2008, Crépon et al. 2008). One can begin with a survivor

function paralleling (9):

G0(tc, d) =
d−1
∏

k=0

(1− r0(tc, k)) (11)

where r0(tc, k) :=
∑

j>0
r0j (tc, k) and G0(tc, 0) := 1. G0(tc, d) can be

interpreted as the time-dependent probability of staying in the situation

σ0 without experiencing a treatment. The probability for comparison can

then be defined as

p0j(tc, δ) :=
δ

∑

d=0

r0j (tc, d)G
0(tc, d) (12)

and the temporally extended effect can be defined as

∆e
j(tc, δ) := p1j(tc, δ)− p0j(tc, δ) (13)

To illustrate with the data in Table 1, and assuming again tc = 2 and

δ = 2, one finds:

d r01(2, d) G0(2, d)

0 1/16 1.000
1 1/12 0.938
2 1/9 0.859

Summing up, the probability defined in (12) is 0.236, and the temporally

extended effect is ∆e
1
(2, 2)=0.750− 0.236 = 0.514.

Note that one cannot define just one control group for estimating (12).

In particular, one cannot use a set of units who did not experience the

treatment until, and including, tc. In our example, this would be the

set {1 − 10, 15− 20}, and the corresponding event set would be {1, 2, 3},

resulting in 3/16. Likewise, one cannot use a set of units who did not
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experience the treatment until, and including, tc + δ. In our example, this

would be the set {1 − 10, 20}, and the corresponding event set would be

{1, 2, 3}, resulting in 3/11.

Causal interpretation of extended effects

Thinking of causation as a temporally local relationship, ∆e
j(tc, δ) should

be considered as resulting from a process, extending from tc to tc + d,

generating E1=j events. This can be made explicit by writing ∆e
j(tc, δ) =

∑δ

d=0
∆p

j (tc, d), where

∆p
j (tc, d) := r1j (tc, d)G

1(tc, d)− r0j (tc, d)G
1(tc, d) (14)

This shows that the extended effect is not a simple summary of the tempo-

rally local effects which are defined by a reference to the hazard functions

rsj (tc, d), but also depends on surviving in the situation σ0. This is relevant

for interpreting the extended effect because surviving in σ0 also depends

on concurrent events as specified in the domain of E1. One cannot easily

interpret an extended treatment effect with respect to a specified event,

E1= j, without taking into account how the treatment influences concur-

rent events. To illustrate, assume ∆j(tc, d) = 0 for all d. However, as

shown by

∆e
j(tc, δ) =

δ
∑

d=0

∆j(tc, d)G
1(tc, d) +

[

G1(tc, d)−G0(tc, d)
]

r0j (tc, d)

there can well be an extended effect for E1 = j due to different surviving

probabilities of treated and not treated units. A temporally extended effect

is therefore not a sufficient evidence for there being a treatment effect for

a specified outcome event.

A further argument for considering effect shapes, before using tempo-

rally extended effects as summaries, concerns that the extended effect can

hide important changes in the underlying effect shape. For example, if

an extended effect is zero, this could hide an effect shape which is first

positive and then negative.5

5An example dealing with the effect of a women’s pregnancy (Ec) on marriage (E1)
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5 Discussion

The paper considers a version of the question of how to define treatment

and control groups in a dynamic setting where treatments can occur at any

time (but only once). The version considered presupposes that treatments

as well as outcomes can be conceptualized as events occurring in temporal

locations of a discrete time axis. This motivates to think of effects as

being dependent on both the time when and the time since the treatment

occurred.

An essential step in the argument concerns that one should start from a

temporally local conception of effects. Given that a treatment occurred in

temporal location tc, effects should be defined separately for each temporal

location tc + d (d = 0, 1, 2, . . .). Combining this with the idea that effects

should be estimated by comparing a treatment and a control group, also

these groups should be defined separately for each tc + d.

Since treatments can only occur once, a treatment group R1(tc, d) can

easily be defined as the set of all units who experienced the treatment

at tc and are still at risk for experiencing the outcome event in temporal

location tc + d. Following a temporally local view, the control group,

R0(tc, d), should not contain units who experienced a treatment before

tc+d (postulate 1), but also should not exclude units who might experience

the treatment at a later time (postulate 2). The second postulate can be

justified with the argument that one is interested in causally interpretable

effects, and their definition for a temporal location tc+d must not depend

on events which might occur later than tc + d.

In order to find a causal interpretation one has to start from the ques-

tion of how treatments are generated. This paper considers two models. In

model M1, treatments are generated by an experimenter or institution, in

model M2, treatments are self-selected by primary agents. In both models,

the generation of treatments starts from a selection of units to be treated.

Since outcomes depend on properties of the units under consideration, the

selection must be viewed as an essential part of the process which eventu-

in consensual unions was discussed by Blossfeld et al. (1999).
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ally leads to treatment effects. This motivates to consider the difference

of outcomes in the treatment and the control group as a ‘comprehensive

treatment effect’ (CTE) resulting from both a division of units into two

groups and applying the treatment to the units in one of these groups.

The CTE can be viewed as consisting of two parts: a selection effect

and a ‘pure’ treatment effect. However, the two components cannot be

observed separately and their separation must therefore be understood as

a theoretical construction. Since the process generating the CTE begins

with the selection of treated and not treated units, it seems natural to

begin with the definition of the selection part of the CTE.

The selection part of the CTE results from variables which are rele-

vant for the outcome and differently distributed in the treatment and the

control group. In order to avoid a confounding with effects of the treat-

ment, its definition should hypothetically assume that the generation of

the treatment and the control group is not followed by actually applying

the treatment. This can be achieved by using the control group as a ref-

erence as done in (6) and (8). The remainder of the CTE can be viewed

as a constructed pure treatment effect.

This is consistent with the idea that randomized experiments can pro-

vide estimates of pure treatment effects. The argument simply is that such

experiments intentionally avoid selection effects. However, such experi-

ments are no substitute for modeling and understanding processes which

actually begin with a nonrandom selection of treated and not treated units.

Moreover, also treatment effects estimated with randomized experiments

depend on the distribution of covariates in the sample of units selected

for the experiment. This is true, in particular, when treatments and co-

variates interact so that conditional treatment effects, ∆j(tc, d;x), depend

on X(tc) = x. Therefore, treatment effects estimated with randomized

experiments cannot easily be used for partitioning a CTE into a selection

and a treatment part.

Accepting the CTE as a notion having a sensible (causal) interpre-

tation also suggests a somewhat different understanding of estimating a

pure treatment effect. A pure treatment effect is to be understood as a
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theoretically constructed part of a comprehensive treatment effect, and

the selection effect is to be understood as an essential complement. Es-

timation problems due to unobserved components of X(tc) only concern

the partition of the CTE into the two components and do not affect the

estimate of the CTE.
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